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Abstract-Variable tap-length is introduced into complex­
valued adaptive filters in order to provide an additional degree 
of freedom, enhance tracking ability, and provide data-adaptive 
optimal modelling. This is achieved by extending the fractional 
tap-length (FT) algorithm from the real domain lR and by 
accounting for some special properties of the complex domain 
IC. For generality, the augmented least mean square (ACLMS) 
and augmented complex nonlinear gradient descent(ACNGD) 
are equipped with the variable tap-length in order to cater 
for both the second order circular and non circular signals. 
Simulations on model order selection and the identification of 
the noncircular nature of complex data support the approach. 

Index Terms-Widely linear modelling, complex circularity, 
fractional tap-length, augmented complex least mean square 
(ACLMS) 

I. INTRODUCTION 

For optimal stochastic filtering of complex-valued signals, 
we need to consider three important factors: 1) the nature of 
the signal (circular or noncircular); 2) the signal generation 
mechanism (linear or nonlinear); 3) the order of the signal 
model. Although much work has been devoted to address 
the first two issues [1]-[3], model order selection in C is 
still an open problem. In C we also have more degrees of 
freedom, for instance, we differentiate between the standard 
and widely linear models and circular and noncircular sig­
nals. 
One convenient way to perform the identification of time­
varying parameters of a complex-valued system is to employ 
adaptive complex-valued filters with variable tap-length and 
optimise for both the filter length and filter coefficients. 
Amongst many such adaptive tap length algorithms [4], 
the fractional tap-length (FT) is considered in this work, 
due to its simplicity and robustness [5]. However, the FT 
algorithm was designed specifically for real-valued filters 
and therefore is not readily suited for processing complex­
valued signals [5]. To this end, we extend the FT algorithm 
to the complex domain; this is achieved by considering 
specific features of C, such as noncircularity of probability 
distributions. In this work, the fractional tap-length (FT) 
algorithm [5] will be incorporated within both linear and 
nonlinear adaptive complex-valued adaptive filters. 
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The aim of this paper is to: 1) introduce the variable tap­
length into widely linear complex-valued adaptive filters; 2) 
provide a rigorous steady-state analysis to achieve optimal 
performance; 3) investigate the convergence properties of 
complex-valued adaptive algorithms for the identification of 
complex models (linear and widely linear); 4) identify the 
second order circular (proper) and second order noncircular 
(improper) complex processes. 
We consider four algorithms, the standard complex LMS 
(CLMS) [6], the augmented complex LMS (ACLMS) [1], 
the complex nonlinear gradient descent (CNGD) [1] and 
the newly introduced augmented complex nonlinear gradient 
descent (ACNGD) [7]. The ACLMS is based on a widely 
linear stochastic moving average (MA) model, given by [1] 

y(k) = xT(k)h + xH (k)g +v(k) (1) 
'-v-" '-v--" 

standard part augmented part 

where x(k) denotes the regressor vector, hand g are the 
coefficient vectors of the standard and 'augmented' part of 
the model, and v(k) is circular white Gaussian noise. The 
symbols (.)H and (·f denote respectively the Hermitian and 
vector transpose operator. The widely linear model (1) was 
also extended into the quatemion domain in [8]. 
The power of ACLMS and ACNGD stems from the so 
called augmented complex statistics, where for a centered 
complex random vector (RV) x E CL, the covariance exx 
and pseudocovariance Pxx matrices are defined as [9] 

(2) 

A signal is called circular if it has a rotation invariant 
probability distribution. The distinguishing property of a 
circular signal is that its pseudo covariance vanishes, that is, 
Pxx = 0 [9]. Observe that the widely linear model (1) enables 
the ACLMS algorithm to operate on both the covariance 
E(XXH) and pseudo covariance E(XXT); making it suitable 
for the modelling of both second order circular (proper) 
and noncircular (improper) data, in contrast to CLMS and 
CNGD. 
The paper is organized as follows. Section 2 presents an 
overview of CIR calculus. The following section introduces 
the FT-ACLMS, FT-CLMS, FT-ACNGD and FT-CNGD frac­
tional tap-length algorithms. This is followed by a steady­
state analysis of all the algorithms considered. Section 4 
provides performance comparisons between the four FT 
algorithms, through comprehensive simulations on Autore­
gressive (AR) and Nonlinear Autoregressive (NAR) systems. 



