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Abstract—We introduce a class of gradient adaptive stepsize
algorithms for quaternion valued adaptive filtering based on
three- and four-dimensional vector sensors. This equips the
recently introduced quaternion least mean square (QLMS)
algorithm with enhanced tracking ability and enables it to be
more responsive to dynamically changing environments, while
maintaining its desired characteristics of catering for large
dynamical differences and coupling between signal components.
For generality, the analysis is performed for the widely lin-
ear signal model, which by virtue of accounting for signal
noncircularity, is optimal in the mean squared error (MSE)
sense for both second order circular (proper) and noncircular
(improper) processes. The widely linear QLMS (WL-QLMS)
employing the proposed adaptive stepsize modifications is shown
to provide enhanced performance for both synthetic and real
world quaternion valued signals. Simulations include signals
with drastically different component dynamics, such as four
dimensional quaternion comprising three dimensional turbulent
wind and air temperature for renewable energy applications.

I. INTRODUCTION

QUATERNION valued signal modelling is undergoing

fast development and is rapidly finding applications

in statistical signal processing [1], [2], [3]. In the area of

adaptive filtering, the recently introduced quaternion least

mean square (QLMS) algorithm has offered a rigorous way

to treat the real valued cost function of quaternion variables,

and has formed a unified basis for adaptive filtering of three-

and four-dimensional hypercomplex processes [4]. By virtue

of the underlying division algebra, the QLMS caters naturally

for the nonstationary dynamics and coupling between the

components of three- and four-dimensional processes, and

exhibits enhanced stability and more degrees of freedom in

the control of the adaptation process as compared with its

real-valued counterparts in R3 and R4.

The standard QLMS is second order optimal for processes

with balanced power in the components of the signal model,

that is, for second order circular (Q-proper) signals. This

assumption is, however, not realistic for real world processes

coming from vector sensor (3D ultrasonice anemometers,

inertial bodysensors), where the signal components exbibit

hugely different dynamics, and the measurements are subject

to unisotropic noise. To make full use of the available second

order information, the so-called augmented quaternion statis-

tics has been recently introduced in the context of widely

linear modelling [1]. This model uses both the information

in the standard covariance and the three (ı, j, κ) pseudo-

covariances, and exhibits enhanced stability and convergence
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over its real valued counterparts in R3 and R4. The widely

linear QLMS (WL-QLMS) uses such a model to enhance

the accuracy and provide more degrees of freedom in the

estimation of three-dimensional (pure quaternion) and four-

dimensional (full quaternion) vector sensor signals.

The progress in sensor technology has also brought to light

problems related to some of the mathematical deficiencies

in multidimensional vector algebras. These include gimbal

lock, where one degree of freedom is lost when e.g. two

axes of the 3D gyroscope coincide. This can be explained

by the fact that the product of two real vectors can be zero,

even if none of the terms in the product is zero (non-division

algebra). Division algebras, on the other hand, give a zero

product only when one or both of the terms in the product

are zero, thus providing an accurate model for fast rotation

and orientation. The only division algebras are the fields of

real R, complex C, quaternion H, and octonion O numbers,

and e.g. the benefits of widely linear adaptive filtering in the

complex domain over filtering in R2 is well understood [5].

Following on our recent work on adaptive filtering in the

quaternion domain [1][4], in this work we address the ways

to make the learning rate parameter, which plays a prominent

role in the performance in terms of convergence rate and

steady-state misadjustment, adaptive. Fast and stable adapta-

tion of filter coefficients is critical when operating in highly

nonstationary environments, such as in the prediction of wind

gusts and turbulences in renewable energy applications. To

adapt the learning rate so that the algorithms best respond to

the time-varying dynamics of the input signal, numerous gra-

dient adaptive step-size stochastic gradient algorithms have

been proposed both in the real and complex domain. These

include Benveniste’s algorithm, Farhang-Ang’s algorithm,

Mathews’ algorithm, and the generalized normalized gradient

descent algorithm [5].

