
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999 1435

Toward an Optimal PRNN-Based Nonlinear Predictor
Danilo P. Mandic and Jonathon A. Chambers,Senior Member, IEEE

Abstract—We present an approach for selecting optimal pa-
rameters for the pipelined recurrent neural network (PRNN) in
the paradigm of nonlinear and nonstationary signal prediction.
Although there has recently been progress in terms of algorithms
for training the PRNN, no account has been made of some
inherent features of the PRNN. We therefore provide a study of
the role of nesting, which is inherent to the PRNN architecture.
The corresponding number of nested modules needed for a
certain prediction task, and their contribution toward the final
prediction gain (PG) give a thorough insight into the way the
PRNN performs, and offers solutions for optimization of its
parameters. In particular, nesting, which is a contractive function
by its nature, allows the forgetting factor in the cost function
of the PRNN to exceed unity, hence it becoms an emphasis
factor. This compensates for the small contribution of the distant
modules to the prediction process, due to nesting, and helps to
circumvent the problem of vanishing gradient, experienced in
RNN’s for prediction. The PRNN, with its parameters chosen
based upon the established criteria, is shown to outperform the
linear least mean square (LMS) and recursive least squares (RLS)
predictors, as well as previously proposed PRNN schemes, at no
expense of additional computational complexity.

Index Terms—Forgetting factor, nesting, nonlinear prediction,
PRNN, RNN.

I. INTRODUCTION

A CLASS of physical signals, such as speech, is gener-
ated from a nonlinear mechanism, and has statistically

nonstationary properties, which makes the task of their predic-
tion difficult. Linear adaptive structures for prediction, such as
least mean square (LMS) and recursive least squares (RLS)
predictors do not account for the inherent nonlinearity in such
signals, and as such face difficulties in providing reliable
prediction. A nonlinear structure suitable for nonparametric
prediction of nonlinear and nonstationary signals is the ar-
tificial neural network (ANN). In 1995, Haykin and Li [1]
presented a novel, computationally efficient nonlinear predic-
tor based on the pipelined recurrent neural network (PRNN).
The PRNN consists of a number of small scale recurrent
neural networks (RNN’s), but maintains its relatively low
computational complexity considering the entire number of
neurons in its architecture. In addition, the PRNN architecture
helps to circumvent the problem of vanishing gradient [2], due
to: 1) creating a spatial representation of a temporal pattern,
2) putting time delays into the neurons or their connections,

Manuscript received January 15, 1998; revised January 26, 1999 and June
29, 1999.

D. P. Mandic is with the School of Information Systems, University of East
Anglia, Norwich NR4 7TJ U.K.

J. A. Chambers is with the Communications and Signal Processing Research
Group, Department of Electrical and Electronic Engineering, Imperial College
of Science, Technology and Medicine, London, U.K.

Publisher Item Identifier S 1045-9227(99)09113-4.

and 3) employing recurrent connections [3], [4]. In other
words, the modular structure employed by the PRNN enables
memory to be embedded into the PRNN [5]–[7], as well as
the representation of block cascaded systems, such as the
Wiener–Hammerstein system [4], [8], [9].

The learning algorithm which was used by Haykin and Li
for the PRNN was a gradient descent (GD)-based algorithm
known as the real-time recurrent learning algorithm (RTRL)
[10], [11]. However, the variant of this algorithm used for
training the PRNN suffers from some serious drawbacks. In
[12] and [13], an improved RTRL-based algorithm was pre-
sented, together with the extended Kalman filter (EKF)-based
algorithm for training the PRNN. Both of them outperformed
the originally proposed algorithm.

As adaptation of parameters of the PRNN is a complex
and demanding nonlinear optimization task, there is a need
to have further insight into some inherent features of the
PRNN which could yield even better performances using well-
known strategies. One way would be to find some relationships
between the parameters employed in learning [14], which is
rather difficult for the PRNN. Hence, we analytically describe
the core of the features of the PRNN for the prediction
application, such as the nature and value of the forgetting
factor, and the role of the number of modules in the PRNN,
and offer a solution to obtain the best possible predictor in
that environment.

