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A Quaternion Widely Linear Adaptive Filter

Clive Cheong Took and Danilo P. Mandic

Abstract—A quaternion widely linear (QWL) model for quaternion
valued mean-square-error (MSE) estimation is proposed. The augmented
statistics are first introduced into the field of quaternions, and it is demon-
strated that this allows for capturing the complete second order statistics
available. The QWL model is next incorporated into the quaternion
least mean-square (QLMS) algorithm to yield the widely linear QLMS
(WL-QLMS). This allows for a unified approach to adaptive filtering of
both Q-proper and Q-improper signals, leading to improved accuracies
compared to the QLMS class of algorithms. Simulations on both bench-
mark and real world data support the analysis.

Index Terms—Q-properness, quadrivariate processes, quaternion adap-
tive filtering, quaternion LMS (QLMS), quaternion second-order noncir-
cularity, widely linear model, widely linear QLMS, Wiener model.

I. INTRODUCTION

Standard techniques employed in multichannel statistical signal pro-
cessing typically do not fully cater for the “coupled” nature of the avail-
able information within the channels. Thus, most practical approaches
operate based on channelwise processing, which is not optimal for gen-
eral multivariate signals (where data channels are typically correlated).
On the other hand, the quaternion domain H allows for the direct mod-
eling of three- and four-dimensional signals, and its algebra naturally
accounts for the coupling between the signal components.
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The use of quaternions is rapidly gaining in popularity, as for in-
stance, many multivariate problems based on vector sensors (motion
body sensors, seismics, wind modeling) can be cast into the quaternion
domain. The recent resurgence of quaternion valued signal processing
stems from the potential advantages that special properties of quater-
nion algebra offer over real valued vector algebra in multivariate mod-
eling. Applications of quaternions include those in vector sensing [1],
machine learning [2], and adaptive filters [3].

Recent advances in complex valued signal processing have been
based on the widely linear model proposed by Picinbono [4]. This
model, together with the corresponding augmented complex statistics,
has been successfully used to design enhanced algorithms in communi-
cations [5], [6] and adaptive filters [7]. These studies have shown that
widely linear modeling and the associated augmented statistics offer
theoretical and practical advantages over the standard complex models,
and are applicable to the generality of complex signals, both circular
and noncircular.

Models suitable for the processing of signals with rotation dependent
distribution (noncircular) are lacking in the quaternion domain, and
their development has recently attracted significant research effort [3].
Current second order algorithms operate based on only the quaternion
valued covariance [1]-[3] and thus do not fully exploit the available
statistical information. Advances in this direction include the work by
Vakhania, who defined the concept of Q-properness as the invariance
of the distribution of a quaternion valued variable under some specific
rotations around the angle of 7/2 [8]. Amblard and Le Bihan relaxed
the conditions of Q-properness to an arbitrary axis and angle of rotation
@, thatis, ¢ 2 e”¥ ¢ [9] for any pure unit quaternion v (whose real part
vanishes); where symbol 2 denotes equality in terms of probability
density function (pdf).

Although these results provide an initial insight into the processing
of general quaternionic signals, they are not straightforward to apply in
the context of adaptive filtering applications. To this end, we first pro-
pose the quaternion widely linear model, specifically designed for the
unified modeling of the generality of quaternion signals, both Q-proper
and Q-improper. The benefits of such an approach are shown to be anal-
ogous to the benefits that the augmented statistics provides for complex
valued data [7]. Next, the QWL model is incorporated into the quater-
nion LMS [3] to yield the widely linear QLMS (WL-QLMS), and its
theoretical and practical advantages are demonstrated through analysis
and simulations.

II. PROPERTIES OF QUATERNION RANDOM VECTORS

A. Quaternion Algebra

The quaternion domain, a non-commutative extension of the com-
plex domain, provides a natural framework for the processing of three-
and four-dimensional signals. A quaternion variable ¢ € H comprises a
real part ]*{} and a vector-part, also known as a pure quaternion 3{-},
consisting of three imaginary components, and can be expressed as

¢ =R{q} +3{q}
=R{q} +:3:{q} + 53 {a} + rSe{q}

=qa +1q + Jqc + rga € H. ()

The relationship between the orthogonal unit vectors, ¢, 3, K are given
by

WYY=K JR=1 KL=}

1JR =4 :]2 =r’=-1. 2)
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Given ¢1, g2 € H, the noncommutative quaternion product is computed
as
nq =R{ae}+3{ael # e
where R{q1q2} = q1.0q2.0 + (1,026 + @1,cq2,c + q1,d92,4
102} =aq1.03{a2} + 2o S{ar } + S{ar } x S{a2} (3)

where the symbol “x” denotes the vector product.

