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The lower bounds for the a posteriori prediction error of a nonlinear pre-
dictor realized as a neural network are provided. These are obtained for
a priori adaptation and a posteriori error networks with sigmoid nonlin-
earities trained by gradient-descent learning algorithms. A contractivity
condition is imposed on a nonlinear activation function of a neuron so
that the a posteriori prediction error is smaller in magnitude than the
corresponding a priori one. Furthermore, an upper bound is imposed on
the learning rate g so that the approach is feasible. The analysis is under-
taken for both feedforward and recurrent nonlinear predictors realized
as neural networks.

1 Introduction

A posteriori techniques have been considered in the area of linear adap-
tive �lters (Treichler, Johnson, & Larimore, 1987; Ljung & Soderstrom, 1983;
Douglas & Rupp, 1997). However, in the area of neural networks, the use of
a posteriori techniques is still in its infancy. Recently it has been shown that
an a posteriori approach in the neural networks framework exhibits behav-
ior correspondent to the normalised least mean square (NLMS)algorithm in
the linear adaptive �lters case (Mandic & Chambers, 1998). Consequently, it
is expected that the instantaneous a posteriori output error Ne(k) is smaller in
magnitude than the corresponding a priori error e(k) (Treichler et al., 1987;
Mandic & Chambers, 1998). However, little is known about the relationships
between the a posteriori and a priori error, learning rate, slope in the nonlin-
ear activation function of a neuron, and feasibility of such a neural predictor.

In the case of a single-node neural network, with a nonlinear activation
function of a neuron W, the a priori output of a network y is given by

y(k) DW

³
xT(k)w(k)

´
, (1.1)

where x(k), w(k), and (¢)T denote, respectively, the input vector to a network,
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the weight vector, and vector transpose operator. Function W is assumed to
belong to the class of sigmoid functions. The updated weight vector w(kC 1)
is available from the learning algorithm before the next, updated, input
vector x(k C 1), therefore an a posteriori estimate Ny can be calculated as

Ny(k) DW

³
xT(k)w(k C 1)

´
. (1.2)

The corresponding instantaneous a priori and a posteriori errors at the out-
put neuron of a neural network are given respectively as e(k) Dd(k) ¡ y(k)
and Ne(k) Dd(k) ¡ Ny(k), where d(k) is some teaching signal.

Our aim is to preserve

| Ne(k)| · c |e(k)| , 0 < c < 1 (1.3)

at each iteration, for both feedforward and recurrent neural networks acting
as a nonlinear predictor. This a priori learning a posteriori error algorithm
corresponds to the normalized gradient-descent algorithm for neural net-
works (Haykin, 1996; Mandic & Chambers, 1998). In this work we seek to
guarantee that the a posteriori error Ne is uniformly smaller in magnitude
than the corresponding a priori error e.

The problem can be represented in the gradient-descent setting as

w(k C 1) Dw(k) ¡ rwE
¡
e(k)

¢

Ne(k) Dd(k) ¡ W

³
xT(k)w(k C 1)

´

subject to

| Ne(k)| · c |e(k)| , 0 < c < 1, (1.4)

where the cost function E(e(k)) is some nonlinear function of the instanta-
neous a priori output error e(k), typically a quadratic function of e(k).

Here, we provide relationships between the a priori prediction error e(k),
a posteriori prediction error Ne(k), learning rate of a gradient-descent learning
algorithmg(k), and the slope b of a nonlinear activation function of a neuron
W, for both the feedforward and recurrent case, with respect to objective 1.4.
Constraints are imposed on the nonlinear activation function W, so that
equation 1.3 holds. Moreover, the conditions for the learning rate g are
given so that approach 1.4 is feasible. In that case, as a matter of example,
we derive the relationship between the learning rate g and the slope b for
the logistic nonlinear activation function of a neuron.

2 Contraction Mapping and Nonlinear Activation Functions

By the contraction mapping theorem (CMT), function K is a contraction on
[a, b] 2 R if (Gill, Murray, & Wright, 1981; Zeidler, 1986):

i. x 2 [a, b] ) K(x) 2 [a, b]
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Figure 1: Contraction mapping.

ii. 9c < 1 2 RC s.t. |K(x) ¡ K(y)| · c |x ¡ y| , 8x, y 2 [a, b]

as shown in Figure 1. Applying the mean value theorem (MVT) (Luenberger,
1969) to the de�nition of CMT, for 8x, y 2 [a, b], 9j 2 (a, b) such that

|W(x) ¡ W(y)| D|W0(j )(x ¡ y)| D|W 0(j )| |x ¡ y| . (2.1)

Now, clause c < 1 in part ii of the CMT becomes c ¸ |W0(j )| , j 2 (a, b). For
the example of the logistic nonlinear activation function of a neuron

W(x) D
1

1 C e¡bx (2.2)

whose �rst derivative is

W0(x) D be¡bx

¡
1 C e¡bx

¢2 , (2.3)

c < 1 , b < 4 is the condition for function W to be a contraction on
8[a, b] 2 R (Mandic & Chambers, 1999a).