This paper is organized in the following manner. In
Section II, the PRNN-based nonlinear predictor is described,
starting from the RNN, and concluding with the Haykin–Li’s
nonlinear predictor [1]. In Section III, the effect of nesting,
which is inherent to the PRNN, is shown, and the influence of
nesting on the output of the PRNN is elaborated. Furthermore,
in Section IV, the role of the influence of the forgetting factor
to the gradient-based learning of the PRNN is presented,
and a new solution for weighting of the modules in the
PRNN is proposed. In Section V, the performance of the
proposed scheme is compared to the performances of known
schemes [1], [12], [13], and it is shown that the proposed
scheme substantially outperforms the existing ones. Finally,
in Section VI, the main results presented in the paper are
summarized.

II. THE PIPELINED RECURRENT NEURAL NETWORK (PRNN)

The PRNN is a modular neural network, and consists of a
certain number of RNN’s as its modules, with each module
consisting of neurons. The structure of a single RNN is
shown in Fig. 1. The RNN consists of three layers:

• input layer
• processing layer

1045–9227/99$10.00 1999 IEEE

1436 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Fig. 1. Single recurrent neural network.

• output layer.

For each neuron , the elements
, of the input vector to a neuron (4), are weighted,

then summed to produce an internal activation function of a
neuron (3), which is finally fed through a nonlinear activation
function (1), to form the output of the th neuron (2).
The function itself, is typically a monotonically increasing
sigmoid logistic function, whose amplitude lies in the interval

, and is given by

(1)

For the th neuron, its weights form a
dimensional weight vector ,
where is the number of external inputs andis the number
of feedback connections, one remaining element of the weight
vector being for the bias input weight. The feedback
connections represent the delayed output signals of the RNN.
In the case of the network shown in Fig. 1, we have .
Such a network is called a fully connected recurrent neural
network (FCRNN). For more details about recurrent neural
networks, refer to the landmark paper by Williams and Zipser
[10]. The following equations fully describe the FCRNN:

(2)

(3)

(4)

where the dimensional vector comprises
both the external and feedback inputs to a neuron, with vector

having “unity” for the constant bias input. Although the
general network shown in Fig. 1 contains hidden neurons,
whose outputs are not visible in the network output, but fed

back to form the input vector, in the further analysis, only the
case of all the neurons being visible will be considered.

In the PRNN configuration, the modules, which are
FCRNN’s, are connected as shown in Fig. 2. The uppermost
module of the PRNN, denoted by , is simply an FCRNN,
whereas in modules , the only difference is that
the feedback signal of the uppermost neuron output within the
module , denoted by , is replaced
with the appropriate output signal
from its left neighbor module . The dimensional
external signal vector is
delayed by time steps () before feeding the module

, where denotes the -step time delay
operator, and is the dimensional identity matrix. The
weight vectors of each neuron , are embodied in an

dimensional weight matrix ,
with being the number of neurons in each module. All
the modules operate using the same weight matrix. The
overall output signal of the PRNN is ,
i.e., the output of the first neuron of the first module. A
full mathematical description of the PRNN is given in the
following equations:

(5)

(6)

for (7)

for (8)

Given the input vectors for each module
at the time instant , the outputs of all the neurons in the
network can be calculated using the equations given above.

At the time step , for each module ,
the one-step forward prediction error associated with
a module, is then defined as a difference between the desired
response of that module , which is actually the
next incoming sample of the input speech signal, and the actual
output of the th module , of the PRNN, i.e.,

(9)

Since the PRNN consists of modules, a total of forward
prediction error signals are calculated. The goal is to minimize
some measure of the error in the entire PRNN, termed acost
function, which was originally proposed as a weighted sum
of all the error signals from individual modules [1]. In such
a performance criterion, aforgetting factor , is
introduced which determines the weighting of the individual
modules. Thus, the overall cost function of the PRNN becomes

(10)

where is defined in (9).

MANDIC AND CHAMBERS: OPTIMAL PRNN-BASED NONLINEAR PREDICTOR 1437

Fig. 2. Pipelined recurrent neural network.

