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ABSTRACT

The recent introduction of η-Hermitian matrices A = AηH has

opened a new avenue of research in quaternion signal processing.

However, the exploitation of this matrix structure has been limited,

perhaps due to the lack of joint diagonalisation methodologies of

these matrices. As such, we propose novel decompositions of η-

Hermitian matrices to address this shortcoming in the literature. As

an application, we consider a blind source separation problem in

the form of an Alamouti-based communication system. Simulation

studies demonstrate the effectiveness of our proposed joint diago-

nalisation technique and indicate that our approach is particularly

useful when the sources are correlated.

Index Terms— Joint diagonalisation, quaternion domain, uncor-

relating transform.

1. INTRODUCTION

Diagonalisation of covariance matrices is a pivotal procedure in a

number of the statistical signal processing algorithms, such as prin-

cipal component analysis (PCA) and blind source separation (BSS)

[1]. For example, joint diagonalisation of covariance matrices of

multivariate data has been an instrument to decorrelate the data chan-

nels in BSS.

Recent advances in complex statistics have highlighted the ne-

cessity of widely linear modelling of signals, to exploit the power

difference or correlation between the data channels. For this pur-

pose, ‘augmented’ statistics have been established to incorporate

the covariance and complementary covariance matrices, and to cater

for the second order noncircular (improper) processes in statistical

signal processing [2]. Important contributions to augmented statis-

tics are the general uncorrelating transform (GUT) [3] and strong-

uncorrelating transform (SUT) [4, 5] which diagonalise the covari-

ance and pseudo-covariance matrices simultaneously.

The SUT has been established for both single and multichannel

complex-valued processes. However, the advances in multidimen-

sional sensor technologies have underlined the need for signal pro-

cessing algorithms in the quaternion domain (H) due to its potential

for modelling of three- and four-dimensional data [6]. Similar to

the complex domain, the use of augmented statistics and associated

widely linear modelling is also required for quaternion signals to ac-

count for the full second order information. Recent developments

include the analysis of quaternion data via augmented quaternion

statistics; for example, the unitary diagonalisation of quaternion ma-

trices was introduced in [7] and [8] established quaternion fast in-

dependent component analysis (Q-FastICA) for the blind separation

of both proper and improper quaternion-valued processes. Although

research on quaternion signal processing has revived interest in sev-

eral applications, there are still some shortcomings in the quaternion

formulations, e.g. there is a lack of closed form solutions to perform
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the simultaneous diagonalisation of the quaternion covariance matri-

ces. To this end, we consider the simultaneous diagonalisation of a

pair of covariance matrices in quaternion domain, paving the way for

the quaternion uncorrelating transform1 (QUT) to allow for the co-

variance and a desired complementary covariance to be diagonalised

simultaneously.

2. SECOND-ORDER STATISTICS OF QUATERNION

Augmented statistics have been established to incorporate the com-

plementary covariance matrices and exploit the complete second-

order information. In complex domain, a basis vector is augmented

by its conjugate2 variables as za = [z, z∗]T ∈ C [9]. Thus, the aug-

mented covariance matrix, Ca = E{zazaH}, takes into account

the complete second-order information. However, such convenient

manipulation is not possible in quaternion domain - illustrated in the

next section.

2.1. Quaternion statistics

Quaternions are hypercomplex numbers denoted by H. A quaternion

vector3 x can be expressed in the Cartesian form as:

x = xr + ıxi + jxj + κxk (1)

where R{x} = xr is the scalar (real) part, I{x} = x − xr is

the vector (pure quaternion) part, and ı, j and κ are orthogonal unit

vectors. An important notion for the quaternion domain is the so-

called “quaternion involution” which forms the basis for augmented

quaternion statistics. An involution operator defines a self-inverse

mapping about a unit quaternion η ∈ {ı, j, κ}, given by [10, 11]

xη = −ηxη
e.g. xı = −ıxı = xr + ıxi − jxj − κxk

(2)

Note that the involution designates a rotation along a single unit axis,

while the quaternion conjugate operator (·)∗ rotates along all three

imaginary axes, and can be computed as

x∗ = R{x} − I{x} = xr − ıxi − jxj − κxk

=
1

2
(xı + xj + xκ − x)

(3)