II. OV ERVIEW OF C]R CALCULUS 

In order to extend the standard complex algorithms into 
their augmented complex (widely linear) counterparts, C]R 
calculus can be applied in order to simplify the deriva­
tions [1]. When dealing with complex valued functions, it is 
required that the Cauchy-Riemann equation are satisfied (for 
the function to be analytic) in order to calculate the gradient.! 
The standard adaptive filtering cost function (error power) is 
not analytic and thus standard calculus in C is not adequate 
to evaluate its derivative. However, by using the C]R calculus, 
it is possible to evaluate the derivative of the cost function 
directly in C [1], [10]. 
In this context, .J(x) : CN f---t ]R can be rewritten as a 
function of complex vectors x and x* such that .J(x, x*) : 
CN f---t ]R where x and x* are termed conjugate coordi­
nates. Expanding the complex vectors x and x* in terms 
of their real and imaginary components, Xr and xi, gives 
.J(xr, Xi) : ]RN X ]RN f---t R By using the duality between 
total differentials in ]R2 and C, the C]R derivatives are taken 
separately with respect to x and x* while keeping the other 
variable constant, resulting in 

]R - derivative 
a.J 1 

= 
� ( a.J _Za.J ) (4) ax x'=cons! 2 aXr aXi 

]R * - derivative 
a.J I = 

� ( a.J + z a.J ) (5) 
ax* x=cons! 2 aXr aXi 

It can then be shown that the direction of the steepest descent 
is given by the derivative with respect to x* [10]. If C]R 
calculus is applied to analytic functions, the ]R* -derivative 
vanishes and we are only left with the ]R - derivative [10]. 

III. MODEL ORDER IDENTIFICATION 

The proposed algorithms comprise of two parts: the fi­
nite impulse response (FIR) filter weights update which 
optimises the adaptive weight coefficients, followed by the 
FT algorithm that adapts the tap-length of the filter to an 
optimal value. We first review the existing approaches and 
then illustrate how the FT algorithm can be exploited within 
complex-valued adaptive systems. 

A. Filter Weight Update Algorithms 

The weight update of the standard CLMS algorithm is 
given by [6] 

w(k + 1) = w(k) + p,e(k)x*(k) (6) 

where w( k) is the weight vector of the filter, x( k) is the filter 
input, (.)* denotes the complex conjugate operator and p, is 
a real-valued learning rate. 

I Given a complex function I(x) = u(xr, Xi) + V(Xr, Xi)), the Cauchy­
Riemann conditions are given by 

au av av 
aXr aXi; aXr 

au 
aXi (3) 

The standard output of the nonlinear FIR filter trained by the 
complex nonlinear gradient descent (CNGD) is given by 

y(k) = <I>(wT(k)x(k)) (7) 

where <I> (.) is a nonlinear function chosen from a class 
of fully complex nonlinear functions [11]. The functions 
considered are analytic thus ensuring that the derivative of 
the nonlinear function exists. 
Similar to the CLMS algorithm, the weight update of the 
CNGD algorithm is given by [1] 

w(k + 1) = w(k) + p,e(k)<I>'*(wT(k)x(k))x*(k) (8) 

where <I>' (.) is the derivative of the nonlinear activation 
function. 
In order to derive the ACLMS, based on the widely linear 
model in (1), we first rewrite the error signal as 

e(k) = d(k) -y(k) = d(k) -hT(k)x(k) -gT(k)x*(k) (9) 

