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Abstract—Quaternion-valued adaptive filters based on the
mean square error (MSE) criterion have been extensively studied
in recent years. However, the MSE cost function has only one
degree of freedom, and to circumvent this problem, we propose
another criterion which enables separate control of the magnitude
and phase. Next, a quaternion least mean magnitude phase
(QLMMP) filtering algorithm is introduced and is shown to
provide a unified form for the quaternion least mean square
(QLMS) algorithm, a magnitude-only filtering algorithm, and
a phase filtering algorithm. The convergence analysis of the
normalised version of the QLMMP employs a connection to
the normalised QLMS with a quaternion-valued stepsize. The
proposed algorithms are validated over case studies of the
identification in three-phase power systems.

Index Terms—Quaternions, adaptive filtering, magnitude,
phase, convergence analysis.

I. INTRODUCTION

Quaternions have traditionally been used in aerospace en-

gineering and computer graphics to model three-dimensional

rotation and orientation, as their algebra avoids numerical

problems associated with vector algebras [1]. The recently

introduced HR calculus [2], [3] and augmented quaternion

statistics [4], [5] have triggered a resurgence of research

on quaternion-valued signal processing, owing to a compact

model of mutual interaction between the data channels pro-

vided by quaternions, and the inherent physically meaningful

interpretation for a number of three-dimensional and four-

dimensional problems [6]. Quaternions have subsequently

found new applications in areas including communications,

motion tracking, and biomedical signal processing [7]–[10].

The minimisation of mean square error (MSE) has been

widely used as the basis for the development of adaptive

filtering algorithms. The least mean square (LMS) algorithm

is the most popular example of adaptive MSE minimisation,

and has been extended from the real domain to complex and

quaternion domains in order to cater for multidimensional

signals [11]–[14]. However, the LMS is known not to perform

most efficiently for complex and quaternion signals with

different dynamics in their magnitudes and phases, such as

those caused by Doppler effects [15]. To improve the filtering

performance, several criteria have been proposed to separately

extract the magnitude and/or phase information from complex-

valued signals, such as the least mean phase (LMP) algorithm

for phase estimation [15], the constant modulus channel es-

timator for magnitude estimation [16], and the least mean

magnitude phase (LMMP) algorithm for advanced estimation

of magnitude and phase variations [17], [18].

Magnitude/phase coupling is inherent to quaternion-valued

signals. Based on a definition of phase in the quaternion

domain, a quaternion LMP (QLMP) algorithm has been in-

troduced [19]. However, it requires complicated computations

and the phase change in each iteration is restricted to be

less than π/2. To this end, we here propose a quaternion

LMMP (QLMMP) filtering algorithm which decomposes the

instantaneous squared error cost into a composite of the

squared magnitude error and a term representing the phase

error between the desired signal and the estimate. In this way,

a full control of magnitude and phase cost is achieved, together

with the corresponding weight updates. We next provide

convergence analysis for the normalised QLMMP algorithm

by regarding the QLMMP as a special case of quaternion LMS

(QLMS) with an adaptive quaternion-valued stepsize. This

provides a very general algorithm. By setting equal stepsizes

for the magnitude and phase update, the QLMMP is equivalent

to the standard QLMS with a real-valued stepsize, while the

vanishing phase (or magnitude) stepsize reduces the QLMMP

to a magnitude-only (or phase) filtering algorithm. The phase

filtering algorithm is shown to converge faster than the QLMP,

and can be an alternative to the QLMS when combined with

a simple magnitude adjustment. The performances of the

proposed algorithms are validated by simulations in the context

of frequency estimation of three-phase power systems.