B. Quaternion Involutions

Given a complex number z = z, + 223, its real and imaginary part
canbe extracted as z, = (1/2)(z+2")and z, = (1/2¢)(z—z"). How-
ever, such convenient manipulation is not possible in the quaternion do-
main. To circumvent this problem, the three perpendicular quaternion
involutions (self-inverse mappings) given by

¢ = —1gt = ga T4 — J¢c — Kqd
¢ = =997 = qa — 19 + Jqc — Kqa
q" = — Kqr = ¢a — 195 — Jqc + Kqa “

can be employed, and the four components of the quaternion variable
¢ can now be computed as [10]

1 N 1 -
qa—§(q+q) qb—z(q—q )

1 * 1 Kok
te=5(a—4d") qu=5-(¢—q¢). ®)
2y 2K

The quaternion conjugate operation (-)* is also an involution and can
be expressed as a linear function of the three perpendicular involutions,
that is

* 1 2 3 K
q =§(q +¢+4"—q). (6)

III. QUATERNION STATISTICS

Picinbono demonstrated that the complete description of the second
order statistics in C can be achieved, provided the real valued bivariate
covariance matrices can be calculated from their complex valued coun-
terparts (see [11, pp. 118-119]). Following on this result, we next show
that the complete second order statistical description in H is obtained
when the real valued quadrivariate covariances are expressed in terms
of their quaternion valued counterparts, as shown in Appendix A. How-
ever, unlike the complex domain C, where for this purpose it is suffi-
cient to combine the complex vector z and its conjugate z* into the
augmented complex vector z* = [z7 2z ]l , in the quaternion domain,
we also need to consider the involutions (4). We can therefore build an
augmented quaternion vector, comprising of any four of the five quan-
tities {q, ¢", ¢*, ¢’, ¢" } or their conjugates. One convenient augmented
basisis ¢ = {q,¢". ¢'", ¢°" }, and will be used in this work. Then, the
augmented vector q* = [qT q? q' ¢ ]T contains all the neces-
sary second order statistical information and its augmented covariance
matrix is given by

Cq Pq Pq P

P Cq Caqr Caw
Cu - E a_aH — q a qq vaq i 7
a {a"q""} p‘;H L:qqz ~an C(yqf @)
P cjlﬂ C'fq»’ Ctlli"qf Cav

The submatrices in (7) are calculated according to
Co = E{aa'")} Ca = E{a"a”}

éo‘ﬂ :E{a*ﬂT} /Pol = E{&CMT} Ck,ﬁ € {qw qlan}‘

We refer to Co as the quasi-covariance and éaﬂ as the cross-quasico-
variance matrices. Unlike in the complex case [4], the non-commuta-
tivity of the quaternion product results in Co # Ca.
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A. Circularity in H and Q-Properness

For a quaternion valued variable to be second order circular (or
Q-proper), its probability distribution should be rotation-invariant with
respect to the six pairs of axes: {1,¢}, {1,7}, {1,x}, {2, 5}, {4}
and {r,¢}, where ‘1" represents the real axis and :, 5,  denote the
corresponding imaginary axes. In other words, a Q-proper quaternion
random variable should satisfy the following properties [8]:

Pl:E{qé}:E{(‘lf}:U2 Vé,e=ua,b,cd

P2: F{gsq:.} =0 V6 e=a,b,c,dand $ # ¢
P3:E{qq}:—2E{q§}:—202 Vé=uab,cd
P4:E{|q|’} =4E{¢:} = 40> Vé=a.b.c.d. (8)

The first property, P1, states that all the four-signal components of a
quaternion valued variable have equal variances. The property P2 im-
plies that the components of ¢ are not correlated. Property P3 suggests
that the pseudocovariance matrix of Q-proper signals does not vanish,
in contrast to the complex case. Finally, the fourth property states that
the power of a quaternion variable is a sum of the powers of the signal
components. Observe that properties P1 and P2 imply properties P3
and P4.

B. Augmented Statistics of Q-Proper Variables

Notice that Q-properness also implies that the quaternion vector q
is uncorrelated with the vector involutions q’, q’, q", that is,!

