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A Fully Adaptive Normalized Nonlinear Gradient
Descent Algorithm for Complex-Valued

Nonlinear Adaptive Filters
Andrew Ian Hanna and Danilo P. Mandic, Member, IEEE

Abstract—A fully adaptive normalized nonlinear com-
plex-valued gradient descent (FANNCGD) learning algorithm for
training nonlinear (neural) adaptive finite impulse response (FIR)
filters is derived. First, a normalized nonlinear complex-valued
gradient descent (NNCGD) algorithm is introduced. For rigour,
the remainder of the Taylor series expansion of the instantaneous
output error in the derivation of NNCGD is made adaptive at
every discrete time instant using a gradient-based approach. This
results in the fully adaptive normalized nonlinear complex-valued
gradient descent learning algorithm that is suitable for nonlinear
complex adaptive filtering with a general holomorphic activation
function and is robust to the initial conditions. Convergence
analysis of the proposed algorithm is provided both analytically
and experimentally. Experimental results on the prediction of
colored and nonlinear inputs show the FANNCGD outperforming
other algorithms of this kind.

Index Terms—Adaptive filtering, nonlinear complex-valued fil-
tering, normalized gradient descent, prediction.

I. INTRODUCTION

A DAPTIVE filtering techniques are an important facet
to many scientific disciplines such as communications,

biomedical engineering, and life sciences. As these areas devel-
oped so did the character class of processed data. The majority
of these diverse data existed in the real domain; however,
increasing amounts started to root in the complex domain. This
in turn lead to the development of complex-valued learning
algorithms for nonlinear adaptive filters. For linear complex
adaptive filtering, the complex least mean square (CLMS)
algorithm [1] was developed. As the architectures of nonlinear
neural network models became more involved, the complex
backpropagation (CBP) algorithm was derived [2]–[5]. The
complication with the CBP algorithm is finding a suitable acti-
vation function that is analytic and completely bounded in the
complex plane [6]. Liouville’s theorem states“a bounded en-
tire function in the complex domain is a constant”[6]–[8], and
so, to be able to employ gradient descent-based algorithms, a
fully complex activation function must be analytic and bounded
almost everywhere in the complex domainfor which there
are many choices. Originally, a split complex activation was
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used in the processing of complex-valued signals.1 However
a split complex activation function cannot be analytic. To this
cause, it is illustrated in [6] that the class of transcendental
functions can be used as fully complex-valued activation func-
tions successfully. For practical purposes, a complex-valued
activation function proposed in [3] is frequently used.

For nonlinear adaptive filtering applications, a simple exten-
sion of an FIR filter is a dynamical perceptron, which is in fact
an FIR filter superseded with a continuous nonlinear activation
function. In Control Theory, this is also known as a Wiener
model [7], [9]. Here, we consider such a filter realized as a dy-
namical complex neuron, as shown in Fig. 1.

A recent result provides novel ways of how to normalize the
backpropagation algorithm [10]; however, for a highly ill-con-
ditioned input correlation matrix, close to zero input vectors and
signals with long time correlation and large dynamical range, it
is difficult to choose the parameters of the algorithm for each
particular case. In this paper, we embark upon the previously
derived normalized nonlinear gradient descent (NNGD) algo-
rithm [11] for real-valued adaptive filtering and extend it to be
compliant with signals in the field of complex numbers. The
NNGD algorithm is a member of the class of fully adaptive
normalized nonlinear gradient descent algorithms, which in the
linear real-valued case have been developed in [12]–[15]. The
derivation of the NNGD algorithm [7] performs a Taylor series
expansion of the instantaneous output error, which is then trun-
cated leaving the driving terms of the algorithm. This results in a
suboptimal algorithm due to an approximation of the expansion.

