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On the Choice of Parameters of the Cost Function in
Nested Modular RNN’s
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Abstract—We address the choice of the coefficients in the cost
function of a modular nested recurrent neural-network (RNN)
architecture, known as the pipelined recurrent neural network
(PRNN). Such a network can cope with the problem of vanishing
gradient, experienced in prediction with RNN’s. Constraints on
the coefficients of the cost function, in the form of a vector norm,
are considered. Unlike the previous cost function for the PRNN,
which included a forgetting factor motivated by the recursive
least squares (RLS) strategy, the proposed forms of cost function
provide “forgetting” of the outputs of adjacent modules based
upon the network architecture. Such an approach takes into ac-
count the number of modules in the PRNN, through the unit norm
constraint on the coefficients of the cost function of the PRNN.
This is shown to be particularly suitable, since due to inherent
nesting in the PRNN, every module gives its full contribution to the
learning process, whereas the unit norm constrained cost function
introduces a sense of forgetting in the memory management
of the PRNN. The PRNN based upon a modified cost function
outperforms existing PRNN schemes in the time series prediction
simulations presented.

Index Terms—Cost function, forgetting factor, nesting, pipelined
recurrent neural networks, recurrent neural networks.

I. INTRODUCTION

RECURRENT neural networks (RNN’s) have been shown
to be universal approximators [1], and to have important

capabilities not found in feedforward networks, including at-
tractor dynamics and the ability to store information for later use
[2]. Computational power of RNN’s with the sigmoid activation
function, and their dynamical properties have been particularly
considered [3].

However, RNN’s encounter problems when learning infor-
mation with long time dependencies, which is a problem in pre-
diction of nonlinear and nonstationary signals, such as speech.
In particular, Bengioet al. [4] showed that if a system is to
latch information robustly, then the fraction of the gradient in
a gradient-based training algorithm due to information,steps
in the past, approaches zero asbecomes large. This effect is
called the problem of vanishing gradient. Several approaches
were suggested to circumvent the problem of vanishing gradient
in training RNN’s, most of which rest on embedding memory
into the neural network [5].
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There are several methods for representing temporal informa-
tion in neural networks [6]. These include: 1) creating a spatial
representation of a temporal pattern; 2) putting time delays into
the neurons or their connections; 3) employing recurrent con-
nections; 4) using neurons with summing activation inputs over
time; and 5) using a combination of 1)–4).

According to the embedding theorem [7], the memory orders
need to be large enough in order to provide sufficient embed-
ding. One way to embed memory in a neural network is through
filtering synapses. In 1991, Back and Tsoi introduced finite
impulse response (FIR) and infinite impulse response (IIR)
synapses [8]. In 1993, Wan [9] discussed an architecture which
models synapses as FIR linear filters for use in time series
prediction. A numerical algorithm for short-term prediction of
a time series based on delay coordinate embedding is presented
in [10]. One of the most important examples of embedding
memory in neural networks is the use of gamma memories,
introduced by Principe and DeVries [11], [12]. They proposed
a synapse that can be modeled as a convolution operator.
Hochreuter and Schmidhuber [13] suggested a specific archi-
tectural approach which utilizes high-order gating units. For a
comprehensive taxonomic approach based on memory types
see Mozer [14], who highlighted the memory aspect of the
synapses. A new RNN architecture that generalizes previous
architectures by employing alternative discrete-time operations
in place of the normally used shift operator, was introduced in
[15]. Adjustable delays are an additional mechanism through
which networks could achieve a broader range of dynamical
trajectories [16].

Recently, there has been an attempt to reduce the complexity
of adaptive learning by introducing a relationship between the
learning rate and the slope of the nonlinear activation function
in RNN’s [17], [18]. There is also a number of researchers who
have experimented with an architecture that is somewhere in be-
tween a feedforward only architecture and a full recurrent ar-
chitecture (i.e., the Williams–Zipser model [19]). This class is
called a locally recurrent globally feedforward (LRGF) archi-
tecture [20]. For a most comprehensive overview of the existing
architectures see Tsoi and Back’s work [21]. In 1998, Frasconi
et al. [22] have made an attempt to unify adaptive models such
as artificial neural nets and belief nets for the problem of pro-
cessing structural information.