According to (2) and (3), the correspondence between the elements

of a quaternion variable in H and the elements of a quadrivariate

vector in R
4 can be obtained as [9]:

R{x} = 1

2
(x+ x∗), Iη{x} = 1

2η
(x− xη∗) η ∈ {ı, j, κ}

(4)

Therefore, quaternion statistics should generally include all quater-

nion involutions xı, xj, and xk to access to the complete second

order statistical information. In other words, second order quater-

nion statistics should contain ı-, j-, and κ- covariance matrices as

1QUT is analogous to the SUT for complex matrices [4].
2The operators (·)T , (·)∗ and (·)H represent transpose, conjugate and Her-

mitian (conjugate transpose) respectively.
3Throughout this paper, we assume zero mean quaternion variables with unit

variances. This does not affect the generality of our results.



well as the standard covariance matrix. These matrices are also

called the complementary covariance matrices which are obtained

as Cxη = E{xxηH}, η ∈ {ı, j, κ}.

Remark#1: The standard covariance matrix Cx = E{xxH} is a

Hermitian matrix, while a complementary covariance matrix Cxη =
E{xxηH} is an η-Hermitian matrix.

Similar to the complex domain [5], diagonalisation of the above co-

variance matrices is fundamental in several statistical signal process-

ing algorithms, which is next discussed.

3. SIMULTANEOUS DIAGONALISATION

To consider the simultaneous diagonalisation of the quaternion cor-

relation matrices, we first consider the following propositions and

lemma:

Proposition 1: If A,B ∈ H are η-Hermitian and A is nonsingular,

A,B are simultaneously diagonalisable if and only if D = A−1B
is normal.

Proof. Consider a unitary matrix M such that Λa = MηHAM and

Λb = MηHBM are both diagonal. Thus, A−1 = MΛ−1
a MηH

and B = MηΛbM
H where A−1B = M(Λ−1

a Λb)M
H is unitarily

diagonalisable, i.e. normal. �

Proposition 2: If A =

[
B C
0 0

]
∈ H, then A is normal if and only

if B is normal and C = 0.

Proof. A is normal if AAH = AHA where:

AAH =

[
BB∗ +CC∗ 0

0 0

]
AHA =

[
B∗B B∗C
C∗B C∗C

]

therefore, AAH = AHA holds if C = 0, and BB∗ = B∗B, i.e.

B is normal. �
Lemma 1: An η-Hermitian matrix A can be factorised as A =
QΛQηH , where Q denotes a quaternion unitary matrix and Λ is

a real-valued nonnegative diagonal matrix. This lemma is fully de-

scribed in [7, 12].

3.1. Diagonalisation

The introduction of η-Hermitian matrices implies that there are

three kinds of simultaneous diagonalisation of quaternion matrices,

namely when both matrices are Hermitian or η-Hermitian and when

one matrix is Hermitian and the other is η-Hermitian; we therefore

consider such diagonalisations in the form of the following corollary.

Corollary 1. For given matrices A,B ∈ H:

(a) If A and B are both Hermitian, there exists a matrix M ∈ H

such that MHAM and MHBM are both diagonal if and only if

AB is Hermitian, i.e. AB = BA.

(b) If A and B are both η-Hermitian, there exists a unitary matrix

M ∈ H such that MηHAM and MηHBM are both diagonal if

and only if ABη is normal, i.e. ABηBηHAH = BηHAHABη .

(c) If A is Hermitian and B is η-Hermitian, there exists a matrix

M ∈ H such that MHAM and MηHBM are both diagonal if and

only if BA is η-Hermitian, i.e. BA = (BA)ηH = AηHBηH =
AηB.

3.1.1. Proof of Corollary 1

(a) If MHAM = Λa and MHBM = Λb are diagonal, we have

A = MΛaM
H and B = MΛbM

H . Thus:

AB = MΛaM
HMΛbM

H = MΛb(M
HM)ΛaM

H = BA

�

(b) If MηHAM = Λa and MηHBM = Λb are diagonal, then

A = MηΛaM
H and B = MηΛbM

H . Hence:

ABη = MηΛaM
HMΛbM

ηH = Mη(ΛaΛb)M
ηH

which is diagonisable with a unitary matrix and it is normal. For the

converse, consider the following scenarios:

(i) Suppose ABη is normal and A is nonsingular. Since ABη =
(A−1)−1Bη is normal, A−1 and Bη are simultaneously unitary

diagonalisable, see Proposition 1. Since A and B are η-Hermitian,

according to Lemma 1, we have A−1 = MΛ−1
a MηH and Bη =

MΛbM
ηH . Thus:

A = MηΛaM
H = MηΛa(M

η)ηH

B = MηΛbM
H = MηΛb(M

η)ηH

which are simultaneous diagonalisations of A and B.