Since the predictor operates on the nonstationary input data,
a learning algorithm has to be chosen which, at each time step,
calculates the weight correction factor in order to update
the weight matrix . Hence, the updated weight matrix at
time-step can be calculated as

(11)

The merit of a pipelined recurrent neural network as compared
to a single fully connected recurrent neural network is that its
computational complexity is considerably reduced for the same
total number of neurons. Let an FCRNN contain a total of
neurons; if FCRNN’s constitute modules of the PRNN, then
the total number of neurons in the PRNN is . Having in
mind that the computational complexity of an FCRNN trained
with the gradient descent algorithm increases with
[10], then the PRNN approach reduces the computational
complexity of an entire network containing neurons
to a mere [1]. Another advantage of the PRNN
over an FCRNN is its increased capability of tracking time
varying nonlinearity, and therefore the associated higher order
statistics (HOS) of the probability density function (pdf) of the
underlying process, owing to the connection of modules
containing FCRNN’s as their architectural components.

A. The Haykin–Li’s Nonlinear Predictor

The original approach was to combine the PRNN as a
nonlinear part of an entire nonlinear predictor, which feeds
the LMS linear predictor to obtain the predicted data. That
procedure was composed of the three following subtasks.

• Prediction: Compute the one-step forward nonlinear pre-
diction errors of the PRNN at the time instant, using
the procedure described above and (9).

• Weight Updating:A learning algorithm uses the suitably
chosen overall cost function (10) in order to cal-
culate the weight matrix correction factor which
updates the weight matrix , as shown in (11).

• Filtering: Using (5)–(8) the output of the PRNN is com-
puted. The updated input signal to every module

is formed by substituting the external signal
input (speech)

with the updated external signal input
.

The output of the PRNN was then fed into the LMS filter in
order to produce the predicted signal of the nonlinear predictor.
As our aim is to improve the performance of the PRNN part,
and the LMS linear predictor was shown to contribute with
approximately 2 dB toward the total prediction gain [12],
[13], we shall concentrate on the PRNN part of the nonlinear
predictor only.

III. T HE EFFECTS OFNESTING

The PRNN architecture provides nesting of the nonlinear-
ities comprised in the modules of the PRNN. That being the
case, the functional dependence of the output of the network

can be expressed as

(12)

where it was assumed that all the neurons in the network
operate with the same activation function, and for the sake
of simplicity, the functional dependence of the weight matrix

to the nested nonlinearities was omitted. The result given in
(12) gives the PRNN its enhanced computing power compared
to the conventional RNN. Indeed, it is a universal approx-
imator in the sense that a PRNN with appropriate training
can approximate any nonlinear autoregressive moving average
(NARMA) process to any desired degree of accuracy, provided
that a sufficient number of hidden neurons is available [15],
[16]. The nested nonlinearity principle for an example of the
logistic nonlinearity is shown in Fig. 3. As shown in Fig. 3,
due to contractivity of the nonlinear activation function and
modularity of the PRNN [17], the nesting process introduces
a deteriorating effect in the relative amplitude of the output

of a distant module, when progressed
through the PRNN. Thus, the relative contribution of the

1438 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Fig. 3. Nestedlogistic nonlinearity.

output of the fourth module to the total amplitude at the output
of the PRNN, when that information reaches the first module
of the PRNN, has an amplitude , which has
only a small impact on the final value of the predicted sample
at the output of the PRNN. On the other hand,nestingdoes
not have any influence on the values of the gradient of the
activation function , when progressed through the PRNN,
which means that the dynamics of the learning process are not
in any way affected by nesting, as shown in Fig. 3.

Now, let us provide insight into the values of the gradient
for the nonlinear logistic activation function (1). The first
derivative of the logistic function, which represents a gradient
of the activation function in terms of the learning algorithms
based upon (1) is given by

(13)

The maximum value of the function (13) for the common
choice of is . As the nested structure from (12)
actually comprises the weight matrix , the output of the
PRNN, which is in effect a conditional mean predictor, can
be expressed as

(14)

In order to measure the influence of the output of a distant
module of the PRNN to its overall
output (Fig. 2), let us observe the derivative of the

with respect to , i.e., .
That is a measure of sensitivity of the output of the PRNN to
the output of its th module, denoted by .

