
The ℍℂ Calculus, Quaternion Derivatives and Caylay-Hamilton Form
of Quaternion Adaptive Filters and Learning Systems

Yili Xia, Cyrus Jahanchahi, Dongpo Xu and Danilo P. Mandic

Abstract— We introduce a novel and unifying framework for
the calculation of gradients of both quaternion holomorphic
functions and nonholomorphic real functions of quaternion
variables. This is achieved by considering the isomorphism
between the quaternion domain ℍ and the bivariate complex
domain ℂ×ℂ, and by exploiting complex calculus to simplify
the quaternion gradient calculation. The validation of the
proposed ℍℂ calculus is performed against the existing ℍℝ

calculus, and its convenience is illustrated in the context of
gradient-based quaternion optimisation as well as in adaptive
learning systems. Quaternion adaptive filtering algorithms and
a dynamical perceptron update are next derived based on
the bivariate complex representation of quaternions and the
ℍℂ calculus. Simulations on both synthetic and real-world
multidimensional signals support the analysis.

I. INTRODUCTION

QUATERNION signal processing is a rapidly grow-
ing area, as it is convenient to cast many 3D and

4D problems into the quaternion domain ℍ to exploit the
‘coupled’ nature of information across the data channels.
This includes modelling of rotations in computer graphics,
tracking in aeronautics, and 3D color imaging [1], [2]. Recent
mathematical tools to support these developments include the
quaternion singular value decomposition, quaternion Fourier
transform, quaternion independent component analysis, aug-
mented statistics and Taylor series expansion [3]–[9].

However, gradient based optimisation in ℍ is quite re-
strictive, as the standard Cauchy-Riemann-Fueter conditions
[10] do not admit derivatives of nonholomorphic real-valued
cost functions. It is only recently that the ℍℝ calculus
has made possible the differentiation of both holomorphic
and nonholomorphic functions in ℍ, through exploiting the
duality with their isomorphic quadrivariate real functions
[11]. Other existing quaternion gradients are also useful,
but typically do not consider a quaternion as an entity, for
instance, by treating the real part and the vector part of a
quaternion separately [1], [12], [13].

Our aim here is to build upon the ℍℝ calculus, in order to
introduce an intuitive and rigorous framework for calculating
derivatives of both holomorphic and nonholomorphic func-
tions of quaternion variables. To this end, we consider the
Cayley-Dickson construction of a quaternion (as a bivariate
complex vector [3], [5]), in order to benefit from a direct use
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of the well established complex domain algebra. In this way,
we obtain a hypercomplex extension of the ℂℝ calculus [14],
[15], thus inheriting its ability to provide gradients of both
holomorphic and nonholomorphic functions, such as typical
cost functions (real-valued error power) in signal processing.
The proposed ℍℂ calculus is derived by considering the
duality between the quaternion derivatives and the corre-
sponding bivariate complex ℂℝ derivatives. Unlike the exist-
ing quaternion gradient calculations [1], [11]–[13], the ℍℂ

calculus is able to decompose quaternion derivatives of both
holomorphic and nonholomorphic functions of quaternion
variables into a pair of complex-valued derivatives instead of
four real-valued derivatives. It thus provides more compact
and convenient expressions for quaternion derivatives, at a
reduced computational complexity. The principle and the
usefulness of the proposed ℍℂ calculus is illustrated in
the context of quaternion gradient optimisation, such as in
the identification of stationary points, direction of maximum
change problems, as well as in adaptive filtering applications.

II. THE CAYLEY-DICKSON CONSTRUCTION

Quaternions are an associative but not commutative alge-
bra over ℝ, defined as

ℍ : {𝑞 = 𝑞𝑎 + 𝚤𝑞𝑏 + 𝚥𝑞𝑐 + 𝜅𝑞𝑑 ∣ 𝑞𝑎, 𝑞𝑏, 𝑞𝑐, 𝑞𝑑 ∈ ℝ} (1)

where 𝚤, 𝚥, and 𝜅 are the imaginary units, for which 𝚤𝚥
= 𝜅, 𝚥𝜅 = 𝚤, 𝜅𝚤 = 𝚥, and 𝚤2 = 𝚥2 = 𝜅2 = 𝚤𝚥𝜅 = -1. It
is convenient to view quaternions as a pair of complex
numbers via the Cayley-Dickson construction. Letting ℂ

2

be a bivariate vector space over the complex numbers, any
quaternion 𝑞 ∈ ℍ can be considered as a point (𝑥, 𝑦) ∈ ℂ

2

[3], [16], whereby

𝑞 = (𝑞𝑎 + 𝚤𝑞𝑏) + 𝚥(𝑞𝑐 − 𝚤𝑞𝑑) = 𝑥+ 𝚥𝑦 (2)

In this way, the quaternion conjugate 𝑞∗ is given by

𝑞∗ = (𝑞𝑎 − 𝚤𝑞𝑏)− 𝚥(𝑞𝑐 − 𝚤𝑞𝑑) = 𝑥∗ − 𝚥𝑦 (3)

while the Cayley-Dickson form of quaternion involutions
[17] becomes

𝑞𝚤 = −𝚤𝑞𝚤 = 𝑞𝑎 + 𝚤𝑞𝑏 − 𝚥𝑞𝑐 − 𝜅𝑞𝑑 = 𝑥− 𝚥𝑦

𝑞𝚥 = −𝚥𝑞𝚥 = 𝑞𝑎 − 𝚤𝑞𝑏 + 𝚥𝑞𝑐 − 𝜅𝑞𝑑 = 𝑥∗ + 𝚥𝑦∗

𝑞𝜅 = −𝜅𝑞𝜅 = 𝑞𝑎 − 𝚤𝑞𝑏 − 𝚥𝑞𝑐 + 𝜅𝑞𝑑 = 𝑥∗ − 𝚥𝑦∗ (4)

Similarly, for the involution conjugates we have

𝑞𝚤∗ = 𝑥∗ + 𝚥𝑦, 𝑞𝚥∗ = 𝑥− 𝚥𝑦∗, 𝑞𝜅∗ = 𝑥+ 𝚥𝑦∗ (5)
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The complex-valued quaternion components 𝑥, 𝑥∗, 𝑦, 𝑦∗ in
(2) and (3) can now be expressed based on quaternion
involutions in (4) or conjugate involutions in (5) as