II. QUATERNION ALGEBRA

The quaternion domain H is a four-dimensional vector space

over the real field spanned by the basis {1, ı, , κ} [20]. A

quaternion variable x ∈ H consists of a scalar part R{·} and a

vector part I{·} which comprises three imaginary components,

so that x = R [x] + I [x] = xa + ıxb + xc + κxd, where

xa, xb, xc, xd ∈ R, and ı, , κ are imaginary units with

properties ı2 = 2 = κ2 = −1, ı = −ı = κ, κ = −κ = ı,
κı=−ıκ= . The product of two quaternions x and y is

xy = R[x]R[y]−I[x]I[y]+R[x]I[y]+R[y]I[x]+I[x]×I[y]

where the symbol × denotes vector product. The presence

of the vector product causes the non-commutativity of the

quaternion product, that is, xy 6= yx. The modulus of the

quaternion is defined by |x| =
(
x2
a + x2

b + x2
c + x2

d

) 1

2 . The

quaternion conjugate operator (·)∗ rotates the quaternion along



all three imaginary axes, and is given by x∗ = R [x]−I [x] =
xa − ıxb − xc − κxd.

III. THE QUATERNION LMMP (QLMMP)

For convenience, assume that the desired quaternion-valued

signal at time n arises from the linear model, dn = wT
o xn+ηn,

where xn ∈ HL×1 is the known input vector, wo ∈ HL×1 is

the unknown optimal weight vector of the system, and ηn is

zero-mean white Gaussian noise (WGN) with variance σ2
η. To

estimate dn as yn = wT
nxn, where wn ∈ HL×1 is the weight

vector, the QLMS algorithm, based on the minimisation of

the instantaneous squared error cost Jn = |dn − yn|2, has

been proposed [13]. Using a stepsize µl and the gradient

of Jn with respect to the conjugate of the weight vector,

∇w
∗

n
Jn = − (dn − yn)x

∗
n, the weight update rule of the

normalised QLMS is given by [3]

wn+1=wn−
µl

‖xn‖22
∇w

∗

n
Jn=wn+

µl

‖xn‖22
(dn − yn)x

∗
n. (1)

Following the LMMP approach in [17], the squared error

cost can be decomposed into

Jn = (|dn| − |yn|)2
︸ ︷︷ ︸

Jm,n

+ 2 |dn| |yn| (1− cos θn)
︸ ︷︷ ︸

Jp,n

(2)

where Jm,n is the magnitude cost, Jp,n the phase cost, θn ∈
[0, π] the absolute value of the angle between dn and yn,

and cos θn = R [d∗nyn] |dn|
−1 |yn|−1

. Similar to the complex

LMMP algorithm [17], the minimisation of a linear weighted

combination of Jm,n and Jp,n, Jlmmp,n = αmJm,n + αpJp,n,

where αm, αp ∈ R+ denote the weights, leads to a new

algorithm referred to as the quaternion LMMP (QLMMP).

Note that Jlmmp,n ≥ 0, where the equality holds only when

dn = yn. The gradients of Jlmmp,n with respect to the

conjugate of the weight vector are then calculated as [2], [3]

∇w
∗

n
Jlmmp,n=0.5

[

αm

(

1− |dn|
|yn|

)

yn+αp

(|dn|
|yn|

yn−dn

)]

x∗
n.

With the stepsize µ ∈ R
+, the weight update of the normalised

QLMMP becomes

wn+1=wn − µ ‖xn‖−2
2 ∇w

∗

n
Jlmmp,n

=wn+
µm(|dn|−|yn|)

‖xn‖
2

2
|yn|

ynx
∗
n+

µp

‖xn‖
2

2

(

dn− |dn|
|yn|

yn

)

x∗
n

(3)

where µm = 0.5µαm and µp = 0.5µαp control the respective

convergence rates in the magnitude and phase, so that they are

termed magnitude and phase stepsizes. By adjusting µm and

µp, the QLMMP provides enhanced degrees of freedom in the

minimisation of the cost function, and different convergence

rates and accuracies in the magnitude and phase estimation. In

contrast, the QLMS does not allow for such separate control

of magnitude and phase.

From (3), given the new weight estimate wn+1, the im-

provement in the estimate for dn is

∆y=wT
n+1xn−yn=µm

( |dn|
|yn|

− 1

)

yn
︸ ︷︷ ︸

∆ym

+µp

(

dn − |dn|
|yn|

yn

)

︸ ︷︷ ︸

∆yp

where ∆ym aligns with yn, and ∆yp rotates yn towards dn.