E{aa'"} =0 E{qq’’}=0 E{aq""}=0. )

This simplifies the structure of the augmented covariance matrix Cq of
a Q-proper random vector, as

Ca Pa Py P o -T 1 I
W |Pqa Cq 0 0| _,|-T 21 0 o0
7% = =2 1
“=\p o0 ¢ o0 “l1 o 21 of 10
PL 0 0 (4 I 0 0 2I

that is, the cross-quasicovariance matrices Cag all vanish.

IV. THE QUATERNION WIDELY LINEAR MODEL

To account for the complete second order statistics of quaternion
valued signals in mean-squared error (MSE) estimation, we need to
introduce a filtering model corresponding to the widely linear model
in the complex case [4]. Consider the MSE estimator of a signal y in
terms of another observation x, that is, § = E[y|z]. For zero mean,
jointly normal real y and x, the solution is

§=h"x (11)
In the quaternion domain, however, the real estimator (11) applies to
each component (the real and the three imaginary parts) of quaternion
variables, that is

177 = E[U"’ Iavxb~xrthd]~ 'Y E {a,b,c,d}

and thus
9 = Elyal|®a, xb, Tc, 2a] + 1Eys|Ta, xo, Te,y 4]

(12)

ISimilarly, for a complex valued random vector z, C-properness
means that z is uncorrelated with z* in the “complex sense,” since
E{z(z*)"} = E{zz"} = 0, for more detail see [7].

+1E[yc|za, Th, 2oy xa] + KE[yalTa, Tp, 2o, 4]
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Upon employing the identities (5), it is clear that the quaternion esti-
mator can also be expressed? as

1] = E[U|T .’L‘*, '7’"*1 TVF] + ZE[?”"T’ T* 'rt*f "I’.J*]

+IE[Y |, 2", 2", 27 + kE[y" |2, 2", 2", 27 (13)
and thus arrive at the widely linear estimator for general quaternion
signals

H __ux

y:th+ng*+u x H_a

+vEx" = wix 14)
where w* = [h7 g” u” v’ ]T and x* = [xx"7 x'"7 X"”]T. Fol-
lowing on the proposed quaternion widely linear model, the Wiener
solution is now derived as the optimal MSE estimator. Consider the

standard real valued quadratic cost function, that is,
T =Bfec’} = B{[d - ylld" - "]}
=E{dd"} + E{yy"} — E{yd"} — E{dy"}. (15)

The derivative of the cost function (15) can be expressed as (for full
derivation, see Appendix B)

VweT =E{(Vwey)y" + y(Vway") = (Vwey)d" = d(Vway")}
= FE{4[x"y" —x"d"]} + E{2[d(n)x" — yx"]}. (16)

-~

1 11

To obtain the Wiener solution, the expectations of I and II in (16) are
set to zero. In the complex domain, we can sum up the terms I and Il in
(16); however, due to the noncommutativity of the quaternion product,
we need to consider the terms in (16) individually, giving the solution3

T:w, = E{X“X“H}_1 E{x"“d"}
II: w, = E{x"*x"T} ' B{x""d"}.

a7
(18)

The first condition for the Wiener solution (17) requires the inversion
of the augmented covariance Cz = E{x"x*'"}. On the other hand,
the second condition (18) also depends on the conjugate of pseudoco-
variance matrix of the augmented vector x“, which conforms with the
observation in [3] that the quaternion domain accounts inherently for
the information contained in pseudocovariance.

V. THE WIDELY LINEAR QUATERNION LEAST
MEAN-SQUARE ALGORITHM

We now extend some recent results in quaternion adaptive filtering
[3], and employ the quaternion widely linear model (14) within the
stochastic gradient adaptive filtering framework in H, to propose the
widely linear quaternion least mean-square (WL-QLMS) adaptive fil-
tering algorithm. Within the stochastic gradient descent optimization,
the gradient of the instantaneous cost function (15) is

Ve T(n) = e(n) (Vaee (n)) + (Vaae(n)) e (n)

=2e(n)x"(n) — 4x" (n)e*(n). (19)
Notice that due to the non-commutativity of the quaternion product, the
two error gradient terms in (19) need to be treated separately. Based on
the generic stochastic gradient update Aw® = —uVye 7 (n), the up-
date of the weight vector of the WL-QLMS algorithm can be obtained
as?

w'(n+1) = w'(n) + p(2x"(n)e" (n) — e(n)x"(n))  (20)
2Any augmented basis other than {x, 2, 2**, 2:* } can be used, as explained
in the Section III.

3Similarly to complex-valued case [7], there are several equivalent formula-
tions for the quaternion-valued Wiener solution. For instance, if the filter output
is considered as y(n) = w7 (n)x?(n) instead of y(n) = wex*, an alter-
native solution is obtained.