3 The Case of a Feedforward Neural Filter

The gradient-descent algorithm for single-node a priori adaptation a poste-
riori error networks, with the cost function in the form of E(k) D1

2e2(k), is
given by Narendra and Parthasarathy (1990, 1991):

w(k C 1) Dw(k) C g(k)e(k)W0
³

xT(k)w(k)
´

x(k)

Ne(k) Dd(k) ¡ W

³
xT(k)w(k C 1)

´
. (3.1)

This case represents a generalization of �nite impulse response (FIR) linear
adaptive �lters.

Multiplying the �rst equation in equation 3.1 from the left side by xT(k)
and applying the nonlinear activation function W on either side, we obtain

W

³
xT(k)w(k C 1)

´

DW

³
xT(k)w(k) C g(k)e(k)W0

³
xT(k)w(k)

´
kx(k)k2

2

´
. (3.2)

Further analysis depends on the function W, which can exhibit either con-
tractive or expansive behavior.
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3.1 Contractive Activation Function. If function W is a contraction, then

W(a C b) · W(a) C W(b). (3.3)

Theorem 1. The lower bound for the a posteriori error obtained by the algo-
rithm 3.1 with constraint 1.3 and a contractive nonlinear activation function W, is

Ne(k) >
h
1 ¡ g(k)W0

³
xT(k)w(k)

´
kx(k)k2

2

i
e(k). (3.4)

Proof. With a DxT(k)w(k) and b Dg(k)e(k)W0 ¡
xT(k)w(k)

¢
kx(k)k2

2, apply-
ing inequality 3.3 to 3.2 and subtracting d(k) from both sides of the resulting
equation, due to contractivity of W, we obtain

Ne(k) ¸
h
1 ¡ W

³
g(k)W 0

³
xT(k)w(k)

´
kx(k)k2

2

í
e(k). (3.5)

For W a contraction, |W(j )| < |j | , 8j 2 R, and equation 3.5 �nally becomes

Ne(k) >
h
1 ¡ g(k)W0

³
xT(k)w(k)

´
kx(k)k2

2

i
e(k), (3.6)

which is the lower bound for the a posteriori error fora contractive nonlinear
activation function.

Corollary 1. The range allowed for the learning rateg(k) in an a priori adaptation
a posteriori error algorithm, 3.1, with constraint 1.3, for the conditions given in
theorem 1, is

0 < g(k) <
1

W 0
¡
xT(k)w(k)

¢
kx(k)k2

2
. (3.7)

3.1.1 Some Simpli�cations. For W a contraction, |W0(j )| < 1, 8j 2 R.
Therefore, even stricter conditions than those given in theorem 1 and corol-
lary 1 are as follows.

Theorem 2. The lower bound for the a posteriori error obtained by algorithm 3.1
with constraint 1.3 and a contractive nonlinear activation function W, is

Ne(k) >
h
1 ¡ g(k)kx(k)k2

2

i
e(k). (3.8)

Corollary 2. The range allowed for the learning rate g(k), for the conditions
given in theorem 2, is

0 < g(k) <
1

kx(k)k2
2

. (3.9)



Errors in Nonlinear Adaptive Neural Filters 1289

If, for convenience, the input data are normalized within a unit norm (kxk2
2 <

1), condition 3.9 becomes further simpli�ed to 0 < g(k) < 1.

3.2 Expansive Activation Function. If function W is an expansion, then
W(a C b) ¸ W(a) C W(b), |W(j )| > |j | , 8j 2 R, and |W0(j )| ¸ 1. In this case,
equation 3.2 becomes

Ne(k) ·
h
1 ¡ W

³
g(k)W0

³
xT(k)w(k)

´
kx(k)k2

2

í
e(k). (3.10)

For W an expansion, |W(j )| > |j | , and equation 3.4 �nally becomes

Ne(k) <
h
1 ¡ g(k)W 0

³
xT(k)w(k)

´
kx(k)k2

2

i
e(k), (3.11)

which holds for negative g, which is not feasible.

4 The Case of a Recurrent Neural Filter

In this case, the gradient-descent updating equation regarding the recurrent
neuron can be symbolically expressed as (Haykin, 1994)

@y(k)
@w(k)

DP(k C 1) DW0
³

xT(k)w(k)
´

[x(k) C w(k)P (k)] , (4.1)

where vector P denotes the set of corresponding gradients of the output
neuron, and vector x(k) encompasses both the external and feedback inputs
to the recurrent neuron. This case is a generalization of linear adaptive
in�nite impulse response (IIR) �lters.

