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Abstract—An algorithm for tracking the degree of quaternion
impropriety in real-time is proposed. This is achieved by exploit-
ing the i-, j-, and k-pseudo-covariances, which makes it possible
to introduce an impropriety measure as the minimum mean
square error (MMSE) solution for estimating the quaternion
involutions along the i, j, and k axes from the quaternion
random variable itself. For rigour, convergence conditions for
both the mean and mean square behavior of such a real-time
impropriety tracker are established, and the effect of the degree
of impropriety on the steady-state performance of the algorithm
is analyzed. The concept is supported by simulations on both
synthetic data and on real-world wind data recordings.

Index Terms—Quaternion adaptive filtering, quaternion
properness, quaternion impropriety measure, tracking of quater-
nion impropriety.

I. INTRODUCTION

Quaternions have become a standard in a number of re-

search areas, ranging from virtual reality to aeronautics [1];

furthermore, quaternions are gaining increasing popularity

in engineering applications [2]-[6]. These applications have

also revealed that the standard covariance, cqq = E[qq∗],
of a quaternion random variable can only partially describe

its second-order statistics and that estimation methods based

on the standard covariance alone are optimal only for a

special class of quaternion random variables, known as circular

or proper, for which the probability distribution is rotation

invariant [7]-[8].

Advances in quaternion statistics have established that in

order to fully capture the second-order statistics of quater-

nion random variables, the standard covariance needs to be

augmented with the three pseudo-covariances cqqi = E[qqi∗],
cqqj = E[qqj∗], and cqqk = E[qqk∗], referred to as

the i-pseudo-covariance, j-pseudo-covariance, and k-pseudo-

covariance. Furthermore, the augmented quaternion statistics

and widely linear modeling of quaternion random variables

(see [7]-[8]) have served as an enabling technology for al-

gorithms that can cater for both second-order circular and

non-circular signals, such as the widely linear quaternion least

mean square (WL-QLMS) algorithm [9].

In contrast to complex random variables, properness of

quaternion random variables has not yet been thoroughly

addressed. Early attempts to define properness of quaternion

random variables were based on the properties of probability

distribution functions (pdf). The approach in [10] considers

quaternion properness as the invariance of the pdf under

specific rotations. A similar approach was taken in [11], where

the condition for quaternion properness was the invariance of

the pdf under rotations around any axis and for any angle.

Three different types of quaternion properness, based on

vanishing of three different pseudo-covariances, and their

implications on signal processing methods were analyzed in

[8],[12] and an impropriety measure for each type of impro-

priety was proposed based on the Kullback-Leibler divergence

between multivariate quaternion Gaussian distributions in [13].

A unified framework for second-order statistics of quaternion

variables was presented in [7]-[8]; however, a real-time algo-

rithm for tracking quaternion impropriety is still lacking.

Quaternion widely linear modeling is based on augmenting

the quaternion random variable with its involutions along the

i, j, and k axes [9]. Thus, quaternion widely linear algorithms

have four times as many parameters as their strictly linear

counterparts; when applied to quaternion proper signals, in

order to achieve the same steady-state performance, the higher

number of updates that have to be calculated in widely linear

algorithms results in a higher computational cost. The larger

number of parameters can also result in a higher gradient noise

in gradient-based learning methods and slower convergence.

Therefore, identifying the degree of impropriety of a signal

is essential in both detection and estimation applications, to

identify the instants where non-stationary signals change their

statistics and to select an estimator that best suits the data.

To this end, we employ quaternion adaptive filtering to

introduce a novel real-time quaternion impropriety tracking

algorithm. Three quaternion impropriety measures based on

the i-, j-, and k-pseudo-covariances are introduced and it is

illustrated that each impropriety measure is the minimum mean

square error (MMSE) solution for estimating the involutions of

a quaternion random variable along the i, j, and k axes from

the quaternion random variable itself. The mean and mean

square behavior of the proposed algorithm are analyzed and

the results are verified through simulations on both synthetic

and real-world data.

II. QUATERNION ALGEBRA AND STATISTICS

A quaternion variable q ∈ H comprises a real part �(·) and

an imaginary part, or pure quaternion, �(·) consisting of three

imaginary components, so that

q = qr︸︷︷︸
�(q)

+ iqi + jqj + kqk︸ ︷︷ ︸
�(q)

(1)
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where qr, qi,, qj , qk ∈ R. The unit vectors i, j, k are also

imaginary units and obey the following product rules

ij = k jk = i ki = j
i2 = j2 = k2 = ijk = −1

(2)

making the multiplication non-commutative. The quaternion

conjugate is given by q∗ = �(q) − �(q), and the norm by

|q| = √
qq∗ =

√
q2r + q2i + q2j + q2k.