The choice of activation function, however, has major influ-
ences on the performance of algorithms for nonlinear filters.
Therefore, based on the real-valued normalized nonlinear gra-
dient descent algorithm, we first derive a normalized nonlinear
complex-valued gradient descent (NNCGD) for a general com-
plex-valued activation function. For rigour, we make the con-
stant term, which is included to balance the truncated Taylor
series expansion in the derivation of the NNCGD algorithm,
adaptive using a gradient-based approach that produces the fully
adaptive normalized nonlinear complex-valued gradient descent
(FANNCGD) algorithm derived for a general holomorphic ac-
tivation function. Experiments on the prediction of complex-
valued colored and nonlinear signals show that the proposed al-
gorithm outperforms the previously derived algorithms of this
kind.

1For a complex number� = �+j�, a split complex activation is of the form
�(�) = �(�) + j�(�), whereas a fully complex activation function is of the
form�(�) = � (�; �) + j� (�; �):
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Fig. 1. Nonlinear FIR filter.

II. NORMALIZED NONLINEAR COMPLEX GRADIENT

DESCENTALGORITHM

A. Nonlinear Complex Gradient Descent Algorithm

The equations that describe the nonlinear complex-valued
gradient descent (NCGD) algorithm for a complex-valued dy-
namical perceptron, shown in Fig. 1, employed as a nonlinear
FIR filter with a single output neuron are given by

(1)

where is the instantaneous output error of the filter at time
instant , is the output from the complex-valued nonlinear
activation function, is the desired output, is
some holomorphic function that is bounded almost everywhere
in the complex domain [6], and

(2)

where denotes the complex
input such that ,
from Fig. 1. The complex weight vector is denoted by

, and is the number of tap
inputs. For simplicity, we state that

(3)

where the superscripts and , respectively, denote the real
and imaginary parts of a complex quantity, and . We
can then split up the error term (1) into its real and imaginary
parts as

(4)

(5)

where is the conventional cost function of the network [1],
and denotes the complex conjugate. The weight adaptation
in the nonlinear complex gradient descent (NCGD) algorithm is
therefore given by [3]

(6)

(7)

where is the learning rate. The NCGD algorithm can be written
in the compact form as

(8)

B. Normalized Nonlinear Complex Gradient Descent
Algorithm

Input signals with unknown and possibly very large dynam-
ical range, an ill-conditioned tap input autocorrelation matrix,
and the coupling between different signal modes slow down the
learning process. In order to speed up learning, it is desirable to
calculate an optimal learning ratethat normalizes the model
according to a minimization of the instantaneous output error
at every iteration. The optimal learning rate of the NNCGD
algorithm is calculated similarly to the real case [10], [11] by
expanding the instantaneous output error by a Taylor series
expansion

(9)

The higher order terms of the polynomial can be neglected if
is sufficiently small [16]; how-

ever, during the training period of the algorithm, this condition
may not be held; thus, the term regarding higher order deriva-
tives must be adjusted automatically. However, as an online
learning model, we do not know the values of and
a priori.2 To this cause, we truncate the expansion to include
the driving terms of the algorithm, namely, the weight vector,
which gives

(10)

where denotes the truncated terms of the expansion. Since
is a complex function, we can apply the Cauchy–Riemann

equations to give3

(11)

and therefore

(12)

2For instance, in unsupervised offline batch processing, the values ofd (k)
are still unknown.

3For a full derivation, see Appendix A.
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(a) (b)

Fig. 2. Convergence curves for NNCGD with varyingC. (a) Convergence curve using NNCGD withC = 0.1. (b) Convergence curve using NNCGD withC =
0.8.