𝑥 =
𝑞+𝑞𝚤

2
, 𝑥∗ =

𝑞𝚥+𝑞𝜅

2

𝑦 =
−𝚥(𝑞−𝑞𝚤)

2
, 𝑦∗ =

−𝚥(𝑞𝚥−𝑞𝜅)
2

(6)

𝑥 =
𝑞𝚥∗+𝑞𝜅∗

2
, 𝑥∗=

𝑞∗+𝑞𝚤∗

2

𝑦 =
𝚥(𝑞∗−𝑞𝚤∗)

2
, 𝑦∗=

𝚥(𝑞𝚥∗−𝑞𝜅∗)
2

(7)

III. THE ℍℂ CALCULUS

To establish the duality between the derivatives of a
quaternion-valued function 𝑓(𝑞, 𝑞𝚤, 𝑞𝚥, 𝑞𝜅) ∈ ℍ and the
corresponding ‘composite’ bivariate complex function 𝑔 =
𝑔(𝑥, 𝑥∗, 𝑦, 𝑦∗) ∈ ℂ

2, we employ (4) and (6) to write

𝑓(𝑞, 𝑞𝚤, 𝑞𝚥, 𝑞𝜅) = 𝑢(𝑥, 𝑥∗, 𝑦, 𝑦∗) + 𝚥𝑣(𝑥, 𝑥∗, 𝑦, 𝑦∗)
= 𝑔(𝑥, 𝑥∗, 𝑦, 𝑦∗) (8)

where 𝑢(𝑥, 𝑥∗, 𝑦, 𝑦∗) and 𝑣(𝑥, 𝑥∗, 𝑦, 𝑦∗) are functions of
complex argument, the bases of which are 1 and 𝚤. For
the bivariate complex function 𝑔(𝑥, 𝑥∗, 𝑦, 𝑦∗) ∈ ℂ

2 that is
differentiable with respect to each of1 {𝑥, 𝑥∗, 𝑦, 𝑦∗}, the total
differential

𝑑𝑔(𝑥, 𝑥∗, 𝑦, 𝑦∗) =
∂𝑔

∂𝑥
𝑑𝑥+

∂𝑔

∂𝑥∗
𝑑𝑥∗+

∂𝑔

∂𝑦
𝑑𝑦+

∂𝑔

∂𝑦∗
𝑑𝑦∗

=
∂𝑢

∂𝑥
𝑑𝑥+𝚥

∂𝑣

∂𝑥
𝑑𝑥+

∂𝑢

∂𝑥∗
𝑑𝑥∗+𝚥

∂𝑣

∂𝑥∗
𝑑𝑥∗

+
∂𝑢

∂𝑦
𝑑𝑦+𝚥

∂𝑣

∂𝑦
𝑑𝑦+

∂𝑢

∂𝑦∗
𝑑𝑦∗+𝚥

∂𝑣

∂𝑦∗
𝑑𝑦∗ (9)

Using (6) to link the complex and quaternion differentials

𝑑𝑥 =
𝑑𝑞+𝑑𝑞𝚤

2
, 𝑑𝑥∗=

𝑑𝑞𝚥+𝑑𝑞𝜅

2

𝑑𝑦 =
𝑑𝑞−𝑑𝑞𝚤

2𝚥
, 𝑑𝑦∗=

𝑑𝑞𝚥−𝑑𝑞𝜅

2𝚥
(10)

allows for (9) to be written in a compact form

𝑑𝑔 =
1

2

(
∂𝑔

∂𝑥
− ∂𝑔

∂𝑦
𝚥

)

𝑑𝑞+
1

2

(
∂𝑔

∂𝑥
+

∂𝑔

∂𝑦
𝚥

)

𝑑𝑞𝚤

+
1

2

(
∂𝑔

∂𝑥∗
− ∂𝑔

∂𝑦∗
𝚥

)

𝑑𝑞𝚥+
1

2

(
∂𝑔

∂𝑥∗
+

∂𝑔

∂𝑦∗
𝚥

)

𝑑𝑞𝜅 (11)

Note that, unlike in the complex domain, due to the non-
commutative nature of the quaternion product, that is, 𝑞1𝑞2
∕= 𝑞2𝑞1, the position of the imaginary unit 𝚥 in (11) cannot
be swapped with those of the partial derivatives ∂𝑔

∂𝑦 and ∂𝑔
∂𝑦∗ .

With this in mind, the total differential of the quaternion
function 𝑓(𝑞, 𝑞𝚤, 𝑞𝚥, 𝑞𝜅) can be written as

𝑑𝑓(𝑞, 𝑞𝚤, 𝑞𝚥, 𝑞𝜅) =
∂𝑓

∂𝑞
𝑑𝑞+

∂𝑓

∂𝑞𝚤
𝑑𝑞𝚤+

∂𝑓

∂𝑞𝚥
𝑑𝑞𝚥+

∂𝑓

∂𝑞𝜅
𝑑𝑞𝜅 (12)

1This means that for a 𝑔(𝑥, 𝑥∗, 𝑦, 𝑦∗), when performing the partial
derivative of 𝑔 with respect to a specific variable from {𝑥, 𝑥∗, 𝑦, 𝑦∗}, other
variables are treated as constants. For instance, ∂𝑥∗

∂𝑥
= 0, a result already

established in ℂ [14], also it is obvious that from (2), we have ∂𝑦
∂𝑥

= ∂𝑦∗
∂𝑥

= 0.

A. The ℍℂ-derivatives

Since the quaternion function 𝑓 and its dual bivariate com-
plex function 𝑔 have the same derivative, upon comparing
(12) and (11), we obtain the set of identities which we refer
to as the ℍℂ-derivatives, given by
⎡

⎢
⎢
⎢
⎢
⎣

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞𝚤

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞𝚥

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞𝜅

⎤

⎥
⎥
⎥
⎥
⎦

𝑇

=
1

2

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑥
∂𝑓
∂𝑥∗
∂𝑓
∂𝑦
∂𝑓
∂𝑦∗

⎤

⎥
⎥
⎥
⎦

𝑇 ⎡

⎢
⎢
⎣

1 1 0 0
0 0 1 1
−𝚥 𝚥 0 0
0 0 −𝚥 𝚥

⎤

⎥
⎥
⎦ (13)

where [⋅]𝑇 is the transpose operator and a shorthand notation
𝑓 = 𝑓(𝑥, 𝑥∗, 𝑦, 𝑦∗) was used on the right hand side (RHS).