The involution of q ∈ H around ζ ∈ H is defined as qζ =
ζqζ−1 [14]. For the case of i-, j-, and k-involutions, the four

quaternion components can be expressed as [7]

qr =
1

4

(
q + qi + qj + qk

)
qi =

1

4i

(
q + qi − qj − qk

)
(3)

qj =
1

4j

(
q − qi + qj − qk

)
qk =

1

4k

(
q − qi − qj + qk

)
.

With this definition of the ζ-involutions, for ζ ∈ {i, j, k}, it

can be proven that qζ∗ = q∗ζ and qζ = ζqζ
∗
.

In order to make the quaternion augmented statistics suitable

for dealing with both proper and improper signals, a one-

to-one relation is next established between the quaternion

variable q = qr + iqi + jqj + kqk and its real-valued vector

representation [qr, qi, qj , qk] ∈ R
4. From (3), the augmented

quaternion variable qa = [q, qi, qj , qk]T is related to its real-

valued vector counterpart qR = [qr, qi, qj , qk]
T as⎡

⎢⎢⎣
q
qi

qj

qk

⎤
⎥⎥⎦

︸ ︷︷ ︸
qa

=

⎡
⎢⎢⎣

1 i j k
1 i −j −k
1 −i j −k
1 −i −j k

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣

qr
qi
qj
qk

⎤
⎥⎥⎦

︸ ︷︷ ︸
qR

(4)

where the matrix A is an invertible mapping between qR and

qa. The augmented covariance matrix now becomes

Ca
q = E[qaqaH ] =

⎡
⎢⎢⎣

cqq cqqi cqqj cqqk
cqiq cqiqi cqiqj cqiqk
cqjq cqjqi cqjqj cqjqk
cqkq cqkqi cqkqj cqkqk

⎤
⎥⎥⎦ (5)

where ∀ζ, ζ ′ ∈ {1, i, j, k}, cqζ′qζ = E[qζ
′
qζ∗], and cqζ′qζ =

c∗
qζqζ′ . The following properties of the augmented covariance

matrix in (5) will be used in this work.
Property 1: The diagonal elements in (5) are all different

involutions of cqq .
Proof: cqζqζ = E[ζqζζq∗ζ] = −ζE[qq∗]ζ = cζqq .

Property 2: The cross-covariance between the involutions of

q around two of the imaginary units ζ and ζ ′, is equal to the

involution around the imaginary unit ζ of the cross-covariance

between q and its involution around the third imaginary unit

ζ ′′, that is cqjqk = cjqqi .
Proof: cqjqk = E[jqjkq∗k] = E[jqjijq∗ij] =

−jE[qqi∗]j = cjqqi (proofs for the other cases follow simi-

larly).
Therefore, the complete second-order information within

the augmented covariance matrix is contained in the standard

covariance, cqq , and the i-pseudo-covariance, cqqi , j-pseudo–

covariance, cqqj , and k-pseudo-covariance, cqqk .

A. Quaternion impropriety measures

Properness of a quaternion random variable reflects the ratio

of signal powers (and/or correlation) between the components

of a quaternion random variable. Quaternion properness can

be related to the properness of the projection of a quaternion

random variable, q, on the six complex planes denoted by

{1, i}, {1, j}, {1, k}, {i, j}, {i, k}, {j, k} where ’1’ represents

the real axis [7]-[8]. Thus, measuring the complex impro-

priety in these six planes measures the properness of the

quaternion random variable. For complex random variables,

the impropriety measure (known as the circularity quotient)

is defined as the ratio between the pseudo-covariance and

the covariance [15]. From Properties 1 and 2, notice that the

six complex impropriety measures corresponding to the six

pairs of axes can be extracted from the i-, j-, and k-pseudo-

covariances. Thus, similar to the approaches in [7]-[8] and

[12]-[13] we can now define the following three impropriety

measures ρζ ∈ {ρi, ρj , ρk} for quaternion random variables

ρi = E[qq∗]−1E[qqi∗]
ρj = E[qq∗]−1E[qqj∗]
ρk = E[qq∗]−1E[qqk∗]

(6)

These measures reflect the correlation between q and each of

its involutions, normalized by the signal power, E [qq∗].