Fig. 1 visualises the estimation improvements in an iteration

of QLMS [3], QLMP [19], and the proposed QLMMP. On

the plane where dn and yn lie, the estimation improvement

in the QLMS, ∆yqlms, points to dn, while the estimation

improvement in the QLMP, ∆yqlmp, is perpendicular to yn,

indicating that the rotation angle of ∆yqlmp is always less than

π/2. By weighting ∆ym and ∆yp via µm and µp, the estimation

improvement in the QLMMP spans the shaded area where

∆yqlms and ∆yqlmp lie.

0

Fig. 1. Geometric interpretations of the QLMMP, QLMS, and QLMP.
Although H is a four-dimensional vector space over R, dn, yn and ∆y all
are on the same plane.

A. Convergence analysis

From (1) and (3), at time n, the QLMMP and QLMS are

equivalent if the stepsize in (1) is quaternion-valued1, that is,

µl = µp +
(µm − µp) (|dn| − |yn|)

|dn − yn|2 |yn|
yn (dn − yn)

∗
. (4)

This connection between the QLMMP and the QLMS with

a quaternion-valued stepsize provides new insights into the

convergence of the QLMMP, which is difficult to analyse

straightforwardly, owing to the high nonlinearity of the cost

function, µmJm,n+µpJp,n. For a set of µm and µp, if all values

of µl calculated from (4) for all dn and yn fall into the con-

vergence region of the normalised QLMS, the corresponding

normalised QLMMP achieves a monotonic decrease in MSE.

Therefore, the following analysis is based on the sufficient

convergence condition of the normalised QLMS derived in

the Appendix, that is, 2R [µl]− |µl|2 > 0.
From (4) we then obtain

R [µl] = µp +
(µm − µp) (|dn| − |yn|)

|dn − yn|2
(|dn| cos θn − |yn|)

|µl|2 =
(µm−µp)(|dn|−|yn|)

|dn−yn|
2 (2µp cos θn + µm − µp) |dn| −

(µm−µp)(|dn|−|yn|)

|dn−yn|
2 (µm + µp) |yn|+ µ2

p

from where

2R [µl]− |µl|2 = g(cos θn) |dn|2 |dn − yn|−2
(5)

with

g(cos θn)

= 2 cos θn
[

(1− µp) (µm − µp) + (µm + µp − µmµp)
|yn|
|dn|

]

+

2µp − µ2
p + 2µm

|yn|2

|dn|2
+ 2 (µp − µm)

|yn|
|dn|

−
(

µm − µp − µm
|yn|
|dn|

)2

1The quaternion-valued stepsize is an extension of the complex-valued
stepsize in complex gradient learning algorithms [21]–[23].



being a linear function of cos θn ∈ [−1, 1] which attains the

extrema when cos θn attains the extrema. Therefore, if g(1) >
0 and g(−1) > 0, then g(cos θn) > 0, ∀θn ∈ [0, π], so that

2R [µl]− |µl|2 > 0 always holds.

We can now deduce the sufficient condition for g(1) > 0
and g(−1) > 0. It is obvious that g(1) > 0 if and only if

0 < µm < 2. Also note that

g(−1) =
(
2µm − µ2

m

) |yn|
2

|dn|
2 + 2

(
µ2

m − 2µmµp + 2µp

) |yn|
|dn|

+(2µp − µm) (2 + µm − 2µp) .

When |yn| = 0, it can be proved that g(−1) > 0 if µm

2 <
µp < 1 + µm

2 . Under the condition µm

2 < µp < 1 + µm

2 , g(−1)

increases with
|yn|
|dn|

∈ [0,+∞), so g(−1) > 0, ∀dn, yn. This

yields a sufficient convergence condition for QLMMP:

0 < µm < 2, 1
2µm < µp < 1 + 1

2µm. (6)

Practically, the stepsizes can exceed the sufficient condition

given by (6), as shown in Section IV.