In 1996, Linet al. introduced a so-called NARX RNN which
is shown not to be as sensitive to the long time dependencies as
networks in Bengio’s work [23]. Namely, although embedded
memory can be found in all recurrent network models, it is par-
ticularly prominent in NARX models [24]. It has been shown
that, in theory, one can use NARX networks, rather than con-
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Fig. 1. Pipelined recurrent neural network.

ventional recurrent networks, without any computational loss
and that they are at least equivalent to Turing machines [25].

Another way of introducing additional memory into a
nonlinear system is by dividing the input space of a network

into a number of disjoint or partially overlapping sub-
spaces , which can be
achieved by introducing modules which share the entire input
space, i.e., . Such an architecture
is the pipelined recurrent neural network (PRNN), which has
been introduced in 1995 [26], and shown to be particularly
suitable for nonlinear time series prediction [26]–[29].

The PRNN is a modular network, with every module being
a single small-scale fully connected RNN. The PRNN is a re-
alization of a NARMAX process [30], and in terms of the clas-
sification of [21], it belongs to a class of globally feedforward
locally recurrent neural networks. Such an architecture includes
features 1) and 3) from Kim’s analysis [6]. Hence, it can cope
with the problem of vanishing gradients by including additional
memory not only in the structure of a module, but also spatially,
along the modules. The PRNN can also offer a solution to some
critical points in neural networks for least squares problems ad-
dressed by Sontag, such as a loss of dimensionality [31], and
sample complexity, that is, the quantification of the amount of
information (number of samples) needed to characterize a given
mapping (Sontaget al. [32], [33]).

The learning algorithm for the PRNN is an extension of the
learning algorithm chosen for constitutive RNN’s, which is typ-
ically the real-time recurrent learning (RTRL) algorithm [19],
[34]. The merit of the PRNN is its relatively low computational
complexity, which for a network with modules and neu-
rons per module, [i.e., neurons], equals ,
whereas for the standard RNN with neurons, it would
be . The RTRL algorithm for the PRNN is based
upon a cost function which is identical in form to that for re-
cursive least squares (RLS) filtering, and comprises a forget-
ting factor [26], [27], [35]. Although it has been shown that the
PRNN architecture can outperform common RNN’s in predic-
tion applications, it has been done either through a choice of

its architecture [26], or through an improved learning algorithm
[29].

Our aim is to study further the cost function in the PRNN
framework, and to impose norm-based constraints on it, in
order to obtain improved performance for the PRNN-based
prediction. Namely, the previously proposed cost function for
the PRNN [26], [29], used the notion of forgetting inherited
from the RLS algorithm, which did not take into account the
network architecture. For a spatial architecture, such as the
PRNN, this is not a suitable strategy. Hence, we introduce
a unit norm constrained cost function with weighting along
the modules which accounts for the number of modules, and
inherently the depth of the embedded memory.

II. THE PRNN

The PRNN architecture is shown in Fig. 1. A full mathemat-
ical description of the PRNN is given by the following equations
[29], [35]:

(1)

(2)

for (3)

for (4)

Indexes and denote, respectively, theth module within the
PRNN ( ), and the th neuron within a module
( ). Given the input vectors for each module

at the time instant , the outputs of all the
neurons in the network can be calculated using the equations
given previously. The two consecutive modules share
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input signals to the PRNN. Function is the logistic sigmoid
function.

At the time step , for each module ,
the one-step forward prediction error associated with a
module, is then defined as a difference between the desired re-
sponse of that module , which is actually the next in-
coming sample of the external input signal, and the actual output
of the th module , of the PRNN, i.e.,

(5)

Since the PRNN consists of modules, a total of forward
prediction error signals are calculated. All of the modules share
the same weight matrix . The goal is to minimize some mea-
sure of the error in the entire PRNN, termed acost function,
which was originally proposed as a weighted sum of all the
squared error signals from individual modules [26]. In such a
performance criterion, aforgetting factor , is in-
troduced which determines the weighting of the individual mod-
ules. Thus, the overall cost function of the PRNN becomes [26]

