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ABSTRACT

A widely linear quaternion recursive total least squares (WL-
QRTLS) algorithm is introduced for the processing of Q-
improper processes contaminated by noise. The total least
squares for quaternions (QTLS) is a generalisation of the
real-valued total least squares and is introduced rigorously,
starting from the existence condition for low-rank approxi-
mation of quaternion matrices. Then, a quaternion Rayleigh
quotient (QRQ) is defined to establish the link between the
QTLS solution and the minimisation of the QRQ. Finally,
the rank-one update formula is employed to allow for fast
iterative solution based on the QRQ. Through simulations,
the WL-QRTLS was shown to exhibit superior performance,
under perturbations on both input and output signals, to other
adaptive filtering of the same class - the widely linear quater-
nion least mean squares (WL-QLMS) and the widely linear
quaternion recursive least squares (WL-QRLS). The experi-
ments on both synthetic and real-world Q-improper processes
supported the analysis.

Index Terms— widely linear QRTLS, total least squares,
Rayleigh quotient, low-rank approximation, quaternions

1. INTRODUCTION

Quaternion-valued signal processing is a very convenient al-
ternative to 3-D and 4-D multichannel statistical signal pro-
cessing [1], as conventional techniques employed typically do
not fully accommodate the coupled nature of the information
within the channels [2]. Most approaches based on channel-
wise processing are often inadequate, as these data channels
are typically correlated. Unlike channelwise processing, the
quaternion domain allows for the joint modeling of 3-D and
4-D signals, and its algebraic structure naturally accounts for
the coupling between the signal components [3].

The quaternion LMS (QLMS) adaptive filter was first
introduced in [4] and was shown to outperform both bivariate
complex LMS and quadrivariate LMS for multichannel data
processing. The first adaptive algorithm based on the widely
linear model was proposed in [5] termed the widely lin-
ear QLMS (WL-QLMS) to process quaternion signals, both
Q-proper and Q-improper. The quaternion recursive least

squares algorithm based on the widely linear model (WL-
QRLS) has also been developed [6]. Although these results
provide the fundamental insight into quaternion-valued adap-
tive signal processing, none of them has explicitly taken into
account the effect of noise on both input and output signals.

So far, in the quaternion domain, there exists only an
offline method for detecting quaternion signals in additive
noise [7], while methods based on quaternion regression are
still lacking. The concept of total least squares (TLS) is
known to yield a better approximate and robust solution to
systems of linear equations, when the variables of both sides
are contaminated by noise [8]. The technique was further
improved to tackle real-time estimation via recursive total
least squares (RTLS) [9]. It is therefore natural to consider an
adaptive algorithm based on the TLS for quaternions (QTLS).

In this paper, we first briefly explain mathematical con-
cepts which support the existence of QTLS. Then, we in-
troduce quaternion Rayleigh quotient (QRQ) to express the
QTLS solution in an analytical form. Finally, we propose the
widely linear quaternion recursive total least squares (WL-
QRTLS) based on the iterative QTLS solution tracking via
QRQ, called quaternion Rayleigh quotient iteration (QRQI).

2. TOTAL LEAST SQUARES FOR QUATERNIONS

For the existence of TLS over quaternions, the low-rank ap-
proximation theorem needs to hold for quaternion matrices.
In the complex-valued case, fundamental concepts support-
ing this theorem are the singular value decomposition and
rank-nullity theorem. Analogously, in the quaternion domain,
the singular value decomposition for matrices of quaternions
(SVDQ) exists [10, 11]. For the rank-nullity theorem, it was
proved such a property holds for the left D-module of a di-
vision ring D [12], and since the right D-module of a ring
Dop is the opposite division algebra of the left D-module,
it immediately gives the result for the right D-module, and
thereby the quaternion right Hilbert space, since a module is a
generalised notion of a vector space [13, 14]. Note that there
are many advantages of adopting the right topology for the
analysis. For example, it retains the classical rules of matrix
algebra [15]. Moreover, the singular values mathematically
relate to the right eigenvalues [16], facilitating the analysis.
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2.1. Low-Rank Approximation for Quaternions

For the case of real-valued matrices, the theorem below shows
the best approximation of a particular matrix in the sense of
Frobenius norm is its reduced-rank SVD [17]. The analogous
statement for quaternion matrices is shown to hold as well.

