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Abstract

A complex-valued nonlinear gradient descent (CNGD) learning algorithm for a simple finite impulse response (FIR) nonlinear neural

adaptive filter with an adaptive amplitude of the complex activation function is proposed. This way the amplitude of the complex-valued

analytic nonlinear activation function of a neuron in the learning algorithm is made gradient adaptive to give the complex-valued adaptive

amplitude nonlinear gradient descent (CAANGD). Such an algorithm is beneficial when dealing with signals that have rich dynamical

behavior. Simulations on the prediction of complex-valued coloured and nonlinear input signals show the gradient adaptive amplitude,

CAANGD, outperforming the standard CNGD algorithm.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, there has been an increased interest in the

processing of complex-valued nonlinear signals (Hirose

1992; Georgiou & Koutsougeras, 1992). To this cause, the

class of least mean square (LMS) based adaptive finite

impulse response (FIR) filters for real-valued signals have

been extended to the complex plane. The complex-valued

LMS (CLMS) algorithm, (Widrow, McCool, & Ball, 1975),

was the fundamental foundation for the class of complex

adaptive filters that followed. It is well known that for the

family of complex-valued gradient descent algorithms to

perform, the nonlinearity in the activation function must be

analytic and bounded almost everywhere in the complex

plane, C. The complex nonlinear gradient descent (CNGD)

and the complex backpropagation (CBP) algorithms,

(Georgiou & Koutsougeras, 1992; Benvenuto & Piazza,

1992; Hanna & Mandic, 2002), employ a complex nonlinear

activation function to extend the class of linear complex

adaptive filters to nonlinear complex signals. The aim of this

paper is to extend the derivation of the gradient descent

based adaptive amplitude of the activation function for real-

valued neural networks as introduced in Trentin (2001) to

the case of complex-valued nonlinear activation functions.

Hence, for convenience, we consider a simple complex-

valued dynamical feedforward perceptron employed as a

nonlinear FIR adaptive filter, shown in Fig. 1. This

architecture operates for both real and complex-valued

neural adaptive filters. By making the amplitude of the

activation function gradient adaptive, such a nonlinear

adaptive filter shows better performance on signals with rich

dynamics than the standard learning algorithm.

2. The complex-valued nonlinear gradient descent

(CNGD) algorithm

The complex-valued gradient descent algorithms for a

complex-valued nonlinear perceptron employed as a
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nonlinear FIR filter are based upon an objective function

given by

JðkÞ ¼
1

2
½eðkÞepðkÞ� ¼

1

2
leðkÞ2l;

eðkÞ ¼ dðkÞ2FðxTðkÞwðkÞÞ;

ð1Þ

where eðkÞ denotes the instantaneous output error from the

filter, dðkÞ the desired response, xðkÞ ¼ ½x1ðkÞ;…; xNðkÞ�
T the

input to the filter, wðkÞ ¼ ½w1ðkÞ;…;wNðkÞ�
T the weight

vector andFð·Þ some complex-valued nonlinearity within the

neuron. The superscripts ð·ÞT and ð·Þp denote the transpose

and complex conjugate operators, whereas the superscripts

ð·Þr and ð·Þi denote the real and imaginary parts, respectively,

and j ¼
ffiffiffiffi
21

p
: For simplicity, we shall denote FðxTðkÞ

wðkÞÞ ¼ FðkÞ ¼ uðkÞ þ jvðkÞ; and thus

erðkÞ ¼ drðkÞ2 uðkÞ; eiðkÞ ¼ diðkÞ2 vðkÞ: ð2Þ

The learning algorithm in this case is the CNGD algorithm,

defined by (Mandic & Chambers, 2001)

wðk þ 1Þ ¼ wðkÞ þ DwðkÞ; ð3Þ

DwðkÞ ¼ heðkÞ½F0ðxTðkÞwðkÞÞ�pxpðkÞ; ð4Þ

where h denotes the step size of the algorithm.

3. The complex-valued adaptive amplitude nonlinear

gradient descent algorithm

The complex-valued adaptive amplitude nonlinear gra-

dient descent (CAANGD) algorithm is an extension to the

CNGD algorithm. The CAANGD relies on the amplitude of

the analytic nonlinear activation function to be adaptive

according to the change in dynamics of the input signal. We

can extend the activation function with range l from Trentin

(2001) as

FðkÞ ¼ l �FðkÞ ¼ lð�uðkÞ þ j�vðkÞÞ; ð5Þ

where l denotes the amplitude of the nonlinearity, FðkÞ;

whereas �FðkÞ denotes the activation function with unit

amplitude. For the logistic sigmoid function this would be

FðxðkÞ;b;lÞ ¼
l

1 þ e2bxðkÞ
;

where xðkÞ [ C: Thus if l ¼ 1 it follows that FðkÞ ¼ �FðkÞ:

Here, we propose a gradient adaptive amplitude of the

analytic nonlinear activation function in order to increase

performance of the nonlinear complex-valued filter.