The corresponding cost function E(k) = e(k)e*(k) is then 
minimised using a steepest descent adaptation given by 

h(k + 1) = h(k) -p,"h.E(k) 
g(k + 1) = g(k) -p,"Vg.E(k) 

(10) 

(11) 

Recall from the C]R calculus that the direction of steepest 
descent is given by ]R* -derivative, for both update equations. 
This yields the ACLMS weight update in the form [1] 

h(k + 1) = h(k) + p,e(k)x*(k) (12) 

g(k + 1) = g(k) + p,e(k)x(k) (13) 

where g(k) and h(k) are the weight vectors of the filter. 
Proceeding in the same manner as with ACLMS, the AC­
NGD algorithm weight updates are given by [7] 

h(k + 1) = h(k) + p,e(k)<I>'*(net(k))x*(k) (14) 

g(k + 1) = g(k) + p,e(k)<I>'*(net(k))x(k) (15) 
where net(k) = hT(k)x(k) + gT(k)x*(k). 
B. Fractional Tap Length Algorithm 

The FT tap-length adaptation for complex-valued filters is 
governed by [5] 

'T7J(k+1) = (r7J(k)-ex)-'Y' [( E}f)(k)) -(E��(k)) 1 
(1� 

where TJf is the pseudo fractional tap-length which can 
take only positive real value, ex and 'Y are the leaky factor 
and tap-length learning rate, which are small positive real 
values that satisfy ex« 'Y. Symbols E}f)(k) and E}f]�(k) 
denote respectively the instantaneous square errors for the 
tap-lengths of N and N -�, symbol N (k) denotes the "true" 
tap-length at discrete time instant ' k', and � is a real positive 
integer such that min{N(k) - �} > O. 
The instantaneous square output errors for filters of lengths 
N and N - � are given by 

E}f) (k) (eW) (k))( eW) (k))* (17) 
E}f]�(k) = (eW��(k))(eW��(k))* (18) 



based on the errors e W) (k) and e W� t!.. (k) given by 

e}:;p(k) = d(k) -Y}:)(k) (19) 

where 1 :::; M :::; N, and w}:)(k) and x}:)(k) are vectors 
consisting of the first M coefficients of w(N)(k) and X(N) (k) 
respectively. 
To calculate the optimal filter length, which also reflects the 
complexity of the system that generates the data, the tap­
length parameter N(k) is made adaptive according to [5] 

N(k + 1) = { l77J(k)J, IN(�) -77J(k) I 2:: 8 (20) N ( k ) , otherwIse 

where 8 is a predefined integer threshold and l·J denotes 
the floor operator. This way, the true tap-length is robust 
to noise and remains unchanged until the fractional tap­
length accumulates to the predefined integer threshold 8. The 
minimum value for N ( k) is defined as � + 8, to ensure that 
the lowest possible term EW.!-t!..(k) in (16) is EiN)(k). 

IV. ST EADy-STAT E ANALYSIS OF FT ALGORITHMS 

In this section, we first provide a rigorous steady-state 
analysis of the FT algorithm in the context of the ACLMS 
and illustrate how this analysis also applies to the FT-CLMS, 
FT-ACNGD and FT-CNGD algorithms. We shall define the 
desired (teaching) signal d( k) as 

d(k) = xLpt(k)hLoPt + xfopt(k)gLopt + v(k) (21) 

where hLopt and gLoPt are the optimal weights coefficients 
of the optimal tap length. 
Based on the widely linear FIR model (1), the ACLMS 
algorithm [1] makes the coefficient vectors adaptive, giving 

y(k) = xT(k)h(k) +xH(k)g(k) (22) 
'--v--" '--v--" 

standard part [eLMS] augmented part 

Upon replacing (21) and (22) into (19), we can express the 
output error in terms of the optimal tap weights as 

e}:)(k) = xT(k)hLopt + xH (k)gLopt (23) 
+v(k) -xT(k)h(k) -xH(k)g(k) 