Theorem 1. [17, 18] Let Ap ∈ Hm×n with rank p < r be the
rank-p SVDQ of A ∈ Hm×n with rank r ≤ min(m,n). The
SVDQs of A and Ap are respectively given by

A =

r∑
i=1

σiuiv
H
i and Ap =

p∑
i=1

σiuiv
H
i . (1)

where σi,uiand vi ∀i, are respectively the singular values
(arranged in decreasing order), the left singular vectors and
the right singular vectors associated with A and Ap. If B ∈
Hm×n is an arbitrary matrix of rank p, then

min
B
‖A−B‖F = ‖A−Ap‖F =

√√√√ r∑
i=p+1

σ2
i (2)

2.2. Solution to the Total Least Squares for Quaternions

Generalising the real-valued TLS problem [8], the statement
of the QTLS problem can be outlined as follows.
Consider an overdetermined set of linear equations Xw ≈ d,
where X ∈ Hm×n and d ∈ Hm×1 are the given data and
the coefficients w ∈ Hn×1 are unknown. Now, consider the
correction X̂ŵ = d̂. The QTLS problem seeks to solve the
system

minimise
[X̂;d̂]

‖[X; d]− [X̂; d̂]‖F

subject to d̂ ∈ R(X̂)

(3)

where R(X̂) denotes the right column space of the matrix X̂.
Note that the statement d̂ ∈ R(X̂) is equivalent to there exists
ŵ such that X̂ŵ = d̂. Once [X̂; d̂] is found, the weight vector
ŵ is called a QTLS solution. It is obvious that [X; d] and
[X̂; d̂] are respectively of rank (n+ 1) and n. Let the SVDQ
of [X; d] be given as the LHS of eq. (1) with r = n + 1. By
Theorem 1, for ŵ to be a QTLS solution, [X̂; d̂] must be a
rank-n SVDQ of [X; d]. It can be then shown that the QTLS
solution, ŵ, is [

ŵ
−1

]
= −

vn+1v
∗
n+1,n+1

‖vn+1,n+1‖2
(4)

2.3. Quaternion Rayleigh Quotient

The quaternion Rayleigh quotient (QRQ) is defined as fol-
lows.

Definition 1. [8, 18] For a given Hermitian matrix G ∈
Hn×n and a nonzero vector z ∈ Hn, the quaternion Rayleigh
quotientR(G, z) is given by

R(G, z) =
zHGz

zHz
(5)

The connection between the QRQ and the QTLS solution is
then established through the following theorem.

Theorem 2. [8, 18] Consider an overdetermined set of lin-
ear equations Xw ≈ d where ŵ is the QTLS solution given
in eq. (4). Let the SVDQ of A = [X; d] be given as the
LHS of eq. (1) with r = n + 1. Then, for a nonzero vec-
tor z ∈ Hn+1, the solution to min

z
R(AHA, z) is the QTLS

solution, that is,

min
z
R(AHA, z) = R

(
AHA,

[
ŵ
−1

])
= σ2

n+1 (6)

3. THE WIDELY LINEAR QRTLS

3.1. Model Formulation

Let d(n), x(n) ∈ H denote respectively the desired (output)
signal and the input signal. The MMSE estimator of d(n)
based on QWL model, denoted by y(n), can be expressed
as [19]

y(n) = wT (n− 1)q(n) (7)

where the augmented weight vector w(n) and augmented in-
put vector q(n) are defined respectively as

w(n) = [uT (n) vT (n) gT (n) hT (n)]
T

q(n) = [xT (n) xiT (n) xjT (n) xkT (n)]
T

(8)

where (·)i, (·)j , (·)k represent quaternion involutions [2], and
x(n) = [x(n) x(n − 1) · · · x(n − p + 1))]T , for a filter of
order p. Note that the index of w is set to (n − 1) to aid the
algorithmic implementation. Now, eq. (7) can be re-written
in a right topological form as y∗(n) = qH(n)w∗(n − 1).
Thus, we can say that w∗(n) is the QTLS solution to A ∈
Hn×(4p+1), defined as

A(n) = Λ
1
2 (n)


qH(1) ; d∗(1)
qH(2) ; d∗(2)

...
qH(n) ; d∗(n)

 (9)

where p denotes the order of an adaptive filter and Λ(n) =
diag(λn−1, λn−2, . . . , λ, 1); λ ∈ [0, 1) is the forgetting fac-
tor. By Theorem 2, w∗(n) also minimises the following cost
function, J (n) = R

(
G(n), z(n)

)
(10a)