The correction to the weight vector at the time instant k becomes

Dw(k) Dg(k)e(k)P (k). (4.2)

The real time recurrent learning (RTRL) (Williams & Zipser, 1989) based
learning algorithm for single-node a priori adaptation a posteriori error
networks is now given by

w(k C 1) Dw(k) C g(k)e(k)P (k)

Ne(k) Dd(k) ¡ W

³
xT(k)w(k C 1)

´
. (4.3)

In the spiritof algorithm 1.4, following the same principleas for feedforward
networks, we obtain the lower error bound for the a priori adaptation a
posteriori error algorithm in single-node recurrent neural networks acting
as nonlinear adaptive �lters.
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Theorem 3. The lower bound for the a posteriori error obtained by algorithm 4.3
with constraint 1.3, and a contractive nonlinear activation function W, is

Ne(k) >
h
1 ¡ g(k)xT(k)P (k)

i
e(k), (4.4)

whereas the range allowed for the learning rateg(k) is given in the following
corollary.

Corollary 3. The range allowed for the learning rateg(k) in an a priori adaptation
a posteriori error algorithm, 4.3, with constraint 1.3, and the conditions given in
theorem 3, is

0 < g(k) <
1

xT(k)P(k)
. (4.5)

4.1 The Case of a General Recurrent Neural Network. For recurrent
neural networks of the Williams-Zipser type (Williams & Zipser, 1989), with
N neurons and one output neuron, the weight matrix update for an RTRL
training algorithm can be expressed as

DW(k) Dg(k)e(k)
@y1(k)
@W(k)

Dg(k)e(k)P1(k), (4.6)

where W(k) represents the weight matrix and P1(k) D@y1(k)
@W (k) is the matrix

of gradients at the output neuron p 1
n,l(k) D@y1(k)

@wn, l
, where index n runs along

the N neurons in the network, and index l runs along the inputs to the
network. This equation is similar to equation 4.2, with the only difference
being that weight matrix W replaces weight vector w and gradient matrix
P D[P1, . . . , PN] replaces gradient vector P. Notice that in order to up-
date matrix P1, a modi�ed version of equation 4.1 has to update gradient
matrices P i, i D1, . . . , N. More details about this procedure can be found in
Williams and Zipser (1989) and Haykin (1994). Undertaking the analysis in
the same manner as for a recurrent perceptron, we obtain the following con-
ditions imposed on the learning rateg and the a posteriori error Ne for a priori
learning a posteriori error recurrent neural predictor with an arbitrary size.

Corollary 4. The lower bound for the a posteriori error obtained by an a pri-
ori learning a posteriori error RTRL algorithm, 4.6, with constraint 1.3, and a
contractive nonlinear activation function W, is

Ne(k) >
h
1 ¡ g(k)xT(k)P1(k)

i
e(k), (4.7)

whereas the range of allowable learning rates g(k) is

0 < g(k) <
1

xT(k)P1(k)
. (4.8)
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4.2 The Case of a Linear Activation Function. In the case of a linear ac-
tivation function, which is neither contractive nor expansive, the nonlinear
networks with a single neuron, for both the feedforward and recurrent case,
degenerate respectively into linear adaptive �nite impulse response (FIR)
and IIR �lters. A comprehensive analysis of such cases is given in Treichler
et al. (1987) and Ljung and Soderstrom (1983).

5 The Case of the Logistic Activation Function

We provide a simple example of our analysis for the case of a logistic non-
linear activation function of a neuron. In section 2, we showed that the
condition for the logistic activation function to be a contraction is b < 4. As
such a function is monotone and increasing, the bound on its �rst derivative,
2.3, is W 0(j ) · b

4 , 8j 2 R. That being the case, the conditions from theorem 1
and corollary 1 become, respectively,

Ne(k) >
1
4

h
4 ¡ g(k)bkx(k)k2

2

i
e(k) (5.1)

and

0 < g(k) <
4

bkx(k)k2
2

. (5.2)

Based on theorem 3 and corollary3, similar conditions can be derived for the
recurrent case. These relationships considerably extend and shed additional
light on the recently derived relations between the learning rate g and the
slope in the nonlinear activation function b for a general a priori neural
network (Thimm, Moerland, & Fiesler, 1996; Mandic & Chambers, 1999b).

6 Conclusions

We have provided relationships between the a priori and a posteriori pre-
diction error, learning rate, and slope of the nonlinear activation function
of a nonlinear adaptive �lter realized by a neural network. This leads to the
lower bound on the a posteriori error in a priori learning a posteriori error
neural predictors, whose a posteriori output error is uniformly smaller in
magnitude than the a priori one. The lower bound is derived based on the
learning rate g, the �rst derivative of a general nonlinear activation function
of a neuron around the current point on the error performance surface, and
the L 2 norm of the input vector. This has been achieved for learning algo-
rithms based on gradient descent for both the feedforward and recurrent
cases. In both cases, further conditions on the learning rate g are imposed
so that the approach is feasible. In that case, a general nonlinear activation
function of a neuron has to exhibit contractive behavior. The relationship
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between the learning rate g and the slope b is further evaluated for the
example of the logistic activation function.
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