For three- and four-dimensional vector processes, the

separate component-wise processing in the real domain, or

dual complex valued processing would be inadequate, despite

a number of fast variable stepize algorithms that exist in these

domains. To this end, in this work we introduce variable step-

size algorithms into the quaternion domain. The analysis is

supported by simulations on both synthetic benchmark and

real world quaternion valued processes, including 3D wind. It

is also shown that the quaternion domain allows for a kind of

heterogeneous data fusion, even when the dynamics of those

data (such as in the joint modelling of air temperature and

wind field) are radically different.
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II. FUNDAMENTALS OF QUATERNIONS

A. Quaternion Algebra

The quaternion domain, a non-commutative extension of

complex domain, provides a natural basis for the processing

of three- and four-dimensional signals. A quaternion variable

q ∈ H comprises a real or scalar part �{·} and a vector-

part �{·}, which includes three imaginary components, and

q can be expressed as:

q = �{q}+ �{q} = [qa,q]

= �{q}+ �ı{q}ı+ �j{q}j+ �κ{q}κ

= qa + qbı+ qcj+ qdκ {qa, qb, qc, qd ∈ R}(1)

The relationship between the orthogonal unit vectors, ı, j, κ
describing the three vector imaginary components of a

quaternion is

ıj = κ jκ = ı κı = j

ıjκ = ı2 = j2 = κ2 = − 1 (2)

Observe that due to the noncommutativity of the quaternion

product, we have jı = −κ �= ıj for example. Other elements

of quaternion algebra that are used in this work include the

multiplication given by

q1q2=[qa1,q1][qa2,q2]

= [qa1qa2 − q1 · q2, qa1q2 + qa2q1 + q1 × q2] (3)

where q = qa+qbı+qcj+qdκ. Symbols “·” and “×” denote

the dot-product and the cross-product respectively. The con-

jugate of a quaternion is given by q∗ = qa − qbı− qcj− qdκ
and the norm ||q||22 = qq∗. Note that quaternion conjugation

is a self inverse mapping, and is termed an involution.

B. Quaternion Involutions and the Widely Linear Model

Given a complex number z = za + ızb, its real and

imaginary part can be extracted as za = 1

2
(z + z∗) and

zb =
1

2ı
(z−z∗). In the same context, the three perpendicular

quaternion involutions given by [6]

qı = −ıqı = qa + qbı− qcj− qdκ

qj = −jqj = qa − qbı+ qcj− qdκ

qκ = −κqκ = qa − qbı− qcj+ qdκ (4)

can be exploited to calculate the four components of the

quaternion variable q as [6]

qa =
1

4
[q + qı + qj + qκ] qc =

−j

4
[q − qı + qj − qκ]

qb =
−ı

4
[q + qı − qj − qκ] qd =

−κ

4
[q − qı − qj + qκ] (5)

Equation (5) thus demonstrates that any quadrivariate func-

tion g(qa, qb, qc, qd) of real variables qa, qb, qc, qd to be

described as a function of the quaternion variable q and all its
⊥ involutions qı, qj, qκ. Similarly, the quaternion conjugate

operation (·)∗ can be expressed as a linear function of these

⊥ involutions as

q∗ =
1

2
[qı + qj + qκ − q] (6)

In the context of mean square estimation (MSE), equation

(5) suggests a convenient way to construct the corresponding

widely linear model in H as

y = gTx+ hTxı + uTxj + vTxκ (7)

This model is by no means unique, as there exist different

variants such as the one proposed in [2], however, it is

adequate to capture the complete second order statistics in

H [1].

III. THE HR AND HR
∗ DERIVATIVES

A common optimisation objective in complex and

quaternion-valued signal processing applications is to min-

imise the square error J = |e|2 = ee∗. This poses a problem,

as the standard derivatives are not defined for functions

dependent on variable e and its conjugate e∗. To address this

issue, Wirtinger considered the so-called pseudo-gradient,

∇wJ = ∇wr
J + j∇wi

J (8)

where w is a coefficient vector and subscripts ‘r’ and ‘i’

denote respectively the real and imaginary part of a complex

variable and formalised it to what is known today as the

CR calculus. It was developed based on the isomorphism

based on the fields R2 and C and the correspondence between

complex-valued functions f(z, z∗) = u(x, y) + jv(x, y) ∈ C

and real bivariate functions g(x, y) ∈ R2 [5].