G(n) = AH(n)A(n) =

[
Rqq(n) rqd(n)
rHqd(n) σ2

d(n)

]
(10b)

where Rqq(n) ∈ H4p×4p, rqd(n) ∈ H4p×1, and σd(n) ∈ R
are given by

Rqq(n) =

n∑
k=1

λn−kq(k)qH(k)

= λRqq(n− 1) + q(n)qH(n)

(11a)
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rqd(n) =

n∑
k=1

λn−kq(k)d∗(k)

= λrqd(n− 1) + q(n)d∗(n)

(11b)

σ2
d(n) =

n∑
k=1

λn−k‖d(k)‖2 = λσ2
d(n− 1) + ‖d(n)‖2 (11c)

3.2. Derivation of the QRQI-based algorithm

The derivation in this section follows that for the real-valued
case in [9]. The aim of the QRTLS algorithm is to minimise
the cost function in eq. (10a). This is achieved by employing
the quaternion Rayleigh quotient to perform the optimisation
in an iterative manner.
Consider the following rank-one update of w(n) [20]:

w(n) = w(n− 1) + µ(n)q∗(n) (12)

where µ(n) ∈ H is the adaptation gain. Upon substitut-
ing eqs. (4) and (10b) into the inverse power formula pre-
sented in [21], yields[

Rqq(n) rqd(n)
rHqd(n) σ2

d(n)

] [
w∗(n)
−1

]
=

[
w∗(n− 1)
−1

]
%(n) (13)

where %(n) is unknown and is defined for convenience. To
find the parameters µ(n) and %(n), define the augmented gain
vector k(n) as

k(n) = Rqq(n)q(n) (14)

A fast and robust recursive update for k(n) can be achieved
via the method of shift structure as in [22, 23] and is sum-
marised in Table 1. Now, let

ρ0 = kH(n)q(n)

ρe = rHqd(n)q(n)−wT (n− 1)k(n)
(15)

L(n) = ‖w(n)‖2 + 1 (16)

P0 = [wT (n− 1);−1]G(n)

[
w∗(n− 1)
−1

]
P(n) = [wT (n);−1]G(n)

[
w∗(n)
−1

] (17)

By virtue of eqs. (11), (12) and (15), P0 and P(n) in eq. (17)
can be represented as coupled iterative formulae, that is,

P0 = λP(n− 1) + ‖e(n)‖2

P(n) = P0 − 2R{ρeµ(n)}+ ρ0µ(n)
2

(18)

where e(n) = d(n) − y(n) and y(n) is as given in eq. (7).
Substituting eq. (12) into eq. (13) and pre-multiplying eq. (13)
by [qH(n); 0] and [wT (n− 1);−1] yields

ρ0µ
∗(n)− y∗(n)%(n) = ρ∗e

ρeµ
∗(n) + L(n− 1)%(n) = P0

(19)

which are linear equations of two unknowns. Finally, solv-
ing eq. (20) yields

µ(n) =
Ψ∗∆

‖∆‖2
(20)

where
Ψ = P0ỹ + ρ∗e ∆ = ρ0 + ỹρe (21a)

ỹ =
y∗(n)

L(n− 1)
(21b)

4. EXPERIMENTAL RESULTS

For a fair comparison of three algorithms, the forgetting fac-
tor λ of both WL-QRLS and WL-QRTLS, and the step size
of WL-QLMS were chosen such that all routines converged
approximately at the same rate for the signal at hand. Also, in
each experiment, arbitrary Q-improper white Gaussian noise
(WGN) was added to the experimental signal as a perturba-
tion. For simplification, the perturbations added to input and
output signals for all experiments were identical.
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Fig. 1: Learning curves of WL-QLMS, WL-QRLS and Wl-
QRTLS, averaged over 100 realisations, for the identification
of the QMA(2) process (eq. (22)) under perturbations.