For simplicity, we take only the first two terms of (10), and sub-
stituting in (7) and (12) yields

(13)

For convenience, we employ the method given in [7] to solve
for . For the output error at time instant ( ) to be zero,
the term in the square brackets must be zero, which gives the
learning rate of the NNCGD algorithm as

(14)

In (14), denotes a term added to balance the exclusion of
second and higher order derivatives, which is denoted in (10) as

and the truncated terms in (9) from the Taylor series ex-
pansion. In the real-valued NNGD algorithm [11], thisterm
has been kept constant. The value of this term can have substan-
tial effects on the convergence of the nonlinear adaptive filter,
and the effects of this term will vary for different modes of ap-
plication. To illustrate this, 500 independent simulations on the
prediction of colored input were averaged to produce the con-
vergence curves. The colored input was generated with com-
plex-valued white noise with zero mean and unit variance,
which was then passed through a stable AR filter described by

(15)

In each case, the order of the filter was , and the non-
linearity was the complex-valued hyperbolic tangent function,
which was defined as

(16)

where , and . Fig. 2(a) shows the performance of
the NNCGD algorithm with reaching 22 dB, and
Fig. 2(b) shows the NNCGD algorithm with con-
verging to 34 dB, which is an increase in performance of
12 dB, showing that the NNCGD algorithm is sensitive to the
choice of .

III. FULLY ADAPTIVE NNCGD ALGORITHM

The convergence curves in Fig. 2 clearly show a difference in
performance according to varying values of, which was added
to balance the exclusion of the terms from (9). For this reason, it
is proposed that an online adaptive term from (14) be intro-
duced, providing a fully adaptive normalized nonlinear complex
gradient descent (FANNCGD) learning algorithm. The equation
that defines the update of is given by

(17)

where denotes the step size of the algorithm, and therefore

(18)

To calculate two partial derivative equations given in (18), it is
necessary to use the Cauchy–Riemann equations to obtain4

(19)

4For a full derivation of (19) and (20), see Appendix B.
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and

(20)

Writing the weight update term excluding the learning rate
to give

(21)

we can derive

(22)

where we have (23) and (24), shown at the bottom of the page.
Therefore

(25)

For simplicity, we will denote .
The gradient of the cost function with respect to the term

from (14) added to compensate for the truncation in (10)
becomes

(26)

This yields the FANNCGD learning algorithm for nonlinear FIR
filters realized as dynamical perceptrons, which is given by

(27)

where is the step size of the proposed algorithm and is chosen
to be a small positive constant.

IV. CONVERGENCE OF THEFANNCGD ALGORITHM

The FANNCGD algorithm determines the optimal learning
rate for the class of complex-valued nonlinear gradient
descent algorithms. Although the FANNCGD algorithm con-
verges in the mean squared error for a range of valuesand

, we can show that for uniform convergence as
by

(28)

For this term to converge in the mean squared error sense, it
must stand that

(29)

and therefore, the range for becomes

(30)

(23)

and

(24)
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(a) (b)

Fig. 3. Convergence curves of NNCGD and FANNCGD on colored input with the hyperbolic tangent function. (a) Convergence curves for NNCGD on colored
input. (b) Convergence curve for FANNCGD on colored input.

(a) (b)

Fig. 4. Convergence curves of NNCGD and FANNCGD on nonlinear input with the hyperbolic tangent function. (a) Convergence curves for NNCGD on nonlinear
input. (b) Convergence curve for FANNCGD on nonlinear input.

Substituting in the update term for , (27), we can then write

(31)
and solving for gives

(32)

which are the convergence conditions for the FANNCGD algo-
rithm. Convergence analysis for the mean error, mean squared
error, and steady state conforms to the analysis in [7].

V. EXPERIMENTAL RESULTS

To investigate the performance of the FANNCGD algorithm
compared with the NCGD and NNCGD algorithms, they were
all applied to the problem of time-series prediction by aver-
aging the performance curves of 500 independent simulations.
For rigour, all algorithms were tested on complex-valued col-

ored and nonlinear input signals with various complex-valued
activation functions.