In the same spirit, we have recently extended the CR

calculus to the quaternion domain, termed the HR calcu-

lus [6] to provide a unified framework for gradient based

optimisation in H. Due to space limitations, we summarise

only the important results, for more details see [6]. The main

component of the HR calculus is given as

∂f(q, qı, qj, qκ)

∂q
=

1

4

[∂f(qa, qb, qc, qd)

∂qa
− ı

∂f(qa, qb, qc, qd)

∂qb

−j
∂f(qa, qb, qc, qd)

∂qc
− κ

∂f(qa, qb, qc, qd)

∂qd

]

(9)

whereas the HR
∗ derivative can be summarised as

∂f

∂q∗
=

1

4

[∂f(qa, qb, qc, qd)

∂qa
+ ı

∂f(qa, qb, qc, qd)

∂qb

+j
∂f(qa, qb, qc, qd)

∂qc
+ κ

∂f(qa, qb, qc, qd)

∂qd

]

(10)

Similarly to the complex domain, it can be shown that

the conjugate gradient ∇q∗f(q) gives the direction of the

maximum rate of change of function f(q) [6], making

the HR
∗ derivative in (10) a natural choice for gradient

calculation and was considered in this work.

IV. DERIVATION OF QUATERNION VARIABLE STEP-SIZE

ALGORITHMS

We now formulate the update of the generalized normal-

ized gradient descent (GNGD) algorithm [7], [8] in H. For

continuity, we first re-derive the QLMS algorithm [4] using

the HR
∗ calculus. Its cost function is given by J (k) =

e(k)e∗(k), with filter output y(k) = wT (k)x(k), and its
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weight update expressed as w(k+1) = w(k)−μ∇w∗J (k),
where

∇w∗J (k) = e(k)
∂e∗(k)

∂w∗(k)
+

∂e(k)

∂w∗(k)
e∗(k) (11)

Expanding the error expression, we have e(k) = d(k) −
wT (k)x(k) and e∗(k) = d∗(k) − xH(k)w∗(k). From

the relationship (6), we have w(k) = 1

2
(wı∗ + wj∗ +

wκ∗ −w∗); this permits the use of HR
∗ calculus, yielding

∂w(k)/∂w∗(k) = −1/2. The error gradients thus become

∂e∗(k)

∂w∗(k)
= −x∗(k)

∂e(k)

∂w∗(k)
=

1

2
x(k) (12)

giving the QLMS update [4]

w(k + 1) = w(k) + μ
(

e(k)x∗(k)−
1

2
x(k)e∗(k)

)

(13)

Similarly, for the widely linear QLMS (WL-QLMS), the

update can be expressed by [1]

wa(k+1) = wa(k)+μ
(

xa(k)e∗(k)−
1

2
e(k)xa∗(k)

)

(14)

where wa(k) = [gT (k) hT (k) uT (k) vT (k)], and xa(k) =
[xT (k) xıT (k)xjT (k)xκT (k)].

A. Variable Step Size Algorithms

A gradient adaptive learning rate μ(k) can be introduced

into the QLMS algorithm (13), based on

μ(k + 1) = μ(k)− ρ∇μJ (k) (15)

where the factor ρ denotes the stepsize, and the gradient

∇μJ (k) can be evaluated as

∇μJ (k) = e(k)
∂e∗(k)

∂μ(k − 1)
+

∂e(k)

∂μ(k − 1)
e∗(k)

= 2�
(

e(k)
∂e∗(k)

∂μ(k − 1)

)

= −2�
(

e(k)xH(k)
∂w∗(k)

∂μ(k − 1)

)

(16)

We have used the fact that

∂e∗(k)

∂μ(k − 1)
=

( ∂e(k)

∂μ(k − 1)

)
∗

since the adaptive learning rate μ(k) is constrained in R.

Algorithms within this class can therefore be generalised as

μ(k + 1) = μ(k) + 2ρ�(e(k)xH(k)Φ(k)) (17)

where

Φ(k) = β+x(k− 1)e∗(k− 1)−
1

2
e(k− 1)x∗(k− 1) (18)

In the context of Benveniste’s update [9], β can be evaluated

as

β = Φ(k − 1)− μ(k − 1)x(k − 1)(xH (k − 1)Φ(k − 1))

+
1

2
μ(k − 1)(ΦH(k − 1)x(k − 1))x∗(k − 1)

whereas for Farhang’s algorithm [10], the parameter β

becomes αΦ(k − 1), whereas β vanishes for Mathews’s

algorithm [11] in (18). As the updates of this class of

variable stepsize algorithms and the Generalised Normalised

Gradient Descent (GNGD) algorithm share similar terms, the

derivation of this class of algorithms can be performed in the

same way as that of GNGD, which is detailed in the next

subsection.