B. Special cases of QLMMP

1) For µm = µp, the QLMMP is equivalent to the QLMS

with a real-valued stepsize µm. The sufficient convergence con-

dition in (6) reduces to 0 < µm < 2, and the steady-state ex-

cess MSE (EMSE) is obtained from (15) as (2− µm)
−1

µmσ
2
η.

2) For µm 6= 0, µp = 0, the QLMMP becomes a magnitude-

only filtering algorithm which is equivalent to the QLMS with

a real-valued stepsize µm under the constraint that the estimate

yn always aligns with the desired signal dn, that is, θn ≡
0, n = 1, 2, . . .. The sufficient convergence condition in (6)

then reduces to 0 < µm < 2, while the steady-state EMSE is

obtained from (15) as (2− µm)
−1

µmσ
2
η .

3) For µm = 0, µp 6= 0, the QLMMP reduces to a phase

filtering algorithm for which the following holds:

yn+1 = yn + µp

(

dn − |dn| |yn|−1 yn

)

(7)

• If µp = |yn| |dn|−1
, phase estimation is completed in one

iteration for an arbitrary value of phase difference. This is

a fundamental advantage over the set of LMP algorithms

introduced in [15], [19], for which the phase change in

one iteration must be less than π/2.

• If µp < |yn| |dn|−1
, then |yn+1| < |yn|, and the phase

difference θn monotonically converges to zero.

• If µp > |yn| |dn|−1
, then yn+1 and yn lie on two sides of

dn on the plane shown in Fig. 1, and |yn+1| > |yn|, so

that the magnitude of the estimate increases until µp ≤
|yn| |dn|−1

. This adaptive behaviour indicates the stability

of the phase filtering algorithm for all positive µp.

When µm = 0, µp 6= 0, and for stationary signals, we

obtain the steady-state condition: ∠yn ≈ ∠dn, |dn| ≈ |dn+1|,
|yn| ≈ |yn+1|. Therefore, after each weight update, we can

implement a magnitude adjustment to the output by ynew
n+1 =

|dn| |yn|−1
yn+1, and hence perform the complete estimation

of both phase and magnitude of dn+1. This algorithm, termed

modified QLMMP (MQLMMP), can be used as an alternative,

but with superior stability, to the QLMS.

IV. SIMULATIONS

The considered class of QLMS algorithms were used to

estimate the frequency of a simulated three-phase power

system for which the voltages at time n are given by [24]

vm,n=Vn sin

(

2πfTn+ ϕ+
2π

3
m− 2π

3

)

, m = 1, 2, 3 (8)

where Vn is the instantaneous magnitude, ϕ the initial phase, f
the frequency, and T the sampling interval. The three voltages

can be combined into a pure quaternion given by [25]

qn= ıv1,n + v2,n + κv3,n
=

√
1.5Vn [ζ sin(2πfTn+ ϕ)+ζ′ cos(2πfTn+ ϕ)]

=
√
1.5Vne

−ζ′′(2πfTn+ϕ)ζ′
(9)

where ζ =
√

2
3

(
ı− 1

2 − 1
2κ

)
, ζ′ =

√
0.5 (− κ) , ζ′′ =

√
1
3 (ı+ + κ) are the imaginary units. From (9), then

qn+1 = e−ζ′′2πfT qn. (10)

The frequency of the three-phase power system can be adap-

tively calculated through the identification of the system in

(10). We used a simulated three-phase power system, for which

f = 50Hz, Vn = 1V, T = 1ms, and considered the following

two cases of voltage measurements corrupted by different

time-varying noise on magnitude and phase.

Signal 1: The magnitudes of the three voltages in (8) were

corrupted by the same WGN, an, with mean 1 and variance

changing from 0.01 to 0.04 at 0.5 s. The quaternion-valued

measurements of the voltages were additionally subject to

additive noise, hence
√
1.5anVne

−ζ′′(2πfTn+ϕ)ζ′+ηn, where

ηn was quaternion-valued circular WGN with variance 0.0003.

Signal 2: The phases of the three voltages in (8) were

corrupted by the same zero-mean WGN, βn, with variance

changing from 0.01 to 0.04 at 0.5 s. The quaternion-valued

measurements of the voltages were additionally subject to

additive noise, hence
√
1.5Vne

−ζ′′(2πfTn+ϕ+βn)ζ′ + ηn.