(6)

where is defined in (5).
The nesting implicit within the PRNN architectures [30] pro-

vides its increased nonlinearity [26], [28], [35], which is so at-
tractive in nonlinear prediction and nonlinear system identifica-
tion applications. Such nesting enables the underlying PRNN
architecture to match closer the dynamics of a general non-
linear and nonstationary physical signal. The nesting principle is
based upon a contraction mapping [36], [37], which under some
mild conditions enables the process which propagates through
a nested network to converge [38], [39]. A simple nesting prin-
ciple for a general nonlinear function with one variable is
given by [37], [40]

(7)

and represents an implicitly written iterative process

(8)

which corresponds to thea posteriorimode of processing [28],
[41], [42].

III. T HE COST FUNCTION OF THEPRNN

The overall cost function of the PRNN is [26]

(9)

where are
the output errors at the modules in the PRNN. The value of the

exponential weighting factor is RLS motivated. The
RLS strategy requires minimization of [41], [43], [44]

minimum

(10)
which is carried out recursively as

(11)

However, the processes at
the outputs of the PRNN (Fig. 1) are not realizations of the
same stochastic process. Indeed

(12)

Hence, the values of the forgetting factor , chosen
upon the RLS strategy, make little sense in the PRNN frame-
work, and other strategies need to be derived.

IV. I NFLUENCE OF ON THE LEARNING PROCESS

The updating process of the weight matrix of the PRNN
can be written as [45], [46]

(13)

where the elements of the correction to the weight matrix
can be calculated as

(14)

Having in mind the nature of the elements of the sum (14), it
can be seen as a weighted sum of the correction factors due to
individual modules, namely

(15)

or, equivalently

(16)

where represents the correction factor of a single weight
due to each individual module and

represents the corresponding weight matrix correction due to
module . Therefore, dependent upon the values of the coeffi-
cients in the coefficient vector of (16)

(17)
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the total correction to the weight matrix , can be greater in
magnitude than any of the individual corrections

, in (15). In that case, the value of the forgetting factor
which provides best performance can even exceed unity [28].

That means that a distant module, i.e., a module whose index
is sufficiently close to , has more influence in the learning

process, than the output module, which is not desirable. It is
therefore necessary to impose some constraints not only on the
values of the coefficients in (9) and (16), but also on a linear
combination of the coefficients , i.e., to intro-
duce a norm which would account for the number of modules,
as well as for forgetting along the modules.

V. ALTERNATIVE FORMS OF THECOST FUNCTION

Notice that functions (9) and (16), provide filtering of their
arguments, which can be written as

(18)

which takes the form of a common finite impulse response (FIR)
filter equation [43], [47]. It is therefore desirable to impose some
constraints on the coefficient vector(17) of the cost function
(9) in order to provide a measure of the size of the final cor-
rection factor to the weight matrix as compared to the
contributions from particular modules .
A natural measure of a vector is its norm [36], [37], [48]. We
will therefore consider cost functions with no amplification of
the individual weight contribution, i.e., with the constraint

(19)

This constraint is well founded in signal processing [41], [43],
[47]. However, the norm in (19) can be either the

, or norm defined by

or (20)

We consider therefore various forms of the cost function,
through imposing constraints on the coefficients of the cost
function (18) of the PRNN via , or

.

A. Teaching Modules Separately

A method to improve the network may be to have a
separate weight matrix associated with each module

. Since in the common weight updating algo-
rithm, all elements of the correction factor to each particular
module have to be calculated (15), for separate weights there
is no further expense in terms of the order of computational
complexity, whereas there is a need for storing additional

elements of corresponding
matrices. The adaptation is made in order to minimize each
squared error signal at the output of
adjacent modules. A question emerges: Does training of the

PRNN in each module separately, i.e., having a minimum mean
square error (MSE) nonlinear predictor for each output signal
of every module, mean that the overall performance achieved
for the PRNN will be the best possible in the MSE sense? That
is not the case, since

(21)

That is, although we can optimize each output of a PRNN
module in the MSE sense, that does not mean that the overall
performance of the PRNN achieves its optimum.