B. Generalised Normalised Gradient Descent Algorithm

The fixed variable step-size μ is replaced by an gradient

adaptive stepsize

η(k) =
μ

||x(k)||2
2
+ ε(k)

where ε(k) is an adaptive regularization parameter. The

stochastic gradient adaptation of the adaptive regulariza-

tion parameter ε can be performed as in (16), with

∂w∗(k)/∂μ(k− 1) replaced with ∂w∗(k)/∂ε(k− 1), which
can be obtained as

∂w∗(k)

∂ε(k − 1)
=

∂η(k − 1)

∂ε(k − 1)

(

x(k − 1)e∗(k − 1)

−
1

2
e(k − 1)x∗(k − 1)

)

= −
μ
(

x(k − 1)e∗(k − 1)− 1

2
e(k − 1)x∗(k − 1)

)

(

||x(k − 1)||2
2
+ ε(k − 1)

)2
(19)

Using (16)-(19), we can obtain the update of GNGD cor-

responding to the quaternion domain as shown in Table

1, together with Benveniste (BVSS) [9], Ang and Farhang

(FVSS) [10] and Mathews and Xie (MVSS) [11] algorithms.

These algorithms can be readily extended to widely linear

QLMS (WL-QLMS) [12].

V. SIMULATIONS

Two sets of simulations were conducted in a one-step

ahead prediction setting in order to comprehensively assess

the performances of the proposed quaternion adaptive step-

size algorithms based on the widely linear (WL) model and

the WL-QLMS with fixed learning rate [1].

The data sets used were

1) A stable Q-proper synthetic AR(4) process, with equal

powers in each signal components, for which both the

QLMS and WL-QLMS are theoretically optimal.

2) A Q-improper real-world 4D wind field signal, com-

prising three dimensional wind field as a pure quater-

nion with air temperature as a real part [4]. This signal

has radically different dynamics and powers in signal

components and is nonlinear and nonstationary.

The order of all the finite impulse response (FIR) filters was

set to N = 10.

For both the synthetic and real world data used (see

Figs. 1 and 2), the widely linear GNGD outperformed all

the other algorithms in terms of both convergence rate and

steady state performance. In general, the variable stepsize

algorithms exhibited better performance than the fixed

learning rate WL-QLMS, apart from Mathews’ algorithm

when processing the Q−improper wind field.
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TABLE I
SUMMARY OF PROPOSED ALGORITHMS IN H WITH REAL-VALUED VARIABLE STEP SIZES.

Algorithms Update of the Learning rates

GNGD η(k) = μ

‖x(k)‖2
2
+ε(k)

ε(k) = ε(k − 1)− 2ρ�(
μe(k)xH (k)(x(k−1)e∗(k−1)− 1

2
e(k−1)x∗(k−1))

(‖x(k−1)‖2
2
+ε(k−1))2

)

Benveniste’s VSS μ(k + 1) = μ(k) + 2ρ�(e(k)xH (k)Φ(k))
(BVSS) Φ(k) = Φ(k− 1)−μ(k− 1)x(k− 1)(xH (k− 1)Φ(k− 1))+ 1

2
μ(k− 1)(ΦH(k−

1)x(k − 1))x∗(k − 1) + x(k − 1)e∗(k − 1) − 1
2
e(k − 1)x∗(k − 1)

Farhang’s VSS μ(k + 1) = μ(k) + 2ρ�(e(k)xH (k)Φ(k))
(FVSS) Φ(k) = αΦ(k − 1) + x(k − 1)e∗(k − 1) − 1

2
e(k − 1)x∗(k − 1)

Mathews’ VSS μ(k + 1) = μ(k) + 2ρ�(e(k)xH(k)Φ(k))
(MVSS) Φ(k) = x(k − 1)e∗(k − 1) − 1

2
e(k − 1)x∗(k − 1)
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Fig. 1. Learning curves of the proposed variable stepsize algorithms on
the prediction of the proper AR(4) process.
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Fig. 2. Learning curves of proposed variable stepsize algorithms on the
prediction of the improper 4D wind field.

VI. CONCLUSIONS

We have proposed a novel class of variable stepsize algo-

rithms for adaptive filtering of three- and four-dimensional

processes modelled by quaternions. It has been shown that

by virtue of its nonlinear stepsize update, the generalised

normalised gradient descent (GNGD) algorithm provides the

best performance of all the algorithms considered, as the

other variable step size algorithms are based on ‘linear’

updates (which depend on estimators of ∂J /∂μ). In other

words the adaptive regularization term ε within GNGD is a

better choice for dealing with the different powers in signal

components. However, Farhang’s and Mathews’algorithms

are computationally less involved than GNGD, and may be

a preferrable choice when computational cost is critical.
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