(15)

Notice, that the maximum value for is
as shown in (13). Hence, the upper bound of an estimate

of becomes

(16)

In our experiments, the values of were such that
, which gives

(17)

For , which is the
upper bound of the influence of the amplitude of to
the amplitude of . That is a numerical measure of the
nesting effect, shown in Fig. 3. That is also the explanation
why Haykin and Li [1] could not achieve remarkably improved
prediction gains while increasing the number of modules
for . It is to be noticed that the above result (17)
does not depend on the forgetting factor. Since speech
is a heavily correlated signal, although nonstationary, and
the computational complexity of the PRNN grows with the
increase in the number of its modules, the external
input speech samples in the PRNN are in most feasible cases
such that , otherwise the network grows too
complex, since its computational complexity increases with

. We can assume that the speech samples
belong to a section of speech over which piecewise stationarity
can be assumed. Moreover, there is an information flow
between modules of the PRNN, where less distant modules
accept information of a predicted value of speech from their
neighbor module. Therefore, it seems reasonable to increase
the influence of the distant modules to the learning process,
more than allowed by the cost function (10), especially with

low. Hence, there is a need to find another way to make the
distant modules play their full role in the nonlinear predictor.
There are two ways of how a distant module can make an
influence to the overall output of the PRNN.

1) Through its output amplitude, due tonesting.
2) Through the learning process, since the overall correc-

tion to the common weight matrix is calculated
over all modules, according to thecost functionof the
network.

Since nothing can be done to improve the influence of a
distant module amplitude to the output of the PRNN through
nesting, it appears that the only way of improving the influence
of distant modules to the prediction process is through the
cost functionof the PRNN (10), i.e., through the process of
learning.

IV. A N ANALYSIS OF THE INFLUENCE OF THE

FORGETTING FACTOR TO THE TOTAL PREDICTION GAIN

The cost function for the PRNN has traditionally been
defined as

(18)

MANDIC AND CHAMBERS: OPTIMAL PRNN-BASED NONLINEAR PREDICTOR 1439

Hence, the elements of the correction to the weight
matrix update can be calculated as

(19)

Having in mind the nature of the elements of the sum (19), it
can be seen as a weighted sum of the correction factors due
to individual modules, namely

(20)

or, equivalently

(21)

where represents the correction factor of a single weight
due to each individual module , and

represents the corresponding weight matrix correction due to
module . Therefore, the total correction to the weight matrix

, can be bigger in magnitude than any of the individual
corrections making the sum (20). We have already seen that
the nesting process (12) affects the contribution of the relative
amplitude of the output of a distant module to the overall
output of the network , but does notaffect the learning
process. Moreover, it is the forgetting factor that has an
influence on the learning process. As seen from (21), although
every module of the PRNN has to calculate its full contribution

to the overall correction of the weight matrix ,
it becomes further scaled by multiplying with . For the

th module, e.g., , its contribution to the correction
of the overall weight matrix is multiplied by , which for

, as in the Haykin–Li’s paper [1] equals 0.6561.
Hence, not only the amplitude of a distant module does not
have significant influence on the amplitude of the output of the
PRNN, but also the forgetting factor in the cost function lowers
the contribution of the correction to the weight matrix of a
distant module, which discards its significance in two ways.
However, the th module is the only one which is a proper
fully connected RNN and does not involve any approximation
in its structure. It emerges therefore, that the contribution

to the total correction matrix
from distant modules should be somehow more evenly taken
into account, when training the PRNN. One intuitive approach
would be to amplify the contribution of distant modules to the
learning process by raising the value of the forgetting factor,
even for slightly bigger then unity, i.e., . In that case,
we will refer to as anemphasis factor. Using the emphasis
factor, the distant modules become heavily involved in the
learning process of the PRNN. The use of an emphasis factor
can be approved by the fact that, due to nesting, the influence

of distant modules to the dynamics of the PRNN should indeed
be amplified by some constant greater than unity.

On the other hand, the forgetting factoris RLS motivated,
where the cost function is , with

. In the case of the PRNN, however, the forgetting
factor is introduced along the modules. Realizing that

(22)

i.e., the outputs of the modules in the PRNN are not real-
izations of the same stochastic process, we can introduce an
emphasis factor, which is a linear weighting factor, rather than
a forgetting factor.