A. Hyperbolic Tangent Function

The algorithms were employed on single neuron FIR com-
plex-valued nonlinear adaptive filters for prediction of colored
and nonlinear complex-valued signals. The activation function
was the complex-valued hyperbolic tangent function (16), with

and a tap input of size . The input to all filters
was complex-valued white noise with zero mean and unit
variance, which was then passed through a stable AR filter given
by (15) for the linear prediction. Fig. 3 shows the performance
curves for the NCGD, NNCGD, and FANNCGD algorithms on
time series prediction of colored input. The quantitative mea-
sure of performance was a logarithmic scale of the averaged cost
function . Fig. 3(a) shows the NCGD algo-
rithm performance curve reaching15.5 dB with a learning rate

. The NNCGD algorithm performance curve reached
28.8 dB and 17 dB for values of and , re-

spectively. The FANNCGD algorithm [see Fig. 3(b)] converged
to 29 dB, which is at least as good at the best choice ofin
the NNCGD algorithm. For the second experiment of nonlinear
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(a) (b)

Fig. 5. Nonlinear complex-valued activation function�(z) = z=(� + (1=�)jzj). (a) Magnitude of�(z) = z=(�+ (1=�)jzj). (b) Phase of�(z) = z=(�+
(1=�)jzj).

time series prediction, the input signal was passed through
a benchmark nonlinear filter described by [7]

(33)

and the nonlinearity in the output neuron was the complex-
valued hyperbolic tangent function given in (16) with .
For the task of nonlinear prediction (33), Fig. 4(a) shows the
performance curve of the NCGD algorithm reaching23 dB,
and the performance curves of the NNCGD algorithm reaching
to 30 dB and 49 dB for values of and , re-
spectively. The performance curve of the FANNCGD algorithm
[see Fig. 4(b)] converged to value of50 dB, which is at least
as good as the best performance ofin the NNCGD algorithm.

In Figs. 3 and 4, it is shown that the FANNCGD algorithm
reaches the best performance of the NNCGD algorithm when
an optimal constant is chosen. This optimal value of in the
NNCGD algorithm is not known before training, and thus, the
FANNCGD algorithm is a robust generalization of the NNCGD
algorithm.

The simulation results have shown the FANNCGD algorithm
outperforming the NNCGD algorithm for complex-valued
linear and nonlinear input signals. It is shown that the NNCGD
algorithm can achieve optimal performance given certain input
signals for a specific value of . However, over an averaged
number of simulations, the NNCGD algorithm will not obtain
as high a global performance as the proposed FANNCGD
algorithm.

B. Practical Complex-Valued Activation Function

It is known from Liouville’s statement [6] that a function that
is analytic and nonlinear cannot be bounded on the entire com-
plex domain. There are many choices of activation functions that
satisfy the desirable constraints defined in [6]; however, the pro-
posed FANNCGD algorithm is derived for any complex-valued
nonlinear function that satisfies these conditions. To further il-
lustrate this, we employ the frequently used complex-valued
function given in [3] and shown in Fig. 5

(34)

where and are real positive constants. Although the activa-
tion function does not satisfy the Cauchy–Riemann equations,
it does satisfy the constraint in [3] and [6] if for
some , where ; then, if

it means that is not a suitable activation function. This
function has the property of mapping a point to a unique
point on the open disc , and the parameter
controls the slope of the activation function.

The partial derivatives of (34) are given by [3]

if

if

if
if

(35)

if
if

if

if

(36)

where . Fig. 6 shows the performance curves for the
NCGD, NNCGD, and FANNCGD algorithms on adaptive pre-
diction of colored input, (15), with and . The quanti-
tative measure of performance was a logarithmic scale of the av-
eraged cost function . Fig. 6(a) shows the
NCGD algorithm performance curve reaching15.9 dB with
a learning rate . The NNCGD algorithm performance
curve reached 24.0 dB and 8.1 dB for values of
and , respectively. The FANNCGD algorithm [see
Fig. 6(b)] converged to 24 dB, which is at least as good at the
best choice of in the NNCGD algorithm. Fig. 7 shows the per-
formance curves for the NCGD, NNCGD, and FANNCGD al-
gorithms on time series prediction of nonlinear input (33), with

and . Fig. 7(a) shows the performance curve of the
NCGD algorithm reaching 22 dB and the performance curves
of the NNCGD algorithm reaching 34 dB and 49 dB for
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(a) (b)

Fig. 6. Convergence curves of NNCGD and FANNCGD on colored input with a practical complex-valued activation function (34). (a) Convergence curves for
NNCGD on colored output. (b) Convergence curves for FANNCGD on colored output.