B. The ℍℂ
∗-derivatives

In analogy to the complex ℂℝ
∗-derivative, to arrive at

the ℍℂ
∗-derivatives, we consider the representation of the

complex components {𝑥, 𝑥∗, 𝑦, 𝑦∗} in the conjugate basis
{𝑞∗, 𝑞𝚤∗, 𝑞𝚥∗, 𝑞𝜅∗} in (7), to give

𝑑𝑥 =
1

2
(𝑑𝑞𝚥∗ + 𝑑𝑞𝜅∗), 𝑑𝑥∗ =

1

2
(𝑑𝑞∗ + 𝑑𝑞𝚤∗)

𝑑𝑦 =
𝚥

2
(𝑑𝑞∗ − 𝑑𝑞𝚤∗), 𝑑𝑦∗ =

𝚥

2
(𝑑𝑞𝚥∗ − 𝑑𝑞𝜅∗) (14)

Substituting (14) into (9), we arrive at

𝑑𝑔 =
1

2

(
∂𝑔

∂𝑥∗
+

∂𝑔

∂𝑦
𝚥

)

𝑑𝑞∗+
1

2

(
∂𝑔

∂𝑥∗
− ∂𝑔

∂𝑦
𝚥

)

𝑑𝑞𝚤∗

+
1

2

(
∂𝑔

∂𝑥
+

∂𝑔

∂𝑦∗
𝚥

)

𝑑𝑞𝚥∗+
1

2

(
∂𝑔

∂𝑥
− ∂𝑔

∂𝑦∗
𝚥

)

𝑑𝑞𝜅∗ (15)

Using the conjugate bases {𝑞∗, 𝑞𝚤∗, 𝑞𝚥∗, 𝑞𝜅∗} to express
function 𝑓 = 𝑓(𝑞∗, 𝑞𝚤∗, 𝑞𝚥∗, 𝑞𝜅∗), gives the differential

𝑑𝑓 =
∂𝑓

∂𝑞∗
𝑑𝑞∗ +

∂𝑓

∂𝑞𝚤∗
𝑑𝑞𝚤∗ +

∂𝑓

∂𝑞𝚥∗
𝑑𝑞𝚥∗ +

∂𝑓

∂𝑞𝜅∗
𝑑𝑞𝜅∗ (16)

By comparing (15) and (16), we obtain the set of ℍℂ
∗-

derivatives in a vector-matrix form as
⎡

⎢
⎢
⎢
⎢
⎣

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞∗

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞𝚤∗

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞𝚥∗

∂𝑓(𝑞,𝑞𝚤,𝑞𝚥,𝑞𝜅)
∂𝑞𝜅∗

⎤

⎥
⎥
⎥
⎥
⎦

𝑇

=
1

2

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑥
∂𝑓
∂𝑥∗
∂𝑓
∂𝑦
∂𝑓
∂𝑦∗

⎤

⎥
⎥
⎥
⎦

𝑇 ⎡

⎢
⎢
⎣

0 0 1 1
1 1 0 0
𝚥 −𝚥 0 0
0 0 𝚥 −𝚥

⎤

⎥
⎥
⎦ (17)

C. Analogy with the ℂℝ calculus

Out of the eight ℍℂ and ℍℂ
∗ derivatives in (13) and (17),

of particular interest are ∂𝑓/∂𝑞 and ∂𝑓/∂𝑞∗, given by

∂𝑓

∂𝑞
=

1

2

(
∂𝑓

∂𝑥
− ∂𝑓

∂𝑦
𝚥

)

ℍℂ− derivative (18)

∂𝑓

∂𝑞∗
=

1

2

(
∂𝑓

∂𝑥∗
+

∂𝑓

∂𝑦
𝚥

)

ℍℂ
∗ − derivative (19)

These can be regarded as a generic extension of the complex
ℂℝ calculus [14], [15] into ℍ via the Cayley-Dickson
construction.
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For a complex function 𝑓 = 𝑓(𝑧, 𝑧∗) which is differen-
tiable with respect to 𝑧 and 𝑧∗ independently, where 𝑧 =
𝑧𝑥 + 𝚤𝑧𝑦 , the ℂℝ calculus gives

∂𝑓

∂𝑧
=

1

2

(
∂𝑓

∂𝑧𝑥
− ∂𝑓

∂𝑧𝑦
𝚤

)

ℂℝ− derivative (20)

∂𝑓

∂𝑧∗
=

1

2

(
∂𝑓

∂𝑧𝑥
+

∂𝑓

∂𝑧𝑦
𝚤

)

ℂℝ
∗ − derivative (21)

where on the RHS, we used a shorthand notation 𝑓 =
𝑓(𝑧𝑥, 𝑧𝑦), while for the real component 𝑧𝑥 we have 𝑧𝑥 =
𝑧∗𝑥. The main difference lies in the placement of imaginary
unit vectors; in the complex domain both ∂𝑓

∂𝑧𝑦
𝚤 and 𝚤 ∂𝑓∂𝑧𝑦 are

valid, whereas in ℍ, due to the noncommutative nature of
the quaternion product, ∂𝑓∂𝑦 𝚥 ∕= 𝚥∂𝑓∂𝑦 .