V. EXPERIMENTAL RESULTS

Three different speech signals, denoted by, and
were used to test the nonlinear predictor. Signal was
identical to that used in [1], whereas , and were used
in [12]. The content of the speech signals used in simulations
was as follows.

• : Speech sample “Oak is strong and,” length 10 000,
sampled at 8 kHz.

• : Speech sample “When recording audio data,”
length 10 000, sampled at 8 kHz.

• : Speech sample “I’ll be trying to win ,” length
10 000, sampled at 11 kHz.

The signals have been made public and are available on the
World Wide Web (WWW) from the author’s homepage [18].
The amplitudes of the signals were adjusted to lie in the range
of the function , i.e., . The measure that was used
to assess the performance of the predictors was the forward
prediction gain given by

dB (23)

where denotes the estimated variance of the speech signal
, whereas denotes the estimated variance of the

forward prediction error signal . This approach to the
definition of prediction gain is different from the one used in
[1], which used the mean squared values of the signal and
error instead of appropriate variance estimates. The usage of
variance estimates is preferable, though, because the dc term
contained in the mean squared values leads to biased results.

A. The Initialization

The initialization of the weights was achieved via
epochwise training as is commonplace for neural networks
with fixed weights. An initial weight matrix was chosen
randomly. The first samples of the input signal were
chosen as an input to the PRNN. Thesamples were used
for weight update calculations. Those updates were
summed to form an epoch weight update . Then,

1440 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Fig. 4. Relationship between prediction gainRp and forgetting factor� for speech signalss2 and s3: (a) Prediction gainRp versus the forgetting factor
� for s2 and (b) prediction gainRp versus the forgetting factor� for s3.

was used instead of to update . The whole
procedure was then termedan epoch. was chosen to be 300,
and the number of epochs required was 200, the number of
external speech inputs to a module was , and the number
of neurons per module was [1], [12], [13]. The slope
of the activation function was chosen to be unity, as in
the previous related work, which preserves nesting, due to
contractivity of the logistic activation function for [17].

B. Experiments on Prediction of Speech

To confirm that the distant modules should be heavily
involved in the learning process of the PRNN, an appropriate
experiment was undertaken. A configuration used in [1], [12],
and [13] was taken as a starting point, where the number of
modules in the PRNN considered as optimal was .
Let us first consider the influence of the forgetting factor
to the total prediction gain . Our intuitive approach was
that, due to the effects of nesting to the contribution of distant
modules to the output of the PRNN, the values for, for
a relatively small number of modules, can be even taken as

. The relationship between the prediction gain and
the value of the emphasis factorfor speech signals , and

, having the PRNN with
is given in Fig. 4. From Fig. 4, the best value for the emphasis
factor for the speech signal is , where
prediction gain dB, and for the
speech signal where dB. The appropriate
value of for the speech signal was the same as for .
The experiment totally approved our expectations that for a
medium number of modules, such as typically , as in
[1] and [13], the emphasis factor whose amplitude is slightly
greater than unity should be used. Increasing the value of
further, i.e., leads to further deterioration in the
value of prediction gain . The learning rate was chosen
bigger than in [1], [12], and [13], which caused the prediction
gain to be a nonmonotonic function of the number of
modules . In Fig. 5, a relationship between prediction gain

and the number of modules for the speech signals
and is given. As expected, the prediction gain

showed a significant increase for up to a medium number of
modules in the PRNN, whereas for a large number of modules,
since , it showed fast deterioration. Nevertheless, as

using a large number of modules in the PRNN does not
approve its usage, considering the dramatically increasing
computational complexity of the PRNN with increasing the
number of modules (), it is not likely that one will
work with, e.g., . Moreover, the maximum prediction
gain can be obtained for as small a number of modules as