(ii) Suppose ABη is normal and A is singular. Hence, there is a

unitary matrix M ∈ H where MηHAM is diagonal. The columns

of M can be permuted such that:

MηHAM =

[
Σ 0
0 0

]
MηHBM =

[
B11 B12

BηH
12 B22

]

where Σ is a diagonal block matrix with vanishing η-components,

and B11 and B22 have vanishing η-components in their diagonal

elements. Thus, as M is unitary:

(MηHAM)(MηHBM)η = MηHABηMη

=

[
ΣBη

11 ΣBη
12

0 0

]

Since ABη is normal, ΣBη
12 = 0, see Proposition 2. As Σ is non-

singular, Bη
12 = 0 and we have:

MηHAM =

[
Σ 0
0 0

]
MηHBM =

[
B11 0
0 B22

]

Therefore, if there is a unitary matrix M to diagonalise A, it is also

sufficient for B. �

(c) If MHAM = Λa and MηHBM = Λb are diagonal, we have

A = MΛaM
H and B = MηΛbM

H . Thus,

BA = MηΛbM
HMΛaM

H

= MηΛa(M
ηHMη)ΛbM

H = AηB

�
3.1.2. Derivation of matrix M in Corollary 1

The matrix M in Corollary 1 can be derived as follows4:

(a) Since A = USaU
H and B are both Hermitian:

D = Sa
− 1

2UH
so

{
DADH = I

DBDH = WΛbW
H

}

consider M = WHD, thus:

MAMH = WHDADHW = I = Λa

MBMH = WH(DBDH)W = Λb

(b) If A and B are both η-Hermitian and ABη is normal, a sin-

gle unitary matrix M is sufficient to diagonalise them simultane-

ously. In general, by applying quaternion singular value decompo-

sition (SVD) [6, 13] on A, it can be rewritten as A = USVH .

Using Lemma 1, A can be expressed as A = QSQηH in which

Q = U(Dη)
1
2 and U = VηD [7]. Thus, M = QH diagonalises

A and B.

(c) Since A = USaU
H is Hermitian and B is η-Hermitian:

D = Sa
− 1

2UH
so

{
DADH = I

DBDηH = WΛbW
ηH

}

4In this section, I is the identity matrix.



Consider M = WHD, thus:

MAMH = WHDADHW = I = Λa

MBMηH = WH(DBDηH)Wη = Λb

3.2. Quaternion Uncorrelating Transform

Note that Corollary 1(c) leads to the quaternion uncorrelating trans-

form (QUT) as follows:

Corollary 2. For a random quaternion-valued vector x, there exists a

QUT matrix M which simultaneously whitens the covariance Cy =
I and diagonalises the η-covariance Cyη = Λη , where y = Mx.

The MATLAB5 implementation of the proposed QUT algorithm is

included in Table 1.

Table 1: Pseudo-MATLAB implementation of QUT.

function [M,y] = QUT(x)

if size(x, 1) > size(x, 2)
x = x.′;

end

n = length(x);

Cx = (x∗x′)
n

;
% Decompose the standard covariance matrix

[U,S] = svd(Cx);
% Derive the whitening matrix D and whitened data q
D = diag(diag(S).∧ − 0.5) ∗U′;
q = D ∗ x;
% Generate the ı, j, and κ-covariances of the whitened data q
% The η-involution in (2) is implemented by the ‘invijk’ function

Cı = (q ∗ invijk(q, ‘i’)′)/n;
Cj = (q ∗ invijk(q, ‘j’)′)/n;
Cκ = (q ∗ invijk(q, ‘k’)′)/n;
% Analyse complementary covariances to select the imaginary

% unit with maximum correlation

c =

⎡
⎣ norm(Cı − diag(diag(Cı)))

norm(Cj − diag(diag(Cj)))
norm(Cκ − diag(diag(Cκ)))

⎤
⎦ ;

[∼, f ] = max(c.′);
% Define the desired unit axis using f , i.e if f = 1→ η = ı,
% f = 2→ η = j, and f = 3→ η = κ.