Figure 1 compares the ability of the three algorithms to
identify a Q-improper MA(2) process given by

y(n) = (2.1 + 2j)x̃(n) + (1.4i+ 0.8k)x̃(n− 1)

+ (2.9 + 0.4j + 1.6k)x̃i(n) + (1.9i)x̃i(n− 1)

+ (0.7 + 1.8i)x̃j(n) + (0.9j + 3k)x̃j(n− 1)

+ (2.5 + 2.8k)x̃k(n) + (2.6i+ 0.7j)x̃k(n− 1)

(22)

where x̃(n) is arbitrary Q-improper WGN. The d(n) and
x(n) in eqs. (7) to (9), were obtained by adding WGN per-
turbation to y(n) and x̃(n), respectively. It is clear from
the figure that the WL-QRTLS, though erratically fluctuat-
ing in the transient state, finally reached the lowest level of
steady-state error, compared to the other two.
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1. kr(n): r1, rp and ςr initialised to nought 2. kp(n): p1, pp and ςp initialised to nought
r1(n) = λr1(n− 1) + x(n− 1)x∗(n) p1(n) = λp1(n− 1) + xi(n− 1)x∗(n)
rp(n) = λrp(n− 1) + x(n)x∗(n− p) pp(n) = λpp(n− 1) + xi(n)x∗(n− p)
ςr(n) = λςr(n− 1) + x(n)x∗(n) ςp(n) = λςp(n− 1) + xi(n)x∗(n)

kr(n) =

{[
rH1 (n)x(n− 1) + ςr(n)x(n)

kr(n− 1) + r1(n)x(n)

]}
1:p

− rp(n)x(n− p) kp(n) =

{[
piH
1 (n)x(n− 1) + ςp(n)x(n)
kp(n− 1) + p1(n)x(n)

]}
1:p

− pp(n)x(n− p)

3. ks(n): s1, sp and ςs initialised to nought 4. kt(n): t1, tp and ςt initialised to nought
s1(n) = λs1(n− 1) + xj(n− 1)x∗(n) t1(n) = λt1(n− 1) + xk(n− 1)x∗(n)

sp(n) = λsp(n− 1) + xj(n)x∗(n− p) tp(n) = λtp(n− 1) + xk(n)x∗(n− p)

ςs(n) = λςs(n− 1) + xj(n)x∗(n) ςt(n) = λςt(n− 1) + xk(n)x∗(n)

ks(n) =

{[
sjH1 (n)x(n− 1) + ςs(n)x(n)

ks(n− 1) + s1(n)x(n)

]}
1:p

− sp(n)x(n− p) kt(n) =

{[
tkH1 (n)x(n− 1) + ςt(n)x(n)

kt(n− 1) + t1(n)x(n)

]}
1:p

− tp(n)x(n− p))

5. ku, kv, kg and kh 6. k(n)
ku = kr(n) + ki

p(n) + kj
s(n) + kk

t (n) kv = kp(n) + ki
r(n) + kj

t(n) + kk
s (n)

k(n) = [kT
u kT

v kT
g kT

h ]
T

kg = ks(n) + ki
t(n) + kj

r(n) + kk
p(n) kh = kt(n) + ki

s(n) + kj
p(n) + kk

r (n)

Table 1: Fast recursion of augmented gain vector k(n)
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Fig. 2: Estimated output of WL-QLMS (green), WL-QRLS
(blue) and Wl-QRTLS (red) compared with the actual Saito’s
Q-improper chaotic time series (black), under perturbations.

Figure 2 illustrates the prediction of Saito’s chaotic time
series [24] by the three algorithms, compared with the actual
signal. This was achieved under noisy conditions, and the
WL-QRTLS exhibited superior performance and could more
closely estimate the actual signal with little residual variance.

Figure 3 compares the learning curves of the three algo-
rithms for the prediction of a Q-improper wind field1. The
WL-QRTLS was again a consistent estimator while the other
two gave highly varying estimates. The WL-QRTLS also ex-
hibited additional numerical robustness over the WL-QRLS
which sometimes produced over-shoots.

1http://www.commsp.ee.ic.ac.uk/∼mandic/
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Fig. 3: Learning curves of WL-QLMS, WL-QRLS and Wl-
QRTLS for the prediction of 4-D wind field (3-D wind ve-
locity and air temperature) [25] under perturbations due to
additive Q-improper WGN.

5. CONCLUSION

We have introduced the widely linear QRTLS algorithm for
the processing of Q-improper processes where both input and
output are contaminated by noise. This has been achieved by
extending the concept of total least squares to the quaternion
domain, and then finalising the recursive solution via quater-
nion Rayleigh quotient iteration. Note that the WL-QRTLS
is computationally faster than the WL-QRLS, thanks to no
explicit matrix multiplication involved. The WL-QRTLS has
been found to have superior steady state performance, a sig-
nificant increase in noise tolerance, and quite fast compu-
tation, as compared to other algorithms of the same class
(WL-QLMS and WL-QRLS). Simulations on benchmark Q-
improper signals, and 4-D wind field supported the analysis.
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