, in the case of the speech signal. Table I shows the
comparison between the strategy with giving distant modules
more significance by enlarging the factor, and Haykin–Li’s
experiment. In the first row of Table I the values of prediction
gain for three speech signals, when using only a sole linear
LMS predictor is shown. The second row shows the prediction
gain for the RLS linear predictor. Furthermore, the results
obtained in [12] and [13] are shown in the third and fourth row,
with SG + LMS denoting the use of the stochastic gradient
algorithm in the PRNN, and the LMS algorithm afterwards,
and ERLS RLS denoting the use of the extended recursive
least squares (ERLS) algorithm in the PRNN, and the RLS
algorithm afterwards. The parameters used in the first four
rows were . Notice that it
was found that the linear predictors used after the PRNN in
previous configurations, improved the prediction gain by about
2 dB [13]. In the sixth row, we show the prediction gains
obtained at the output of the PRNN, for the case , and

for the speech signals and , and for
the speech signal . As the prediction gain in that case,
according to Fig. 5, can achieve its maximum for ,
even for , the maximum values of prediction gains
obtained for the speech signals are shown in the seventh row
of Table I. For the signal the maximum value of prediction
gain was exactly . The results shown in Table I show
that for , as proposed, the corresponding predictors
easily outperform the LMS predictor. Values for and
even outperform the corresponding SG LMS values. In
the case where the maximal values for were obtained
(the last row in Table I), the PRNN predictor, as proposed,
outperforms the LMS, RLS, and SG LMS predictors [13],
which are the stochastic gradient based predictors, whereas as
compared to the ERLS RLS predictor, it shows 2–2.5 dB
worse performance for speech signalsand .

A cost function with an emphasis factor , provides
simultaneously both the error minimization and the penalty
for complexity part, as desired in signal processing.

MANDIC AND CHAMBERS: OPTIMAL PRNN-BASED NONLINEAR PREDICTOR 1441

Fig. 5. Relationship between prediction gainRp and number of modulesM for � > 1, and speech signalss1 and s2: (a) prediction gainRp versus the
number of modulesM for s1 and (b) prediction gainRp versus the number of modulesM for s2.

TABLE I
COMPARISON BETWEEN PREDICTION GAINS Rp

BETWEEN HAYKIN –LI’s SCHEME AND PROPOSEDSCHEME

VI. CONCLUSIONS

Insight into the core of the pipelined recurrent neural
network (PRNN) in prediction applications is provided. Since
modules of the PRNN perform simultaneously in a pipelined
parallel manner, this leads to a significant improvement in the
total computational efficiency of such a predictor. Modularity
in the PRNN provides embedding, which helps to circumvent
problems of vanishing gradient, experienced with RNN’s.
It is shown, that modules of the PRNN contribute to the
final, predicted value at the output of the PRNN in two
ways, namely through the process of nesting, and through
the process of learning. A measure of the influence of the
output of a distant module to the amplitude at the output of
the PRNN was analytically found as the sensitivity

and the upper bound for it was derived. That result
was confirmed graphically for the example of the logistic
nonlinearity. Furthermore, an analysis of the influence of the
forgetting factor in the cost function of the PRNN to the
process of learning was undertaken, where it was found that for
the PRNN, the forgetting factor can even exceed unity in order
to obtain the best predictor, becoming therefore an emphasis
factor. The simulation on three speech signals supported that
approach, and outperformed the other stochastic gradient-
based schemes, and showed performance close to the extended
Kalman filter-based schemes. Our intention was to consider
only the nonlinear part, i.e., only the PRNN predictor, we
showed that in that case, our approach outperforms the other

stochastic gradient-based techniques for the PRNN, and even
matches the results obtained by the more powerful extended
recursive least squares (ERLS) algorithm.

REFERENCES

[1] S. Haykin and L. Li, “Nonlinear adaptive prediction of nonstationary
signals,” IEEE Trans. Signal Processing,vol. 43, pp. 526–535, 1995.

[2] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,”IEEE Trans. Neural Networks,
vol. 5, pp. 157–166, 1994.

[3] S.-S. Kim, “Time-delay recurrent neural network for temporal correla-
tions and prediction,”Neurocomputing,vol. 20, pp. 253–263, 1998.

[4] D. P. Mandic and J. A. Chambers, “A nonlinear adaptive predictor
realized via recurrent neural networks with annealing,” inDig. Inst.
Elect. Eng. Colloquium Statist. Signal Processing,pp. 2/1–2/6, 1999.

[5] T. Lin, B. G. Horne, and C. L. Giles, “How embedded memory in
recurrent neural network architectures helps learning long-term temporal
dependencies,”Neural Networks,vol. 11, pp. 861–868, 1998.