III. RELATION BETWEEN A QUATERNION VARIABLE AND

ITS INVOLUTIONS

Consider a linear mapping between a zero-mean quaternion

random variable, q, and its involution, qζ , given by

q̂ζ = h∗q (7)

where ζ ∈ {i, j, k}, q̂ζ is the estimate of qζ from q, and the

coefficient h relates q to its ζ-involution. The goal is to find

the optimal value for h, denoted by hopt, that minimizes the

mean square error (MSE) E
[|e|2] = E

[|q̂ζ − qζ |2]. Then,

hopt is the Wiener solution to (7), giving [7]

hopt = E[qq∗]−1E[qqζ∗] (8)

Note the physical meaning of hopt in (8) is the impropriety

measure ρζ given in (6). However, finding the Wiener solution

requires knowledge of the true statistics of the data, which in

general is not available. Moreover, block-based estimators for

the Wiener solution are inadequate for non-stationary signals,

which require an adaptive impropriety estimator.

A. Real-time impropriety estimation

Defining the impropriety measure as the optimal Wiener

solution for estimating qζ from q allows for the use of strictly

linear quaternion-LMS (QLMS) adaptive filters to track the

impropriety measure in real time (here we use the iQLMS form

[16]) . The algorithm for tracking ρζ is therefore described by

q̂ζn = h∗
nqn

en = qζn − q̂ζn
hn+1 = hn + μ

2 qne
∗
n

(9)
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where μ ∈ R
+ is the step size. As QLMS uses instantaneous

estimates of the data statistics, the weights never reach their

optimal values in the absolute sense, and it is important to

analyze the contribution of the bias and variance, of the

parameter estimates to the total MSE. To understand the

behavior of the proposed impropriety tracker, we shall consider

the weight error given by

νn = hn − hopt. (10)

B. Mean weight error behavior

To obtain the range for μ that ensures stable performance

of the proposed impropriety tracker, from (9) we have

hn+1 − hn =
μ

2
qne

∗
n. (11)

Replacing (10) into the error e∗n = qζ∗n − q∗nhn gives

e∗n = qζ∗n − q∗nνn + q∗nhopt (12)

while substituting (12) into (11) yields

νn+1 − νn =
μ

2
qn(q

ζ∗
n − q∗nhn)

νn+1 = νn +
μ

2
qnq

ζ∗
n − μ

2
qnq

∗
nνn − μ

2
qnq

∗
nhopt. (13)

Taking the statistical expectation of (13) and replacing hopt

with the expression in (8), we arrive at

E[νn+1] = E[νn]
(
1− μ

2
E[qnq

∗
n]
)
.

Therefore, the weight error converges to zero for∣∣1− μ
2E[qnq

∗
n]
∣∣ < 1, so that the allowable range for

the step size becomes

0 < μ <
4

E[qnq∗n]
=

4

σ2
qn

· (14)

Remark 1: Note that if the condition in (14) is satisfied, the

algorithm is asymptotically unbiased.

Remark 2: Convergence in the mean is not influenced by the

degree of impropriety of the input signal.

C. Mean square weight error behavior

Consider the variance of the weight error in the steady-state,

given by

E
[
vn+1v

∗
n+1

]
= E

[|νn+1|2
]
= E

[|νn +
μ

2
qne

∗
n|2

]
.

Replacing e∗n = qζ∗n − q∗nhn = qζ∗ − q∗(νn + hopt) into the

equation above gives

E[|νn+1|2] = E
[∣∣νn +

μ

2
qn
(
qζ∗n − q∗n(vn + hopt)

)∣∣2].
For an algorithm that converges in the mean, in the steady-

state hn+1 � hn, so that E[νn] � 0, which gives

E
[|νn+1|2

]
=

E
[|νn|2](1+μ2

4
E
[|qnq∗n|2]− μE[qnq

∗
n]
)
+

μ2

4
ξ

(15)

where

ξ = E
[|qnqζ∗n |2]+ E

[|qnq∗n|2]E[|hopt|2
]

− 2E
[�(qnqζ∗n h∗

optq
∗
nqn)

]
.

(16)

In the steady-state, E
[|νn+1|2

] � E
[|νn|2], and the expres-

sion in (15) simplifies into

E
[|νn|2] = μ

4 ξ

E[qnq∗n]− μ
4E

[|qnq∗n|2] · (17)

For convergence in the mean square, the steady-state weight

error variance, E
[ |vn|2 ], given in (17) must remain positive

and bounded. This is satisfied for E[qnq
∗
n]− μ

4E
[|qnq∗n|2] > 0

which gives the condition

0 < μ < 4
E[qnq

∗
n]

E
[|qnq∗n|2]

where expressing the term E
[|qnq∗n|2] in terms of the second-

order statistics gives

0 < μ <
8

σ2
qn

(
3 + |ρi|2 + |ρj |2 + |ρk|2

) · (18)

Remark 3: From (17) and (18), observe that the mean

square behavior of the proposed quaternion impropriety tracker

depends on the degree of impropriety, as the terms ξ and

E
[|qnq∗n|2] contain impropriety information.