A. Steady-State Analysis of the FT-CLMS and F T-ACLMS 

Algorithms 

Proceeding in a manner similar to the analysis in [12], the 
optimal coefficients of the standard and conjugate part of the 
augmented weight vectors hLopt and gLopt can be split into 
three parts 

(24) 

where h/O(k), g/O(k) are the coefficients modelled by tap­
length I:N -�, h"o (k), g"O (k) are the coefficients modelled 
by the tap-length N -� + 1 : N, and h"IO(k), g"IO(k) are 

the undermodelled coefficients. 
The coefficient error vectors of ACLMS are denoted as 

ii(k) = hN -hN(k) 
g(k) = gN -gN(k) 

(25) 
(26) 

where hN(k) and gN(k) are the weight vectors of length N. 
Then, the weight error vectors g(k) and ii(k) can also be 
split up into three parts [ ii/(k) 1 

ii(k) = ii" (k) 
iilll (k) [ g/(k) 1 g(k) = g"(k) 

gill (k) 
(27) 

Substitute (24) and (27) into (23) to obtain the errors eW) (k) 
and eW�t!..(k) defined in (19) as (the time index 'k' has been 
dropped due to space limitations) 

e(N) -N - [ I 1 T[ h-' 1 [ I 1 H[ -I 1 x x g 
x" ii" + x" gil +v 

XIII hlllo XIII glllO 
(28) 

To ensure mathematical tractability of the steady-state analy­
sis, we shall make the following standard assumptions [12]: 

• Both the input signal x( k) and the noise v( k) are Li.d. 
zero mean white jointly Gaussian with the respective 
variances u; and u;; 

• At the steady state, the input signal x(k) is independent 
of both the weight vectors h(k) and g(k); 

• The tap-length parameter has converged at steady-state, 
hence E{r/j(k + In = E{77J(kn, leading to 

Il h"IO(k)ll� = 0 and Il gIIIO(k)ll� = o. 
The MSE at the steady-state is obtained by applying the 
statistical expectation operator to (16) to give 

(30) 

From the expectations of EW)(k) and EC:�t!..(k) given in 
(18), we can substitute (28) and (29) into (30) to express the 
steady-state performance in terms of the leaky factor a and 
the stepsize 'Y, as 

E{ll xIT(k)ii"(k)ll� + Il xIT(k)g"(k)ll� (31) 
-ll xIT(k)h"O(k)ll� -llx"T(k)gIO(k)lln = _ .c: 'Y 

The steady-state of the FT-CLMS algorithm is obtained by 
substituting g( k) = gN into (27) and g( k) = 0, as it cannot 
model the augmented part into (22) while proceeding in a 
same manner as FT-ACLMS. This will yield the steady-state 
performance expectation in the form2 

E{ll xIT(k)ii" (k)ll� -ll xIT(k)h"O(k)lln = _ .c: (32) 
'Y 

2Convergence of ACLMS and CLMS for both circular and noncircular 
signals was addressed in [13] 



Observe that the steady-state tap-length of the FT-ACLMS 
algorithm takes into consideration both the standard complex 
and augmented complex parts in the widely linear model 
(31), whereas the FT-CLMS only considers the standard 
complex parts (32). Therefore, the FT-ACLMS is suited for 
the processing of widely linear processes unlike the FT­
CLMS which is optimal for only second order circular data. 
For second order linear circular processes, since g(k) = 0, 
the steady-state performance of the FT-ACLMS degenerates 
into that of FT-CLMS. 