[6] T. Sauer, J. A. Yorke, and M. Casdagly, “Embedology,”J. Statist. Phys.,
vol. 65, pp. 579–616, 1991.

[7] C. Scheier, R. Pfeifer, and Y. Kunyioshi, “Embedded neural networks:
Exploiting constraints,”Neural Networks,vol. 11, pp. 1551–1569, 1998.

[8] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, 1990.

[9] A. D. Back and A. C. Tsoi, “Nonlinear system identification using
multilayer perceptrons with locally recurrent synaptic structure,” inProc.
IEEE-SP Wkshp. NNSP II,1992, pp. 444–453.

[10] R. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,”Neural Comput.,vol. 1, pp. 270–280,
1989.

[11] S. Haykin, Neural Networks—A Comprehensive Foundation.Engle-
wood Cliffs, NJ: Prentice-Hall, 1994.

[12] D. P. Mandic, J. Baltersee, and J. A. Chambers, “Nonlinear prediction of
speech with a pipelined recurrent neural network and advanced learning
algorithms,” inSignal Analysis and Prediction,A. Prochazka, J. Uhlir, P.
J. W. Rayner, and N. G. Kingsbury, Eds. Boston: Birkhauser, 1998,
pp. 291–309.

[13] J. Baltersee and J. A. Chambers, “Nonlinear adaptive prediction of
speech signals using a pipelined recurrent neural network,”IEEE Trans.
Signal Processing,vol. 46, pp. 2207–2216, 1998.

[14] D. P. Mandic and J. A. Chambers, “Relationship between the slope
of the activation function and the learning rate for the RNN,”Neural
Comput.,vol. 11, no. 5, pp. 1069–1077, 1999.

[15] L. K. Li, “Approximation theory and recurrent networks,” inProc. Int.
Joint Conf. Neural Networks,1992, vol. II, pp. 266–271.

[16] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural networks
and robust time series prediction,”IEEE Trans. Neural Networks,vol.
5, pp. 240–254, 1994.

[17] D. P. Mandic and J. A. Chambers, “Global asymptotic stability of
nonlinear relaxation equations realized through a recurrent perceptron,”
in Proc. Int. Conf. Acoust., Speech, Signal Processing (ICASSP-99),
1999, vol. 2, pp. 1037–1040.

[18] D. P. Mandic, personal homepage. Available http://www.
dsp.ee.ic.ac.uk/˜mandic

1442 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Danilo P. Mandic received the B.Sc. (Hons.) degree in automatic control and
the M.Sc. degree in signal processing from University of Banja Luka, Bosnia-
Herzegovina. He received the Ph.D. degree in nonlinear adaptive signal
processing from Imperial College, London, U.K. His areas of interest are linear
and nonlinear adaptive signal processing, neural networks, biomedical signal
and image processing, system identification, stability theory, and computer
vision.

He is currently a Lecturer in computer science at the School of Information
Systems, University of East Anglia, Norwich, UK.

Dr. Mandic has received awards for his collaboration with industry and was
also awarded a Nikola Tesla medal for his innovative work.

Jonathon A. Chambers (M’93) was born in Peterborough, U.K., in 1960.
After an electronics artificer apprenticeship in the Royal Navy, he received
the first class B.Sc. (Hons.) degree in electrical and electronic engineering
from the Polytechnic of Central London, U.K., receiving the Robert Mitchell
Medal as the top graduate in 1985. He received the Ph.D. degree in adaptive
signal processing in 1990 after studying at Imperial College, London, U.K.,
and at Cambridge University, Cambridge, U.K.

He spent three years as a Research Scientist at Schlumberger Cambridge
Research, applying adaptive signal processing techniques to oilfield-related
applications. He returned to a lectureship in signal processing in the Depart-
ment of Electrical and Electronic Engineering, Imperial College, in 1994 and
was promoted to a readership in signal processing in 1998. He has authored
and coauthored many technical publications on adaptive signal processing and
its applications in mobile communication systems.

Dr. Chambers is a member of Institute of Electrical Engineers Professional
Group Committee E5 on Signal Processing, a Guest Editor for the International
Journal of Adaptive Control and Signal Processing, and has served as an
Associate Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING.