D. The duality between the ℍℂ and ℍℝ calculus

The partial derivatives with respect to {𝑥, 𝑥∗, 𝑦, 𝑦∗} on
RHS of (13) and (17) can also be expanded using the ℂℝ

calculus as,

∂𝑓(𝑥, 𝑥∗)
∂𝑥

=
1

2

(
∂𝑓

∂𝑞𝑎
− ∂𝑓

∂𝑞𝑏
𝚤

)

∂𝑓(𝑥, 𝑥∗)
∂𝑥∗

=
1

2

(
∂𝑓

∂𝑞𝑎
+

∂𝑓

∂𝑞𝑏
𝚤

)

∂𝑓(𝑦, 𝑦∗)
∂𝑦

=
1

2

(
∂𝑓

∂𝑞𝑐
+

∂𝑓

∂𝑞𝑑
𝚤

)

∂𝑓(𝑦, 𝑦∗)
∂𝑦∗

=
1

2

(
∂𝑓

∂𝑞𝑐
− ∂𝑓

∂𝑞𝑑
𝚤

)

to give the set of derivatives
⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑥
∂𝑓
∂𝑥∗
∂𝑓
∂𝑦
∂𝑓
∂𝑦∗

⎤

⎥
⎥
⎥
⎦

𝑇

=
1

2

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑞𝑎
∂𝑓
∂𝑞𝑏
∂𝑓
∂𝑞𝑐
∂𝑓
∂𝑞𝑑

⎤

⎥
⎥
⎥
⎦

𝑇 ⎡

⎢
⎢
⎣

1 1 0 0
−𝚤 𝚤 0 0
0 0 1 1
0 0 𝚤 −𝚤

⎤

⎥
⎥
⎦ (22)

Substituting (22) into (13) and (17), we arrive at the ℍℝ and
ℍℝ
∗ derivatives, given by [11]

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑞
∂𝑓
∂𝑞𝚤
∂𝑓
∂𝑞𝚥
∂𝑓
∂𝑞𝜅

⎤

⎥
⎥
⎥
⎦

𝑇

=
1

4

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑞𝑎
∂𝑓
∂𝑞𝑏
∂𝑓
∂𝑞𝑐
∂𝑓
∂𝑞𝑑

⎤

⎥
⎥
⎥
⎦

𝑇 ⎡

⎢
⎢
⎣

1 1 1 1
−𝚤 −𝚤 𝚤 𝚤
−𝚥 𝚥 −𝚥 𝚥
−𝜅 𝜅 𝜅 −𝜅

⎤

⎥
⎥
⎦ (23)

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑞∗
∂𝑓
∂𝑞𝚤∗
∂𝑓
∂𝑞𝚥∗
∂𝑓
∂𝑞𝜅∗

⎤

⎥
⎥
⎥
⎦

𝑇

=
1

4

⎡

⎢
⎢
⎢
⎣

∂𝑓
∂𝑞𝑎
∂𝑓
∂𝑞𝑏
∂𝑓
∂𝑞𝑐
∂𝑓
∂𝑞𝑑

⎤

⎥
⎥
⎥
⎦

𝑇 ⎡

⎢
⎢
⎣

1 1 1 1
𝚤 𝚤 −𝚤 −𝚤
𝚥 −𝚥 𝚥 −𝚥
𝜅 −𝜅 −𝜅 𝜅

⎤

⎥
⎥
⎦ (24)

Remark 1: Both the ℍℂ and ℍℝ calculus give identical
results for a quaternion derivative, however, via the Cayley-
Dickson construction of quaternion variables, the ℍℂ cal-
culus given in (13) and (17) provides a more compact and
convenient expression, via two complex-valued derivatives,
as compared with four real-valued derivatives within the ℍℝ

calculus.
Remark 2: The computational complexity of the proposed

ℍℂ calculus is lower than that of the ℍℝ calculus, due to

the compact representation of quaternion variables via the
Cayley-Dickson construction. For instance, to calculate ∂𝑓

∂𝑞 ,
the ℍℂ derivative requires 12 real multiplications and 10
real additions, whereas the ℍℝ derivative requires 28 real
multiplications and 28 real additions.

E. Some useful derivatives using the ℍℂ calculus

1) Derivative of the holomorphic function 𝑓(𝑞) = 𝑞. Using
(2) and the ℍℂ-derivative in (18), we have ∂𝑓

∂𝑞 =
1
2 (

∂𝑞
∂𝑥 − ∂𝑞

∂𝑦 𝚥) = 1
2 (1 − 𝚥𝚥) = 1. This is equivalent to

the standard Cauchy-Riemann-Fueter (CRF) derivative
[10], which gives 𝑓 ′(𝑞) = 1.

2) Derivative of the nonholomorphic function 𝑓(𝑞, 𝑞∗) =
∣𝑞∣2 = 𝑞𝑞∗. Keeping in mind that in the complex domain
ℂ

∂𝑥∗
∂𝑥 = ∂𝑦

∂𝑥 = ∂𝑥∗
∂𝑦 = 0 and using the product rule, the

ℍℂ-derivative in (18) and the ℍℂ
∗-derivative in (19),

we have

∂𝑓

∂𝑞
=

∂𝑞

∂𝑞
𝑞∗ + 𝑞

∂𝑞∗

∂𝑞

= 𝑞∗+
𝑞

2

(
∂𝑞∗

∂𝑥
− ∂𝑞∗

∂𝑦
𝚥

)

= 𝑞∗ +
𝑞

2
(0− (−𝚥)𝚥)

= 𝑞∗ − 𝑞

2
(25)

Note that the main difference between the derivatives
of a nonholomorphic function in ℍ and ℂ lies in the
second term on the RHS of (25). Unlike the derivative
in ℂ, where ∂𝑧∗/∂𝑧 = 0, its quaternion counterpart
∂𝑞∗/∂𝑞 does not vanish, but is equal to − 1

2 . This is
because within the Cayley-Dickson construction of 𝑞
and 𝑞∗, their ‘real’ parts are no longer identical, as
shown in (2) and (4), however, their ‘imaginary’ parts
are complex conjugates one another.

3) Derivatives with respect to quaternion involutions. Con-
sider the derivative ∂𝑞

∂𝑞𝚤 . Since 𝑞 = 𝑥 + 𝚥𝑦 and 𝑞𝚤 = 𝑥

- 𝚥𝑦, using the ℍℂ-derivatives in (13), we have ∂𝑞
∂𝑞𝚤 =

1
2 (

∂𝑞
∂𝑥 + ∂𝑞𝚤

∂𝑦 𝚥) = 1+𝚥𝚥 = 0. Next, consider the derivative
∂𝑞
∂𝑞𝚤∗ . Using the ℍℂ

∗-derivatives in (17), we have ∂𝑞
∂𝑞𝚤∗

= 1
2 (

∂𝑞
∂𝑥∗ − ∂𝑞

∂𝑦 𝚥) = 1
2 (0− 𝚥𝚥) = 1

2 . In summary, the ℍℂ

calculus gives

∂𝑞

∂𝑞𝜂
= 0,

∂𝑞∗

∂𝑞𝜂
=

1

2
, ∀𝜂 ∈ {𝚤, 𝚥, 𝜅} (26)

IV. APPLICATIONS OF QUATERNION GRADIENT

We next illustrate the usefulness of the ℍℂ calculus in
gradient type optimisation of scalar functions of quaternion
vectors, widely employed as cost functions in MSE estima-
tion in learning systems.