B. Steady-State Analysis of the F T-CNGD and F T-ACNGD 

Algorithms 

The output of the ACNGD algorithm y(k) is given by [7] 

y(k) = <I> ( � +�) (33) 

standard part [CNGD] augmented part 

Following the same approach to obtain (31) and replacing 
(22) with (33), the steady-state of the FT-ACNGD for the 
processing of widely linear processes is given by 

E{ I I<I>(XIT(k)ii" (k) + xIT(k)g"(k)) I I� (34) 

-llxIT(k)h"O(k)ll� -ll x"T(k)gIO(k)lln = -� 'Y 

Similarly, the steady-state for the FT-CNGD is obtained by 
substituting g(k) = g'N into (27) and g(k) = 0 into (33) to 
give 

Comparing (34) and (35), similar to the case of FT-ACLMS 
and FT-CLMS, the FT-ACNGD is more appropriate for 
the modelling of second order noncircular (improper) data 
than the FT-CNGD. The FT-ACNGD will degenerate into 
the FT-CNGD when processing second order linear circular 
processes. 

V. SIMULATIONS 

Simulations were conducted in the system identification 
setting. To generate the circular and noncircular test signals, 
a circular doubly white Gaussian noise was fed to the systems 
defined as 

ACNGD algorithms. System W2 was obtained by applying 
a nonlinearity to WI and W3 is constructed by extending 
WI with the augmented part of the widely linear system W, 
given by [14] 

W : Zk = exp(j)zk_1 + 2Wk + 0.5wk + Wk - I + 0.9wk_1 
(40) 

where j is the imaginary unit. System W4 was obtained by 
applying a nonlinearity to W3. 
The following experiments were conducted in order to il­
lustrate the usefulness of the proposed approach: 1) the 
optimal tap-length selection; 2) comparison of the proposed 
algorithms for system order identification of conventional and 
augmented complex systems. 

A. Optimal Tap-Length 

The optimal tap-lengths for both systems were determined 
by the steady-state MSE estimated by [5] 

t(k) = M(k - 1) + (1 ->.)E(k) (41) 

where t is the estimated steady-state MSE and >. = 0.9. 

Figure 1 depicts the steady-state MSE for linear system WI 
using the CLMS, ACLMS, CNGD and ACNGD algorithms 
with J-l = 10- 4. All the four algorithms performed identically 
and the optimal tap-length for WI was found to be around 
No = 25. Figure 2 shows the steady-state MSE for nonlinear 
noncircular system W2 for all the four algorithms. Similar 
to Figure 1, all the algorithms performed identically and the 
optimal tap-length was approximately No = 25. 

Figure 3 illustrates the steady-state MSE for a widely linear 
noncircular system W3 for the four algorithms. The two 
augmented algorithms performed similarly and were able to 
indicate the optimal tap-length, roughly No = 25, whereas 
the standard techniques were not able to do so. Figure 4 
depicts the steady-state MSE of a nonlinear widely linear 
system W4; the optimal tap-length was found to be that 
of equivalent to the optimal tap-length of W3. However, 
as desired, the ACNGD algorithm steady-state MSE was 
slightly lower than the ACLMS algorithm. 
To summarize, the standard CLMS and CNGD algorithms 
were only able to estimate the optimal tap-length for conven­
tional complex systems WI and W2. In order to approximate 
the optimal tap-length for augmented complex linear systems 
W3 and W4, the augmented statistics must be considered. As 

WI : Zk= 1. 79zk-1 -1.85zk-2 + 1.27 Zk--3 -0.41zk-4 +Wk (36)a result, the ACLMS and ACNGD algorithms were able to 

W2 : Zk= <I> (1. 79zk-1 -1.85zk-2+1.27zk--3-0.41zk---4 +Wk) (37)find the optimal tap-length of the widely linear systems. 

W3 : Zk= 1. 79zk-1 -1.85zk--2 + 1.27 Zk--3 -0.41zk---4 

-twk +0.5Wk +0.9Wk--1 

W4: zk=<I>(1.79zk--I-1.85zk--2+1.27zk--3-0.41zk-4 

-twk +0.5Wk +0.9Wk--I) 

B. Modelling of Conventional Complex Systems 

(38) Figure 5 depicts the evolution of the optimal filter length 
parameter N for the FT-ACLMS, FT-CLMS, FT-CNGD and 