B. Averaging the Contributions of the Modules to the Weight
Matrix Update

Since it is desirable to have the cost function of the PRNN ro-
bust to random disturbances [49], an averaging, i.e., smoothing
filter, implicitly within the cost function of the PRNN could be
a natural choice. In order to satisfy that paradigm, a correction
to the weight matrix at time can be calculated as

(22)

i.e., as an average of the corrections due to particular modules,
rather than the weighted sum (15), while still maintaining the
common overall weight matrix . Notice that the sum of coef-
ficients in (22) equals unity, which satisfies the unit norm con-
straint (19) in the sense. Moreover, using this algorithm,
means that the coefficients , main-
tain the equality of modules in the information theoretic sense
[50]. That means, that every module gives equal contribution in
the sense of learning of the overall network, since there is no
forgetting along the modules.

C. Cost Function with Exponentially Distributed Coefficients
and the Constraint

Although the algorithm given in (22) is a simple solution, it
may suffer from the same problems as the cost function (9).
Namely, it is natural that the uppermost module gives the biggest
contribution toward learning, whereas the lowermost module
plays a less significant role. In those cases, some alternative
strategy needs to be found. A choice is to choose the coeffi-
cients in (17) as an exponentially decaying series. Having in
mind the constraint (19), and also some recent results in gradient
learning theory [51], where an exponential gradient is analyzed
versus gradient descent for linear filters, let us choose the
constrained coefficient set as

(23)

In this case, it is straightforward to find for any number of
modules, by solving

(24)
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Fig. 2. Values of� and weighting coefficients for various cases.

The vector , whose elements are the
values of from (23) for the correspondent number of modules,
is given by

(25)

which preserves the constraint , and
introduces forgetting in the spatial sense, i.e., along the PRNN.

D. Cost Function with Exponentially Distributed Coefficients
and the Constraint

From FIR filter theory, the power amplification at the output
of an FIR filter can be expressed as [41], [43], [47]

(26)

which is actually the norm of the coefficient vector . Let us
therefore look for a set of coefficients . Al-
though there is continuum of such sets of coefficients, a choice
could be a series of exponentially decreasing coefficients, such
as

(27)

The problem of finding coefficients be-
comes one of finding only one coefficient, which determines
the series (27). Clearly, will be a function of the number of
modules . As the set of coefficients is monotone de-
creasing, a saturation in the values of the coefficients, or equiv-
alently , is expected. That is to emphasize a penalty introduced
in the selection of the order of pipelining for large. In the fol-
lowing equation, vector comprises the values of parameter

for any number of modules

(28)

Thus, e.g., for corresponding to ,
which gives

(29)

Hence, there is again the forgetting effect in the cost function.

E. Training Considering Only the Output Module

If the computational complexity is a problem, one can opt
to train the PRNN only upon the error obtained from its output
module, i.e., the first module in the PRNN. This kind of training
offers even more reduction in computational complexity, al-
though it is not expected that the performance would be as good
as with full training of the PRNN. Namely, for heavily corre-
lated signals, it is expected that the statistical characteristics of
a signal shall not change considerably over as few samples as

, which is the total number of external input sam-
ples entering the PRNN. In this case, the coefficient vector
can be expressed as

(30)

which satisfies the constraint in the , and
sense.

F. Some Observations

In Section V-E, we have analyzed various forms of the cost
function, with the constraint of a unit norm on the weighting
factors within the cost function. The sequence of weighting fac-
tors, which are actually coefficients of an MA filter, is a func-
tion of the number modules within the PRNN. Due to the choice
of from Section V-D, a saturation in occurs, which causes
the weighting coefficients to be small for a large number of
modules. To further depict this situation, Fig. 2(a) shows the
values of versus the number of modules for the cases in Sec-
tions V-C and V-D, whereas Fig. 2(b) shows the weighting co-
efficients , for the case of the PRNN with
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modules. The cases , and in the legends of Fig. 2 refer to
the cases from Sections V-B–V-D, respectively. As desired, for
both the cases and , the weighting coefficients
die out for a relatively large number of modules. Moreover,
for , the values of converge toward their stationary
values [Fig. 2(a)]. This complies with the Rissanen principle of
parsimony, i.e., it penalizes the cost function of the PRNN for a
relatively large number of modules. The values of weighting co-
efficients from Sections V-C and V-D also converge much faster
than for the standard cost function (9) [dotted line in Fig. 2(b)].