A. Stationary points of the quaternion gradient

Let 𝑓 = 𝑓(q, q𝚤, q𝚥, q𝜅) = 𝑓(q∗, q𝚤∗, q𝚥∗, q𝜅∗) be real-
valued and q = [𝑞1, . . . , 𝑞𝑁 ]𝑇 . Applying the ℍℂ-gradient
in (19) component-wise, we have

∇q𝑓 = 0⇔ ∇x𝑓 = ∇y𝑓 = 0 (27)
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where ∇q = [ ∂∂𝑞1 , . . . ,
∂
∂𝑞𝑁

]𝑇 is the quaternion gradient
operator with respect to q and the result on the RHS follows
from component-wise equating the ‘real’ and ‘imaginary’
parts of ∂𝑓

∂q to zero via the ℍℂ-derivative in (18). Since 𝑓 is
real, we also have ∇x∗𝑓 = (∇x𝑓)

∗ = 0 and ∇y∗𝑓 = (∇y𝑓)
∗

= 0, and

∇x∗𝑓 = ∇y∗𝑓 = ∇x𝑓 = ∇y𝑓 = 0⇔ ∇𝛼𝑓 = 0 (28)

where 𝛼 ∈ {𝑞𝚤, 𝑞𝚥, 𝑞𝜅, 𝑞∗, 𝑞𝚤∗, 𝑞𝚥∗, 𝑞𝜅∗}. The result on the
RHS can be obtained by applying either the ℍℂ-derivatives
in (13) or the ℍℂ

∗-derivatives in (17) component-wise.
Therefore, unlike the complex case where the stationary
points of a real function of complex variables 𝑓(z, z∗)
are defined by both ∇z𝑓 = 0 and ∇z∗𝑓 = 0 [14],
[15], in ℍ this requirement is ∇𝛽𝑓 = 0, where 𝛽 ∈
{𝑞, 𝑞𝚤, 𝑞𝚥, 𝑞𝜅, 𝑞∗, 𝑞𝚤∗, 𝑞𝚥∗, 𝑞𝜅∗}. Comparing with the ℍℝ cal-
culus in [11], this gives a more comprehensive solution
by considering both the quaternion involutions and their
conjugates.

B. Direction of maximum change of the quaternion gradient

For real-valued scalar function 𝑓 = 𝑓(q, q𝚤, q𝚥, q𝜅) =
𝑓(x, x∗, y, y∗), the first order Taylor series expansion

𝑑𝑓 = (∇x𝑓)
𝑇 𝑑x + (∇x∗𝑓)

𝑇 𝑑x∗ + (∇y𝑓)
𝑇 𝑑y + (∇y∗𝑓)

𝑇 𝑑y∗

Since 𝑓 is real, we have (∇x𝑓)
𝑇 𝑑x = ((∇x∗𝑓)

𝑇 𝑑x∗)∗ and
(∇y𝑓)

𝑇 𝑑y = ((∇y∗𝑓)
𝑇 𝑑y∗)∗ [15], the above equation can

be simplified as

𝑑𝑓 = 2ℜ ((∇x𝑓)
𝑇 𝑑x + (∇y𝑓)

𝑇 𝑑y
)

(29)

where ℜ(⋅) is the real part operator. Upon applying the ℍℂ-
derivative in (18) and (1) component-wise, we can expand
(∇q𝑓)

𝑇 𝑑q as

(∇q𝑓)
𝑇 𝑑q =

1

2

(
(∇x𝑓)

𝑇 − (∇y𝑓)
𝑇 𝚥
)
(𝑑x + 𝚥𝑑y)

=
1

2

(
(∇x𝑓)

𝑇 𝑑x + (∇y𝑓)
𝑇 𝑑y

+ (∇x𝑓)
𝑇 𝚥𝑑y− (∇x𝑓)

𝑇 𝚥𝑑y
)

(30)

Keeping in mind that 𝑓 is real-valued, this results in
complex-valued functions {∇x𝑓 , ∇y𝑓 , 𝑑x, 𝑑y} for which
the imaginary unit is 𝚤. However, the existence of 𝚥 in
the third and fourth terms on the RHS of (30) means that
ℜ((∇x𝑓)

𝑇 𝚥𝑑y) = ℜ((∇y𝑓)
𝑇 𝚥𝑑x) = 0, and hence

ℜ ((∇q𝑓)
𝑇 𝑑q

)
=

1

2
ℜ ((∇x𝑓)

𝑇 𝑑x + (∇y𝑓)
𝑇 𝑑y

)
(31)

Comparing with (29) and using the fact that for real functions
of quaternion variables ∂𝑓

∂𝑞∗ = (∂𝑓∂𝑞 )
∗, we have

𝑑𝑓 = 4ℜ ((∇q𝑓)
𝑇 𝑑q

)
= 4ℜ ((∇q∗𝑓)

𝐻𝑑q
)
= 4 ⟨∇q∗𝑓, 𝑑q⟩

The inner product satisfies ⟨∇q∗𝑓, 𝑑q⟩ ≤ ∥∇q∗𝑓∥∥𝑑q∥
(Schwarz inequality), whereby the equality stands only when
∇q∗𝑓 is collinear with ∥𝑑q∥, indicating that the maximum
change of the derivative 𝑑𝑓 occurs when 𝑑q is in the direction
of the conjugate gradient ∇q∗𝑓 . In practice, this conjugate
gradient can be obtained by using the ℍℂ

∗-derivatives in
(17) as ∇q∗𝑓 = ∇x∗𝑓 + ∇y𝑓𝚥.