% Apply QTakagi factorisation on the selected η-covariance,

% such that Cη = W ∗ S1 ∗ invijk(W, ‘η’)′. See [7]

[U1,S1,V1] = svd(Cη);
P = invijk(V1, ‘η’)′ ∗U1;
W = U1 ∗ diag(sqrt(diag(invijk(P, ‘η’))));
% Calculate the QUT matrix M and the decorrelated output y
M = W′ ∗D;
y = M ∗ x

3.3. Properness and Quaternion Strong Uncorrelating Trans-
form

The notion of properness or improperness is an important statistical

property in both complex and quaternion domains. Similar to the

complex domain, quaternion properness is characterised by the de-

gree of correlation and power ratio of imaginary components with

respect to the real component. However, the additional degrees of

5To use the MATLAB code, the modified version of quaternion toolbox

‘qtfm’ is required, which is available at http://www.surrey.ac.uk/cs/
people/clive_cheong_took/index.htm.

freedom in the quaternion domain means that there are two types of

properness: H-properness and C
η-properness.

A quaternion vector x is second order H-proper if and only if all

the complementary covariance matrices vanish, i.e. the vector x is

uncorrelated with its vector involutions xı, xj, xκ. Note that for a

given quaternion vector x the degree of H-properness can be defined

in terms of a circularity coefficient ρ which is calculated based on the

ratio of the complementary covariances to the standard covariance

matrix given by [8]

ρ =
|E{xxıH}|+ |E{xxjH}|+ |E{xxκH}|

3E{xxH} ρ ∈ [0, 1] (5)

where ρ = 0 defines a H-proper, and ρ = 1 corresponds to H-

improper sources.

On the other hand, x is C
η-proper for an imaginary unit η ∈

{ı, j, κ} if and only if the vector x is only correlated with xη . Thus,

for a Cη-proper process x, only the η-covariance Cxη = E{xxηH}
exists and QUT offers a convenient way to diagonalise both the co-

variance and the η-covariance matrices, as the other two covariance

matrices vanish. For instance, for a Cη-proper process x, QUT leads

to Cy = I, Cyı = Λı, and Cyj = Cyκ = Λ = 0, where

y = Mx.

Remark#2: In the context of Cη-properness, QUT is regarded as the

quaternion strong-uncorrelating (Q-SUT) transform - an analogue

to the work in the complex domain by Eriksson and Koivunen [4].

However, without the C
η-properness condition, QUT is generally

not robust for decorrelating purposes.

4. SIMULATIONS AND DISCUSSION

4.1. ARMA Simulation

The first experiment evaluated the performance of the Q-SUT as a

source separation method under different levels of additive white

noise. Simulations were performed on multivariate widely linear

autoregressive moving average (ARMA) data. To this end, three un-

correlated quaternion-valued ARMA sources s were generated such

that each source was an C
ı-proper signal. Then, they were mixed

using a 3 × 3 random matrix A drawn from the standard normal

distribution to obtain three mixtures as x = As. Overall, 50 sets of

data were generated to compute the averaged results.

In order to assess the effect of noise on the performance accuracy,

white noise was added so as to vary the signal to noise ratio (SNR)

from 0 to 25 dB. The performance was also assessed in terms of the

ı-circularity coefficient, such that E{xxH} = 1 was constant, and

ρi = |E{xxıH}| was manually adjusted from 0.5 to 1, see (5).

To evaluate the separation accuracy, the root mean square (RMS)

error was calculated among the original sources (s) and the estimated

sources (x̂) obtained via Q-SUT. Since Q-SUT suffers from the per-

mutation problem, the 3-D sources (both original and estimated)

were first averaged to provide a 1-D quaternion channel. Then, the

RMS error was calculated among the corresponding sources.

Fig. 1a illustrates the reconstruction error versus SNR and circu-

larity coefficient. It was shown that the RMS error decreases for

larger circularity coefficients6 and higher SNR values (lower noise

level). As expected, after applying Q-SUT, the Cx̂ı was diagonal

and Cx̂j = Cx̂κ = 0 for all simulations.