Notice also that the graphs for the cases in Sections V-C and
V-D show little difference, since the optimization for both the
results is similar. It can also be seen if we compare the vec-
tors with the vector [this term is because of the
square term in optimization of the cost function (26)]. The re-
sulting difference is

VI. EXPERIMENTAL RESULTS

The simulations were undertaken on speech, which is a typ-
ical example of nonstationary signals. The speech signals con-
sidered were denoted by and , whose contents were, re-
spectively,“Oak is strong and ” and“When recording audio
data ” , with length 10 000 samples, sampled at 8 kHz. The
measure that was used to assess the performance of the predic-
tors was the forward prediction gain given by

dB (31)

where denotes the estimated variance of the speech signal
, whereas denotes the estimated variance of the for-

ward prediction error signal . The choice , where
is the number of external input signals per module of the PRNN,
was taken from the theory of linear adaptive predictors, where
for , the prediction gain was a very slowly increasing func-
tion [43]. The results of the simulations are shown in Table I.
The parameters of the PRNN were chosen as in [26] and [35],
in order to compare the performances achieved with modified
cost functions to the performances achieved by other authors.
The number of modules was , the number of neurons
per module , the number of external input signals per
module was , and initialization was undertaken with 300
epochs with 200 samples per epoch. The results achieved were
also compared to the results achieved with classical least mean
square (LMS) and RLS linear adaptive filters whose length were
ten. With the modified algorithms, the best results were achieved
with , which additionally decreases the computational
complexity. Namely, as an RNN remembers the previous history
presented to it, with , there is an overlapping between the
input signals to consecutive modules. Indeed, for a PRNN with

and , all the modules would have two common
input signals. This is in collision with the Rissanen principle of
parsimony, and results in sample complexity for learning RNN

TABLE I
COMPARISON BETWEEN PREDICTION GAINS

Rp FOR DIFFERENTSCHEMES

mappings [33]. For an analysis of prediction gain versusfor
the PRNN, refer to [52].

The SG LMS algorithm (the third row in Table I) rep-
resents the result achieved in [26], where the output of the
PRNN was fed into a linear LMS filter to improve the predic-
tion gain. The results achieved by our algorithms were taken
from only the output of the PRNN. The results achieved by
the ERLS RLS algorithm [35], used the extended recursive
least squares (ERLS) algorithm for training the PRNN and
the RLS linear filter afterwards. The modified PRNN with

[28] achieved better prediction gain than the LMS,
RLS, SG LMS, and ERLS RLS algorithms. Afterwards,
two more experiments with were undertaken. With
teaching only the uppermost module in the PRNN, some-
what worse results were obtained, as expected, but having
in mind that the LMS and RLS filters contribute to the total
prediction gain of the PRNN with approximately 2 dB [35],
the results for teaching only the last module still outperform
even the ERLS + RLS algorithm. The exponentially de-
creasing cost function was then applied to the PRNN, and
the results, which were close to the best achieved were ob-
tained. Furthermore, appears to be the optimal choice
of the number of external input signal to the PRNN, under
new cost functions [53]. For that case both the expo-
nentially decreasing and the average weights cost function
achieved slightly better results then the results in [28], with

. As expected, teaching every module
separately performs worse than , , and weight average
schemes.

VII. CONCLUSIONS

Choice of the parameters of the cost function for the
modular, nested RNN architecture called the PRNN was ad-
dressed. The selection of the cost function was shown to
be crucial for modular architectures, since it has a direct
influence on teaching, and hence on the performance of a
modular PRNN. A unit value constraint on the norm of the
coefficients in the cost function was introduced, and variants
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of the cost function for the , and norms were
derived, as well as some practically desirable simplified cost
function based upon the same criteria. Simulations on speech
signals support the choice of newly introduced cost func-
tions for nonlinear and nonstationary signal prediction.
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