V. THE USE OF ℍℂ CALCULUS IN ADAPTIVE FILTERING

APPLICATIONS

In gradient based optimization problems in adaptive filter-
ing, the task is to minimise the real cost function 𝐽(𝑒, 𝑒∗)
= 𝐸[∣𝑒∣2] = 𝐸[𝑒𝑒∗], where 𝐸[⋅] is the statistical expectation
operator, and 𝑒 = 𝑑 - 𝑦 is the error between the desired signal
𝑑 and the filter output 𝑦 = w𝑇q, where w = [𝑤1, . . . , 𝑤𝑁 ]𝑇

forms filter coefficients, q defines the input vector and 𝑁 is
the filter length.

Quaternion Wiener filter. To find the closed form of the
optimum weights wo in an MSE minimisation problem, we
expand the cost function as 𝐽(𝑒, 𝑒∗) = 𝐸[𝑒𝑒∗] = 𝐸[𝑑𝑑∗] +
𝐸[𝑦𝑦∗] - 𝐸[𝑦𝑑∗] - 𝐸[𝑑𝑦∗]. From Section IV-B the conjugate
gradient ∇w∗𝐽 defines the direction of the maximum change,
while since ∂w

∂w∗ does not vanish but equals to − 1
2 I (see

Example 2 in Section III-E for more detail), we have

∇w∗𝐽 = ∇w∗(w𝑇R𝑞𝑞w∗)−∇w∗(w𝑇 r𝑞𝑑)−∇w∗(r𝑇𝑑𝑞w
∗)

= w𝑇R𝑞𝑞 − 1

2
(R𝑞𝑞w∗)𝑇 +

1

2
r𝑇𝑞𝑑 − r𝑇𝑑𝑞 (32)

where R𝑞𝑞 = 𝐸[qq𝐻 ], r𝑞𝑑 = 𝐸[q𝑑∗] and r𝑑𝑞 = 𝐸[𝑑q∗]. From
(w𝑇R𝑞𝑞)∗ = (R𝐻𝑞𝑞w

∗)𝑇 = (R𝑞𝑞w∗)𝑇 and r𝑇𝑞𝑑 = (r𝑇𝑑𝑞)
∗ and

setting (32) to zero yields the Wiener filtering solution

w𝑇o R𝑞𝑞 = r𝑇𝑑𝑞 ⇒ w𝑇o = r𝑇𝑑𝑞R
−1
𝑞𝑞 (33)

To achieve an online implementation of the quaternion
Wiener filtering solution, at time instant 𝑘, the expectation
operation 𝐸[⋅] is practically replaced by the weighted sum-
mation operation, resulting in

𝐽(𝑘)=

𝑘∑

𝑛=0

𝜆𝑘−𝑛𝑒(𝑛)𝑒∗(𝑛)

r𝑞𝑑(𝑘)=
𝑘∑

𝑛=0

𝜆𝑘−𝑛q(𝑛)𝑑∗(𝑛)

r𝑑𝑞(𝑘)=
𝑘∑

𝑛=0

𝜆𝑘−𝑛𝑑(𝑛)q∗(𝑛)

=𝜆r𝑑𝑞(𝑘−1)+𝑑(𝑘)q∗(𝑘) (34)

R𝑞𝑞(𝑘)=
𝑘∑

𝑛=0

𝜆𝑘−𝑛q(𝑛)q𝐻(𝑛)

=𝜆R𝑞𝑞(𝑘−1)+q(𝑘)q𝐻(𝑘) (35)

where the forgetting factor 𝜆 ∈ (0, 1] and the covariance
matrix inverse R−1𝑞𝑞 is recursively estimated by considering
(35) and using Woodbury’s identity as,

R−1𝑞𝑞 (𝑘) = 𝜆−1R−1𝑞𝑞 (𝑘 − 1)

− 𝜆−2R−1𝑞𝑞 (𝑘 − 1)q(𝑘)q𝐻(𝑘)R−1𝑞𝑞 (𝑘 − 1)

1 + 𝜆−1q𝐻(𝑘)R−1𝑞𝑞 (𝑘 − 1)q(𝑘)
(36)

hence,

w𝑇o (𝑘) = r𝑇𝑑𝑞(𝑘)R
−1
𝑞𝑞 (𝑘) (37)

Quaternion recursive least squares (QRLS). The QRLS
aims to recursively solve the Wiener filtering problem in (37).

3398



To comply with the standard literature [18] , from (36), we
redefine

P(𝑘) = R−1𝑞𝑞 (𝑘) = 𝜆−1P(𝑘 − 1)− 𝜆−2
pp𝐻

𝑐
p = P(𝑘 − 1)q(𝑘)

𝑐 = 1 + 𝜆−1q𝐻(𝑘)P(𝑘 − 1)q(𝑘) (38)

By substituting (34) and (38) into (37), we obtain a recursive
update for the weight vector wo(𝑘) as [21]

w𝑇o (𝑘)= r𝑇𝑑𝑞(𝑘)P(𝑘)

= (𝜆r𝑇𝑑𝑞(𝑘−1)+𝑑(𝑘)q𝐻(𝑘))(𝜆−1P(𝑘−1)−𝜆−2
pp𝐻

𝑐
)

= r𝑇𝑑𝑞(𝑘−1)P(𝑘−1) + 𝜆−1𝑑(𝑘)q𝐻(𝑘)P(𝑘−1)

−𝜆−1r𝑇𝑑𝑞(𝑘−1)
pp𝐻

𝑐
− 𝜆−2𝑑(𝑘)q𝐻(𝑘)

pp𝐻

𝑐
=w𝑇o (𝑘−1)+𝜆−1(𝑑(𝑘)𝑐−w𝑇

o (𝑘−1)q(𝑘)
−𝜆−1𝑑(𝑘)q𝐻(𝑘)P(𝑘 − 1)q(𝑘))

p𝐻

𝑐

=w𝑇o (𝑘−1) + 𝜆−1
𝑒(𝑘)p𝐻

𝑐
(39)

where 𝑒(𝑘) = 𝑑(𝑘)− w𝑇o (𝑘 − 1)q(𝑘) is the a priori error.
Quaternion least mean square (QLMS) and its variants.