(39lT-ACNGD algorithms when employed for the modelling 
of linear system WI. These algorithms were initialized with 
the following parameters: a = 0.03, 'Y = 10000, 8=1, 
�=4, N(O) = 7 and J-l = 5 X 10-5• The large value of 'Y 
compensates for the scaling of the data prior to feeding them 
into the filters. The input data was scaled to the range [-0.8, 
0.8]. From Figure 5, it is evident that the performances of all 

where WI is a circular linear system (AR4) [1], W2 is a 
nonlinear system (NAR4), W3 is a widely linear system, and 
W4 is a nonlinear widely linear system. The nonlinearity 
<I> ( .) used to generate the signals is the tanh function which 
was the same as the nonlinearity used in the CNGD and 
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Fig. 2. The steady-state MSE for the nonlinear (noncircular) system W2 
with respect to tap-length. 
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Fig. 3. The steady-state MSE for the widely linear (noncircular) system 
W3 with respect to tap-length. 
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Fig. 4. The steady-state MSE for the nonlinear widely linear (noncircular) 
system W4 with respect to tap-length. 
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Fig. 5. The evolution of the optimal filter length parameter N for the 
modelling of the linear circular system WI. 

the algorithms considered were similar, as they all converged 
to the optimal tap-length at around the same time. 
Figure 6 illustrates the evolution of the optimal filter length 
for the modelling of the nonlinear system W2, initialized 
with the same parameters as previously. From Figure 6, it 
is apparent that the evolution of the filter length parameter 
is similar to that in Figure 5. Indeed, this is expected for 
both the linear and nonlinear systems, as the augmented 
algorithms (widely linear) degenerate into their conventional 
counterparts. 

C. Modelling of Augmented Complex Systems 

Figure 7 shows the evolution of the optimal filter length 
parameter N for FT-ACLMS, FT-CLMS, FT-ACNGD and 
FT-CNGD algorithms when employed for the modelling of 
the noncircular widely linear system W3. These algorithms 
were initialized with the following parameters: ex = 0.03, 

"t = 10000, 8=1, �=4, N(O) = 7 and f-L = 5 X 10-5. As 
mentioned in the previous subsection, the reason behind the 
large value of"t is due to the input scaling. Observe that 
the augmented algorithms FT-ACNGD and FT-ACLMS were 
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Fig, 7, The evolution of the optimal filter length parameter N for the 
modelling of the widely linear system W3. 

able to model W3 correctly, in contrast to the FT-CLMS and 
FT-CNGD algorithms. In addition, the FT-CLMS and FT­
CNGD algorithms were unstable at steady-state, whereas the 
FT-ACLMS and FT-ACNGD algorithms exhibited a smooth 
and stable convergence to the true tap-length. Notice also 
the slower convergence of FT-ACLMS and FT-ACNGD for 
the modelling of W3 compared to Wi and W2, due to the 
additional information related to the widely linear models of 
W3. 
Figure 8 illustrates the evolution of the optimal filter length 
parameter N employed for the modelling of the nonlinear 
widely linear system W4. As expected, the results were very 
similar to the modelling of W3. The augmented algorithms 
were able to model W4 accurately whereas their standard 
complex counterparts underperformed. 

VI. CONCLU SIONS 

We have introduced the fractional tap-length (FT) algo­
rithm into complex-valued adaptive filters trained by the aug­
mented least mean square (ACLMS) and augmented nonlin­
ear gradient descent (ACNGD), and showed that the steady­
state performance of the complex widely linear algorithms 
FT-ACLMS and FT-ACNGD can be used as a criterion 

20 

10 
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Time Index x 104 

Fig. 8. The evolution of the optimal filter length parameter N for the 
modelling of the nonlinear widely linear system W4, 

for the identification of second order noncircular systems 
and model order selection. This complements the ability of 
ACLMS and ACNGD to model both second order circular 
(proper) and noncircular (improper) real world processes, 
and to track their nonlinear and nonstationary dynamics. 
Simulations on model order selection and the identification 
of complex impropriety support the approach. 
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