Furthermore, Fig. 1b and 1c represent the 3-D scatter plots of the

generated signals x versus the estimated signals x̂ obtained via Q-

SUT. Note that the elliptical scatter plots of the original signals con-

firmed their high correlation, while circular nature of the estimated

signals indicated successful decorrelation of Q-SUT.

6In this work, larger circularity was associated with the stronger correlation,

regardless of the power.
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Fig. 1: Results of the proposed Q-SUT method for decorrelation and BSS

of Cı-proper sources.

4.2. Alamouti-based Communication Systems

This section presents the application of the QUT for a practical com-

munication problem of Alamouti coding [14]. Consider a 2 × 2
source separation problem in H given by x = As[

x1

x2

]
=

[
a11 a12

a21 a22

] [
s1
s2

]
(6)

in which x = xa + xbj and s = sa + sbj where xa and xb are

two consecutive signals observed at the receiver; sa and sb are the

transmitted complex sources to be recovered. Following the work

in [8], the above equation corresponds to:[
x1a

x1b

]
=

[
s1a −s∗1b
s1b s∗1a

] [
a11α

a11β

]
+

[
s2a −s∗2b
s2b s∗2a

] [
a12α

a12β

]
∈ C

[
x2a

x2b

]
=

[
s2a −s∗2b
s2b s∗2a

] [
a22α

a22β

]
+

[
s2a −s∗2b
s2b s∗2a

] [
a21α

a21β

]
∈ C

(7)

where aijτ represents the channel between the receiver of the i-th
user and the τ -th transmit antenna of the j-th user, τ ∈ {α, β}.

In this study, the sources were selected as binary and quadra-

ture phase shift keying (BPSK or QPSK) and 16-quadrature ampli-

tude modulation (QAM). Initially, we considered a scenario with

quaternion-valued mixing matrix A, where the pair of symbols s1a
and s1b of the first user were equal, shown in the left columns in

Fig. 2. For the sake of comparison, we also considered two cases

where the mixing matrix A was complex-valued and s1a and s1b
could be either equal or different, as in the middle and right columns

in Fig. 2.

After generating the observations x, QUT was applied to provide

an estimation of the sources as x̂. To this end, QUT decorrelated the

standard covariance and a unitary complementary covariance with

the maximum correlation, i.e. the unit axis in which marginal vari-

ables had highest correlation. Furthermore, QUT has been compared

with conventional complex SUT [4].

Note that when using a quaternion-valued mixing matrix and s1a =
s1b, the conventional SUT failed to recover the sources, see Fig. 2

L(b). However, for these cases, QUT provided reasonable estimates

of the sources in L(c).
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Fig. 2: Plots of communication constellations: (L) left column corresponds

to the case s1a = s1b with a quaternion mixing matrix, (M) middle col-

umn represents the s1a �= s1b scenario with a complex mixing matrix and

(R) right column corresponds to s1a = s1b with a complex mixing matrix.

In each column, subplot (a) represents the original sources, (b) is the esti-

mated sources using complex SUT and (c) is the estimated sources using

QUT.

On the other hand, when using a complex-valued mixing matrix7

and s1a �= s1b, the conventional SUT reconstructed a reasonable

version of either BPSK or QPSK sources, however, it still could not

recover the 16-QAM source, see Fig. 2 M(b). In contrast, QUT pro-

vided reconstruction of 16-QAM sources as well as the BPSK and

QPSK sources in M(c). Furthermore, when using a complex-valued

mixing matrix and s1a = s1b, QUT outperformed the Q-SUT by

providing higher distinct output, compare R(b) and R(c) in Fig. 2.

Recall that both QUT and Q-SUT suffer from the permutation prob-

lem and they estimate the sources in a random order - similar to most

ICA algorithms.

5. CONCLUSION

We have proposed a novel set of matrix decompositions for the joint

diagonalisation of η-Hermitian matrices. Of particular interest is the

proposed quaternion uncorrelating transform (QUT), which showed

the effectiveness of our method in an Alamouti-based source sepa-

ration problem. Furthermore, we hope that our findings in joint di-

agonalisation of quaternion matrices which satisfy conditions such

as normality of ABη , or AB = BA, or BA = AηB lay the

foundations for further research in quaternion signal processing.

7To this end, the channel response aib of the second transmitter antenna for

each i-th user was set to zero, although this is unlikely in practice.
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