Based on the instantaneous cost function 𝐽(𝑘) = 𝑒(𝑘)𝑒∗(𝑘),
where 𝑒(𝑘) = 𝑑(𝑘) − w𝑇 (𝑘)q(𝑘), and using the ℍℂ-
derivative and the ℍℂ

∗-derivative in (18) and (19), the
weight update of the QLMS becomes [7]

w(𝑘 + 1) = w(𝑘)− 𝜇∇w∗𝐽(𝑘)

= w(𝑘)− 𝜇
(
𝑒(𝑘)

(∇w∗𝑒
∗(𝑘)

)
+
(∇w∗𝑒(𝑘)

)
𝑒∗(𝑘)

)

= w(𝑘) + 𝜇
(
𝑒(𝑘)q∗(𝑘)− 1

2
q(𝑘)𝑒∗(𝑘)

)
(40)

where 𝜇 is the step-size and ∇w∗𝐽(𝑘) is analysed in Section
IV-B which shows that the direction of the maximum change
of the quaternion gradient is in the direction of the conjugate
gradient. Using the ℍℂ calculus in (18) and (19) to arrive at
∇w∗𝑒

∗(𝑘) = −q∗(𝑘) and ∇w∗𝑒(𝑘) = 1
2q(𝑘), gives the QLMS

update in its original form [7] with a scalar constant absorbed
in 𝜇.

Another QLMS form in [19] considers the involution
gradient (I-gradient) given by

∇w𝜂𝐽(𝑘) =
∂𝐽(𝑘)

∂w𝚤
+

∂𝐽(𝑘)

∂w𝚥
+

∂𝐽(𝑘)

∂w𝜅
, ∀𝜂 ∈ {𝚤, 𝚥, 𝜅} (41)

so that we arrive at

w(𝑘 + 1) = w(𝑘)−𝜇∇w𝜂𝐽(𝑘)

= w(𝑘)−𝜇
(
(∇w𝜂𝑒(𝑘)) 𝑒

∗(𝑘)+𝑒(𝑘) (∇w𝜂𝑒
∗(𝑘))

)

Using the ℍℂ
∗-derivative and the ℍℂ-derivative in (19) and

(18) to yield ∇w𝜂𝑒(𝑘) = 0 and ∇w𝜂𝑒
∗(𝑘) = − 3

2𝑒(𝑘)q
∗(𝑘)

respectively (see Example 3 in Section III-E for more detail),
gives

w(𝑘 + 1) = w(𝑘) +
3

2
𝜇𝑒(𝑘)q∗(𝑘) (42)

which is in the same generic form as that of the complex
LMS [14], apart from the factor of 3

2 which simply scales
𝜇.

Quaternion affine projection algorithm (QAPA). The
quaternion least mean square (QLMS) and its variants also
highlighted the need for faster converging practical algo-
rithms. The stochastic gradient based normalised QLMS
(NQLMS) can solve this issue only partially whereas the
fast converging quaternion recursive least squares (QRLS)
is computationally demanding. To that end, the quaternion
affine projection algorithm (QAPA), based on the affine
subspace projections, has been introduced for quaternion-
valued adaptive filtering [20]. Structurally, the QAPA spans
the range between the NQLMS and QRLS both in terms
of performance and computational requirements. In practical
terms, whereas the NQLMS updates the weight vector based
only on the current input vector q(𝑘), the QAPA employs 𝐾
past input vectors to form the 𝑁 ×𝐾 data matrix

Q(𝑘) = [q(𝑘 −𝐾 + 1), . . . ,q(𝑘)] (43)

The aim of QAPA is to minimise adaptively the squared
Euclidean norm of the change in the weight vector w(𝑘),
that is

minimise ∥△w(𝑘 + 1)∥2 = ∥w(𝑘 + 1)− w(𝑘)∥2
subject to d𝑇 (𝑘) = w𝑇 (𝑘 + 1)Q(𝑘) (44)

where d(𝑘) = [𝑑(𝑘−𝐾 +1), . . . , 𝑑(𝑘)]𝑇 denotes the 𝐾 × 1
desired signal vector. Using the Lagrange multipliers, the
above constrained optimisation problem can be solved by
considering the following cost function

𝐽(𝑘) = ∥w(𝑘 + 1)− w(𝑘)∥2 + ℜ[(d𝑇 (𝑘)
− w𝑇 (𝑘 + 1)Q(𝑘))𝝀∗] (45)

where the symbol ℜ[⋅] denotes the real part of a quaternion
variable and the 𝐾 × 1 dimensional vector 𝝀 comprises
Lagrange multipliers. Using the proposed ℍℂ

∗-derivative in
(19), we have

∂𝐽(𝑘)

∂w∗(𝑘 + 1)
= w(𝑘 + 1)− w(𝑘)− 1

2
(w∗(𝑘 + 1)− w∗(𝑘))

− 1

2
(Q∗(𝑘)Λ− 1

2
Q(𝑘)Λ∗) (46)

Setting (46) to zero, the weight update of QAPA can be
obtained as

w(𝑘 + 1)− w(𝑘) =
1

2
Q∗(𝑘)Λ (47)

Using the fact that e𝑇 (𝑘) = d𝑇 (𝑘)− y𝑇 (𝑘) = (w𝑇 (𝑘+1)−
w𝑇 (𝑘))Q(𝑘), and based on (47), Λ can be solved as

Λ = 2(Q𝑇 (𝑘)Q∗(𝑘))−1e(𝑘) (48)

which gives

w(𝑘 + 1) = w(𝑘) + Q∗(𝑘)(Q𝑇 (𝑘)Q∗(𝑘))−1e(𝑘) (49)

Note that to prevent the normalisation matrix Q𝑇 (𝑘)Q∗(𝑘)
within (49) from becoming singular, a small regularisation
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term 𝜀I ∈ ℍ
𝐾×𝐾 is typically added to the identity matrix,

whereas a step size 𝜇 is also incorporated to control the
convergence and the steady state performance, giving the
final weight update of QAPA in the form

w(𝑘 + 1)=w(𝑘)+𝜇Q∗(𝑘)
(

Q𝑇 (𝑘)Q∗(𝑘) + 𝜀I
)−1

e(𝑘) (50)

Observe that when the observation length of the data matrix
Q(𝑘) is 𝐾 = 1, QAPA degenerates into the normalised
QLMS (NQLMS).