(a) (b)

Fig. 7. Convergence curves of NNCGD and FANNCGD on colored input with a practical complex-valued activation function (34). (a) Convergence curves for
NNCGD on nonlinear input. (b) Convergence curves for FANNCGD on nonlinear input.

values of and , respectively. The performance
curve of the FANNCGD algorithm [see Fig. 7(b)] converged to
value of 50 dB, which is at least as good as the best perfor-
mance of in the NNCGD algorithm.

VI. ROBUSTNESS OF THEFANNCGD ALGORITHM

With all nonlinear stochastic models, the initial conditions
can effect the performance of the systems dramatically. To this
cause, an experiment to investigate the robustness of the fully
adaptive normalized nonlinear complex gradient descent (FAN-
NCGD) algorithm according to the initial choice of was
carried out on a nonlinear adaptive filter with a single dynamical
perceptron using the complex-valued activation function given
in (34) as the nonlinearity. The task was time series prediction of
complex-valued white noise that was then passed through
the stable AR filter described in (15). The quantitative measure
of performance was prediction gain ,
where denotes the variance of the expected signal, and

Fig. 8. Prediction gain for varying values ofC(0) for FANNCGD.

denotes the variance of the prediction error. Fig. 8 shows the ef-
fects on the prediction gain for . The maximum
variance of prediction gain for this range of initial conditions is
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2.5 dB, which reinforces the robustness of the proposed FAN-
NCGD algorithm with respect to the initial conditions.

VII. CONCLUSIONS

A fully adaptive normalized nonlinear complex-valued
gradient descent (FANNCGD) algorithm for training nonlinear
adaptive filters realized as a dynamical perceptron has been de-
rived. The previously derived real-valued normalized nonlinear
gradient descent (NNGD) algorithm has first been extended to
manage signals in the complex domain, resulting in the nor-
malized nonlinear complex-valued gradient descent (NNCGD)
algorithm. A fundamental constant term in the derivation of
the NNCGD algorithm was made adaptive using a gradient
descent-based approach to yield the fully adaptive normalized
nonlinear complex-valued gradient descent algorithm. It has
been shown that FANNCGD is an improved algorithm to the
NNCGD algorithm that optimizes the learning rate by utilizing
the Taylor series expansion of the instantaneous output error.
The proposed FANNCGD algorithm has been derived for any
complex-valued activation function that satisfies the conditions
stated in [6]. Experimental results have shown the FANNCGD
algorithm outperforming the NNCGD algorithm on colored
and nonlinear input signals. It has also been shown that the pro-
posed FANNCGD algorithm is robust to the initial conditions,
which compensates for the deficiency in the derivation of the
real valued normalized nonlinear gradient descent algorithm.

APPENDIX A
DERIVATION OF

The derivation of the Cauchy–Riemann equations state that

and

(37)

Therefore

(38)

and

(39)

giving

(40)

From the above, we have

(41)

APPENDIX B
DERIVATION OF

To calculate , we must split it up into its
real and imaginary parts to obtain

(42)

also knowing that

(43)

so it follows that

(44)
Thus

(45)

to give (46) and (47), shown at the top of the next page. Recog-
nizing that the Cauchy–Riemann equations state

(48)
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(46)

and

(47)

(49)

and combining (46) and (47) together yields (49), shown at the
top of the page. Using the same techniques in (45) and recog-
nizing (48) yields

(50)
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