4For more detail of the derivation, see [3] and the Appendix B.
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Fig. 1. Learning curves of WL-QLMS, QLMS and AQLMS on the prediction
of the Q-proper AR(4) process 2(n) = 1.792(n — 1) — 1.85z(n — 2) +
1.27x(n — 3)—0.41x(n — 4).

where the scaling factor of two has been absorbed in the stepsize fi.
Given y(n) = w" (n)x(n), observe the same form of the update
in (20) as that within the QLMS in [3]. Although AQLMS outper-
formed QLMS, as shown in [3] in the context of Q-improper signals,
its second order information is derived from only the covariance and
the pseudocovariance, and is therefore still suboptimal for Q-improper
data, as it cannot model the information contained in matrices such
as Cq,. (see Appendix A). Also, observe that the real-valued multi-
channel LMS does not exploit the interchannel cross-correlation in the
same elegant and intuitive way as the WL-QLMS. For more details,
see [12, p. 132] and the performance comparisons with AQLMS in [3].
Finally, a convergence analysis of WL-QLMS algorithm is provided
in Appendix C, and the upper bound on the stepsize is found to be
0 < pt < 2/Amax, where Aax denotes the maximum right eigenvalue
of Cg = 2C¢ + Pg*.

VI. SIMULATIONS

Three sets of simulations were conducted in an M -step ahead pre-
diction setting in order to comprehensively assess the performance of
the proposed WL-QLMS algorithm against QLMS and AQLMS. The
datasets used were a Q-proper synthetic AR(4) process [7], the Q-im-
proper four dimensional (4D) Saito’s signal [2] and real-world 4D wind
field signal [3]. The quantitative performance index was the prediction
gain R, = 10log(c2/o2), where o2 and o2 denote respectively the
estimated variances of the input and error; the filter length is denoted
by L.

1) Q-Proper Autoregressive(4) Model: The autoregressive AR(4)
process z(n) = 1.792z(n — 1) — 1.85z(n — 2) + 1.27x(n —
3)—0.41a(n — 4) was driven by quadruply white Gaussian noise,
whose real and imaginary components were uncorrelated, but had
equal variances. From Fig. 1, initially, QLMS converged faster than
WL-QLMS and AQLMS. This is because 1) it operates based on
the covariance Cx only, which is adequate to describe the complete
statistics of Q-proper signals, due to the deterministic relationship
Cx = —Px/2 = Px/2 = PL/2;2) QLMS has fewer filter parameters
to adapt. However, at steady state the prediction gain for all the
algorithms considered was approximately 30 dB, as they are all suited
to process Q-proper data.

2) Q-Improper Four-Dimensional Saito’s Circuit [2]: Fig. 2 com-
pares the performance of the quaternion algorithms [3] over a range
of filter parameters. Conforming with the analysis in Section IV, the
WL-QLMS algorithm outperformed the QLMS and AQLMS on the
Q-improper Saito process, also exhibiting better convergence proper-
ties (see top plot of Fig. 4), as QLMS accounts for the second order
information only from the covariance matrix Cx, and the AQLMS op-
erates based on Cx and Px; both are not adequate to account for the
complete statistics of Q-improper signals.
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Fig. 2. The performance of WL-QLMS, QLMS, and AQLMS on the prediction of 4D Saito’s process.

3) Q-Improper Wind Forecasting: The 4D quaternion dataset com-
prised the 3-D wind speed (North—South, East—West, and vertical di-
rections?) as a vector part (pure quaternion) and air temperature as the
scalar part. Fig. 3 shows that the prediction results over a range of filter
parameters are in agreement with theoretical analysis, illustrating that
WL-QLMS outperformed QLMS and AQLMS on Q-improper non-
stationary data. Fig. 4 (bottom plot) illustrates the improved conver-
gence properties of WL-QLMS over QLMS, due to WL-QLMS using
the complete second order statistical information available.

VII. CONCLUSION

We have introduced a quaternion widely linear model (QWL) for
enhanced second order estimation of general quaternionic signals. We
have demonstrated the efficacy of the QWL model, by incorporating it
into the Quaternion Least Mean Square (QLMS) algorithm [3] to yield
the widely linear QLMS (WL-QLMS) algorithm. For rigor, the con-
vergence analysis includes the stepsize bound and learning curves for
both second order circular and noncircular signals. Experiments have
been conducted for a range of filter parameters and dataset, illustrating
the WL-QLMS outperforming other algorithms of the kind.