Widely linear QLMS (WLQLMS). The WLQLMS is
based on the widely linear estimation model 𝑦(𝑘) =
w𝑎𝑇 (𝑘)q𝑎(𝑘) to deal with the generality of quaternion sig-
nals (both proper and improper) [7], [22], where q𝑎(𝑘) =
[q(𝑘), q𝚤(𝑘), q𝚥(𝑘), q𝜅(𝑘)]𝑇 is the augmented input vector
and w𝑎(𝑘) = [u(𝑘), v(𝑘), g(𝑘), h(𝑘)]𝑇 is the associated
weight vector. Using the gradient defined as ∇w𝑎∗𝐽(𝑘) and
the ℍℂ

∗-derivative in (19), we arrive at

w𝑎(𝑘 + 1) = w𝑎(𝑘) + 𝜇
(
𝑒𝑎(𝑘)q𝑎∗(𝑘)− 1

2
q𝑎(𝑘)𝑒𝑎∗(𝑘)

)
(51)

where 𝑒𝑎(𝑘) = 𝑑(𝑘) − w𝑎𝑇 (𝑘)q𝑎(𝑘), and (51) is the exact
WLQLMS update given in [7].

Quaternion nonlinear gradient descent (QNGD). We now
consider the gradient based optimisation problem in the
context of nonlinear adaptive filtering and neural networks,
where a fully quaternion nonlinear activation function is
employed to give the system output 𝑦(𝑘) as [24]

𝑦(𝑘) = Φ(w𝑇 (𝑘)q(𝑘)) (52)

where Φ(⋅) is a fully quaternion nonlinearity such as the
tanh(⋅). Based on the instantaneous cost function 𝐽(𝑘) =
𝑒(𝑘)𝑒∗(𝑘), where 𝑒(𝑘) = 𝑑(𝑘)− 𝑦(𝑘), the weight update of
the QNGD becomes

w(𝑘 + 1) = w(𝑘)−𝜇∇w𝐽(𝑘)

= w(𝑘)−𝜇
(
(∇w𝑒(𝑘)) 𝑒

∗(𝑘)+𝑒(𝑘) (∇w𝑒
∗(𝑘))

)

Using the ℍℂ-gradient in (18), we have

∇w𝑒
∗(𝑘) = −∂Φ(q𝐻(𝑘)w∗(𝑘))

∂w∗(𝑘)
= −Φ′(q𝐻(𝑘)w∗(𝑘))q∗(𝑘) (53)

while the use of ℍℂ
∗-gradient in (19) gives

∇w𝑒(𝑘) = −∂Φ(w𝑇 (𝑘)q(𝑘))
∂w∗(𝑘)

=
1

2
Φ′(w𝑇 (𝑘)q(𝑘))q(𝑘) (54)

so that the weight update of QNGD has the form [24]

w(𝑘 + 1) = w(𝑘)+𝜇𝑒(𝑘)Φ′(q𝐻(𝑘)w∗(𝑘))q∗(𝑘)

− 𝜇

2
Φ′(w𝑇 (𝑘)q(𝑘))q(𝑘)𝑒∗(𝑘) (55)
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(b) 3D Tai Chi body motion

Fig. 1. Performance of WL-QLMS and QLMS derived based on both the
proposed ℍℂ calculus and the ℍℝ calculus on the one-step ahead prediction
of the signals considered. (a) Chaotic Lorenz attractor, and (b) 3D Tai Chi
body motion.

VI. SIMULATIONS

To validate the quaternion adaptive filtering algorithms
derived based on the proposed ℍℂ calculus, we compared
the performances of the QLMS and WL-QLMS algorithms
in a one-step ahead prediction setting. The performance was
assessed using the prediction gain Rp, defined as

Rp = 10log10

�̂�2
𝑞

�̂�2
𝑒

(56)

where �̂�2
𝑞 and �̂�2

𝑒 denote the estimated variances of the
input and the prediction error respectively. The employed
test signals which were constructed as full quaternions via
the Cayley-Dickson construction as described in Section II
include:

∙ The chaotic Lorenz signal, governed by coupled partial
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differential equations

∂𝑥

∂𝑡
= 𝛼(𝑦 − 𝑥)

∂𝑦

∂𝑡
= 𝑥(𝜌− 𝑧)− 𝑦

∂𝑧

∂𝑡
= 𝑥𝑦 − 𝛽𝑧

where 𝛼 = 10, 𝜌 = 28 and 𝛽 = 8/3 [23].
∙ A real-world 3D noncircular and nonstationary body

motion signal [24]. Two 3D gyroscopes were placed on
the left arm and the right arm of an athlete performing
Tai Chi movements, and 3D motion data were recorded
using the XSense MTx 3DOF orientation tracker. The
movement of the left arm was used as a pure quaternion
input with real part set to be zero for simulations.

Fig. 1 illustrates the performances of WL-QLMS and
standard QLMS derived based on the proposed ℍℂ calculus
and the ℍℝ calculus for the prediction of the chaotic Lorenz
attractor and 3D Tai Chi body motion over a range of
the filter parameters. The advantage of WL-QLMS over
standard QLMS resulted from the use of widely linear
estimation model in order to incorporate the full second order
statistics within the considered signals [7]. As expected, the
performances of the ℍℂ calculus based quaternion adaptive
filtering algorithms were identical to those based on the ℍℝ

calculus, however, the advantage of the proposed ℍℂ cal-
culus over the ℍℝ calculus lies in the simplified quaternion
gradient calculation, and the reduced computational cost, as
discussed in Remark 2 in Section III.

VII. CONCLUSION

A unifying framework, referred to as the ℍℂ calculus,
has been proposed for the calculation of gradients of both
quaternion holomorphic functions and nonholomorphic real
functions of quaternion variables. This has been achieved
by making use of the isomorphism between quaternion
involutions and bivariate complex vectors via the Cayley-
Dickson construction of quaternion variables. Unlike the
ℍℝ calculus [11], which considers quaternion derivatives as
four individual real components, the proposed ℍℂ calculus
directly exploits complex algebra, thus providing more com-
pact and convenient expressions for quaternion derivatives.
The usefulness of the ℍℂ calculus has been illustrated
in quaternion gradient optimisation, for constrained and
unconstrained gradient descent problems in adaptive signal
processing and in learning systems. Simulations on synthetic
and real-world multidimensional signals support the analysis.
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