The update for the gradient adaptive amplitude is given

by, (Trentin, 2001)

lðk þ 1Þ ¼ lðkÞ2 r7lJðkÞll¼lðkÞ; ð6Þ

where 7lJðkÞll¼lðkÞ denotes the gradient of the objective

function (1), with respect to the amplitude of the activation

function l; and r [ R denotes the step size of the algorithm

and is chosen to be a small constant. Having this in mind we

can then deal with a general complex-valued structure

(Mandic & Chambers, 2001), it can then be shown that

7lJðkÞll¼lðkÞ ¼
›JðkÞ

›lðkÞ
¼

1

2

›½eðkÞepðkÞ�

›lðkÞ

¼
1

2
epðkÞ

›eðkÞ

›lðkÞ
þ eðkÞ

›epðkÞ

›lðkÞ

� �
;

ð7Þ

stating that

›epðkÞ

›lðkÞ
¼

›eðkÞ

›lðkÞ

� �p
;

notice that l is real-valued, therefore the derivative can be

expanded to give,

›eðkÞ

›lðkÞ
¼

›erðkÞ

›lðkÞ
þ j

›eiðkÞ

›lðkÞ

¼
›½drðkÞ2 lðkÞ�uðkÞ�

›lðkÞ
þ j

›½diðkÞ2 lðkÞ�vðkÞ�

›lðkÞ

¼ 2�uðkÞ2 j�vðkÞ ¼ 2 �FðkÞ: ð8Þ

Therefore, the desired learning algorithm for complex-

valued nonlinear adaptive filters becomes

eðkÞ ¼ dðkÞ2FðxTðkÞwðkÞÞ;

FðxTðkÞwðkÞÞ ¼ lðkÞ �FðxTðkÞwðkÞÞ;

ð9Þ

wðk þ 1Þ ¼ wðkÞ þ heðkÞ½F0ðxTðkÞwðkÞÞ�pxpðkÞ; ð10Þ

lðk þ 1Þ ¼ lðkÞ þ
r

2
½epðkÞ �FðxTðkÞwðkÞÞ

þ eðkÞð �FðxTðkÞwðkÞÞÞp�; ð11Þ

which describes the CAANGD algorithm for complex-

valued feedforward dynamical perceptrons, employed as

nonlinear adaptive FIR filters.

Fig. 1. A complex-valued nonlinear FIR filter.
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4. Experiments

To investigate the performance of the proposed algorithm

compared to other algorithms of this kind, they were applied

to the problem of time-series prediction, by averaging the

performance curves of 100 independent simulations. For

rigour, all the algorithms were tested on complex-valued

coloured and nonlinear inputs. The nonlinear filter was given

by (Narendra & Parthasarathy, 1990)

zðkÞ ¼
zðk 2 1Þ

1 þ z2ðk 2 1Þ
þ r2ðkÞ; ð12Þ

where rðkÞ was a normally distributed Nð0; 1Þ complex-

valued white noise, nðkÞ; passed through a stable AR filter

given by

rðkÞ ¼ 1:55rðk 2 1Þ2 0:81rðk 2 2Þ þ nðkÞ: ð13Þ

The input for both signals was scaled to range between

½0; 0:1� and the nonlinearity at the neuron was chosen to be

the complex logistic sigmoid function,

FðxðkÞ;wðkÞ;b; lðkÞÞ ¼
lðkÞ

1 þ e2bxT ðkÞwðkÞ
; ð14Þ

Fig. 2. Performance curves for CNGD and CAANGD on complex input.
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with a slope, b ¼ 1; learning rate h ¼ 0:3 and an initial

amplitude of lð0Þ ¼ 1: For the CAANGD algorithm, the step

size of the adaptive amplitude learning algorithm was r ¼

0:15: Fig. 2(a) and (b) shows the performance curves for the

CNGD algorithm and the CAANGD algorithm on coloured

input (13) and nonlinear input (12). Both figures clearly show

the CAANGD converging significantly faster than the

standard CNGD algorithm, thus demonstrating the increased

performance on signals with rich dynamical range.

To further investigate the algorithm, the CAANGD

algorithm was used to predict signals with rich dynamics,

such as speech, which for this experiment was made

complex. The top diagram in Fig. 3(a) shows the magnitude

of a synthetic complex-valued nonlinear input, whereas

the bottom diagram shows the plot of the adaptive amplitude.

It can be clearly seen that as the amplitude of the input signal

increases around sample number 1000 the CAANGD adapts

the amplitude of the nonlinearity accordingly. Similarly as

the amplitude of the input signal is reduced, the amplitude, l;

of the nonlinearity, FðxTðkÞwðkÞÞ; adjusts accordingly. The

top diagram in Fig. 3(b) shows the magnitude, luðkÞl; of the

complex speech signal and the bottom diagram shows the plot

of the adapted amplitude, l. As in Fig. 3(a), as the amplitude

of the input speech signal changes, so does the amplitude of

Fig. 3. Adaptive amplitudes for CAANGD on complex nonlinear and speech input.
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the CAANGD as it adapts to the changes in the dynamics of

the input signal.

5. Conclusions

The amplitude of the activation function in the CNGD

algorithm for a simple complex-valued nonlinear neural

adaptive filter has been made adaptive using a gradient

descent based approach to give the CAANGD algorithm. The

algorithm has been developed for a general complex

nonlinear activation function of a filter. The proposed

algorithm has been shown to converge faster than the

standard CNGD algorithm for nonlinear prediction of signals

with large dynamics. The average of a series of independent

simulations show the CAANGD algorithm outperforming

the CNGD algorithm on complex-valued coloured and

nonlinear input. In addition, experimental results show the

amplitude update following the change in the dynamics of the

input signal.
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