APPENDIX

A. Complete Second Order Statistics

The real valued correlation matrices of single components q., Qs, Qe
and qq of the quaternion random vector q can be expressed in terms of
the quaternion valued covariance matrices as

| lere _pr
an_§§R{(/q Pq} C‘lb_§;ﬁ{("q _Pq}
1 . _ R S +C,
Ca. _57{ {Cq - Pt]l} Cas =R{Ca} = (Cas +Caqy +Cq.)

1

1. , y ~
Capaa 25“\51{0.] +Pa} Cacan=53,{Ca +Pq}

3 {Cq - 73(11}

N =N

. Loop oo

Cagaa :§5k'{(/q +Pa} Cqeq,=
1. , , 1. .

Casa: =5% {Ca = Pa} Caga,=—53{Ca—Pq}. @D

5The wind data were sampled at 32 Hz and recorded by the 3-D WindMaster
anemometer by Gill Instruments.

B. Derivation of the Stochastic Gradients

To calculate the derivatives of the output y(n) and its conjugate with
respect to the augmented weight vector, the terms w7 (n)x(n) and
x7 (n)w need to be examined. Consider the first term in (14) h7x
and its conjugate x” h. The partial derivatives of the output y(n) =
w*H (n)x(n) with respect to h are

Jy =Xq+1Xp+ )X+ EXd 9y

Xq —1Xp — )Xo — KXq

ah, oh,

zﬂ—x +i1Xp+ X+ KX zay* =X, +1Xp — JX:c— KX

8hb_ a L Xp T JXe d ahb_ a L Xp — X d

/Gy =X +1Xp+ )X+ KX /Gy* =—Xq —1Xp+ JXc — KX,
J@hg— a TUXp T JXe T RXd J@hc_ a —IXp T JXe — KXd
naaﬁ/d =X, +1Xp+ )Xo+ KEXg K g;’ld =—Xq —1Xp— )X+ EXg. (22)
Therefore, (Jy/0h) = (9y/0ha) + «(0y/0hy) +
2(0y/0h.)+£(0y/0hy) = 4x and (Jdy*/O0h) = —2x.
Similarly, the derivatives of the terms ghx*, ufx™*, vix

and their conjugates in (14) can also be computed respectively
as (Jy/0g) = 4x7, (Qy/ou) = 4x'", (Jy/ov) = 4x%;
(0y*/0g) = —2x*, (9y*/Ou) = —2x'", and (Jy* /Ov) = —2x’*.
As a result, the augmented quaternion gradients can be expressed as
(Jy/ow™) = 4x® and (Qy™/Ow™) = —2x°.

C. Convergence Analysis
To factor out the conjugate error ¢*(n) on the right hand side, we
start by replacing e(n)x"(n) = x**(n)e*(n) — 23{x*"(n)e"(n)}
into (20) to yield
w(n+ 1) =w(n) + p([2x"(n) + x"" (n)] e*(n)
=23 {x""(n)e*(n)})

Since e(n) = —[w(n) — w,]"x"(n) = —v'"(n)x"(n) [with w, as
the Wiener solution], (23) becomes

(23)

v(n+1)
=v(n)—p [(QE {xa (n)x* (n)}—E {x“* (n)x* (n)})
x v(n)+23 {E {xa*(n)xaH(n)} v(n)}]
v(n+1)

— ()=t [(203 =P ) v(n) +23 {P v(n)}]. 24)
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Fig. 3. The performance of WL-QLMS, QLMS, and AQLMS on the prediction of a 4D wind field.
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Fig. 4. Learning curves of WL-QLMS, QLMS, and AQLMS on the prediction
of Q-improper processes, i.e., 4D Saito’s process (top) and 4D wind field model
(bottom).

The upper bound on the stepsize can then be approximated, by con-
sidering the imaginary part S{P5*v(n)} as a full quaternion, to give
v(n+1) = v(n)— pu[2Cs + Pg*]v(n). By letting C¢ = 2Cx + Pg*
and taking the right eigenvalue decomposition of C3 , with its maximum
eigenvalue Aax, wWe can obtain the stepsize bound for WL-QLMS as
0 < g < (2/Amax), a generic form which also applies to QLMS
and AQLMS. For instance, in the case of AQLMS, the augmented co-
variance matrix Cy degenerates into its 2 X 2 top-left submatrix in (7),
whereas Cy becomes Cx for QLMS. This implies a larger stepsize is re-
quired for these algorithms to converge at the same rate as WL-QLMS
in the case of Q-improper signals (when every element of C; does not
vanish).
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