IV. SIMULATIONS

A. Synthetically generated data
The impropriety tracking ability of the algorithm is first

demonstrated on a synthetically generated signal constructed

from three segments of zero-mean white Gaussian noises with

varying pseudo-covariances (and hence impropriety measures)

and unit power. Figure 1 shows the absolute values of the

pseudo-covariances for the data segments with different impro-

prieties, together with their estimates, for μ = 10−1. Observe

that the algorithm produced accurate impropriety estimations

for various types of impropriety.
To illustrate the ability of the proposed impropriety tracker

to identify impropriety in one dimension, we considered j-

impropriety where ρj was set to 0.65 for the first segment,

1 for the second segment, and 0.3 for the third segment.

Figure 2 shows 100 realizations of the estimate of ρj and their

average, demonstrating that the proposed algorithm produces

unbiased estimates and that mean convergence is not affected

by the degree of impropriety; this verifies Remarks 1 and

2. Moreover, observe that the steady-state variance of the

impropriety tracker is dependent on the degree of impropriety

(see Remark 3).

B. Wind data
The wind speed measured in the north, east, and vertical

directions comprised the pure quaternion part and the ambient

temperature was used as the real part of the quaternion-valued

wind signal [6]. The recorded wind signal exhibits high degree

of non-circularity, as seen in the scatter diagram in Figure 3.

Figure 4 shows the impropriety measures corresponding to the

wind regimes, with the step size set to μ = 10−1.
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Fig. 1. Absolute impropriety measures for synthetically generated Gaussian
data (red) and the impropriety estimates (blue).
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Fig. 2. True value of ρj (in red) plotted alongside 100 realizations of its
estimate (in light green) and the average of the estimates (in blue).

−1 0 1
−1

0

1

ℜ{⋅}

ℑ
i{⋅}

−1 0 1
−1

0

1

ℜ{⋅}

ℑ
j{⋅}

−1 0 1
−1

0

1

ℜ{⋅}

ℑ
k{⋅}

−1 0 1
−1

0

1

ℑi{⋅}

ℑ
j{⋅}

−1 0 1
−1

0

1

ℑi{⋅}

ℑ
k{⋅}

−1 0 1
−1

0

1

ℑj{⋅}

ℑ
k{⋅}

Fig. 3. Scatter diagram of the improper distribution of wind data.

C. Communication channel estimation

Finally, we considered a Multiple-Input-Multiple-Output

(MIMO) wireless communication system based on Alamouti

coding [17], whereby the coding scheme is given by[
y1
y2

]
=

[
h1 −h∗

2

h2 h∗
1

] [
s1
s2

]
+

[
η1
η2

]
(19)

while y1 and y2 are two consecutive complex valued received

signals, s1 and s2 are two consecutive complex valued trans-

mitted signals, h1 and h2 are complex valued channel gains
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Fig. 4. Absolute value of the estimated impropriety measures of quaternion-
valued wind data.

between each transmit antenna and the receiver, whereas η1
and η2 represent complex valued noise terms.

Using the Cayley-Dickson representation, two complex

numbers can be combined into a quaternion, giving the quater-

nion form of the Alamouti code as Y = HS + V [18]-[19],

where Y = y1 + jy2, H = h1 + jh2, S = s1 + js2, and

V = η1 + jη2. The circularity of the channel can be used

to analyze its diversity and to establish whether any phase

information can be extracted from the received signal [20].

For the first segment (0 to 2.5 seconds) the two complex

valued channels in (19) were independent, one was proper

complex and the other was improper complex with a complex

impropriety measure of 8×10−1. For the second segment (2.5
to 5 seconds) both channels were complex circular and had a

cross-correlation of 4 × 10−1. Figure 5 illustrates the ability

of the proposed impropriety tracker to successfully track the

changes in channel statistics; the step size was μ = 10−2 and

the channel was measured every 5 milliseconds.
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Fig. 5. Channel impropriety measure estimation of an Alamouti communi-
cation system.

V. CONCLUSION

A real-time tracker of quaternion impropriety has been

introduced. This has been achieved based on the MMSE linear

estimation of the involutions of a quaternion random variable

along the i, j, and k axes from the quaternion random variable

itself. Convergence conditions in the mean and mean square

sense have also been obtained. The analysis has shown that the

proposed algorithm produces unbiased estimates and that the

mean behavior of the algorithm is not affected by the degree

of impropriety. On the other hand, the steady-state variance

of the algorithm has been shown to exhibit strong dependence

on the degree of impropriety. The analysis has been verified

using simulations on both synthetic and real-world data.
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