Fig. 2 illustrates the evolution of the mean square deviation

(MSD) averaged over 200 simulation runs for three algorithms:

1) normalised QLMMP with µm = 0.04 and µp = 0.4, 2)

normalised QLMS with µ = 0.4, and 3) normalised QLMS

with µ = 0.04. As shown in Fig. 2 (a), for Signal 1, the

QLMMP achieved a lower steady-state MSD than the QLMS

with µ = 0.4. Although the QLMS with µ = 0.04 had a

similar steady-state MSD to the QLMMP, its convergence

was slower. Fig. 2 (b) indicates that the QLMMP attained the

least steady-state MSD among the three algorithms and also

converged faster than the QLMS with µ = 0.04. Fig. 3 shows

the evolution of the phase error power averaged over 200

simulation runs for two algorithms: 1) normalised QLMMP

with µm = 0 and µp = 0.4, and 2) normalised QLMP with

µ = 0.4 [19]. Observe that the QLMMP converged faster

than the QLMP in the phase estimation. Fig. 4 shows the

evolution of the MSD averaged over 200 simulation runs

for the normalised MQLMMP with µp = 0.4 introduced in

Section III-B3. Figs. 2 and 4 indicate that the accuracy of

MQLMMP was lower than that of the QLMMP and QLMS.
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Fig. 2. MSD curves for filtering three-phase voltages using the normalised
QLMMP and normalised QLMS.
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Fig. 3. Phase error power curves for filtering three-phase voltages using the
normalised QLMMP and normalised QLMP.
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Fig. 4. MSD curves for filtering three-phase voltages using the normalised
MQLMMP.

V. CONCLUSION

We have defined a novel cost function for quaternion

adaptive filtering which represents a weighted combination of

the magnitude error and phase error. The QLMMP algorithm

has been derived based on such a cost function, and theoretical

analysis has been conducted to find a range for the stepsizes

that guarantees the convergence. The QLMMP has been shown

to outperform the QLMS and the QLMP by virtue of the en-

hanced degrees of freedom in the cost function. The proposed

framework is general and can be applied to widely linear and

nonlinear processing for quaternion signals [26].

APPENDIX

The stepsize of the QLMS is conventionally real-valued,

but can be alternatively quaternion-valued. Next, we derive

the convergence condition and steady-state performance of

the normalised QLMS with a quaternion-valued stepsize, µl.

Denote the weight error vector by vn = wo −wn, then from

(1) we obtain

v∗
n+1 = v∗

n − 1

‖xn‖22
xnx

H
n v∗

nµ
∗
l − 1

‖xn‖22
xnη

∗
nµ

∗
l . (11)

The eigendecomposition E
{
xnx

H
n

}
= QHΛQ enables

a coordinate transform given by x̄n = Qxn, v̄n = Qv∗
n.

Applying the statistical expectation operator to (11) yields

E {v̄n+1} = E {v̄n}
(

I− E
{

‖x̄n‖−2
2 x̄nx̄

H
n

}

µl

)

. (12)

Thus, the sufficient condition for the mean convergence is∣
∣
∣1− λ

(

E
{

‖x̄n‖−2
2 x̄nx̄

H
n

})

µl

∣
∣
∣ < 1, which implies

2R [µl]− |µl|2 λ
(

E
{

‖x̄n‖−2
2 x̄nx̄

H
n

})

> 0 (13)

where λ
(

E
{

‖x̄n‖−2
2 x̄nx̄

H
n

})

represents any eigenvalue of

the matrix E
{

‖x̄n‖−2
2 x̄nx̄

H
n

}

. It can be proved that 0 <

λ
(

E
{

‖x̄n‖−2
2 x̄nx̄

H
n

})

≤ 1, and so the expression in (13)

can be tightened to 2R [µl]− |µl|2 > 0.
To analyse the convergence in the mean square sense, from

(11) we calculate the variance of the weight error vector as

‖vn+1‖
2

2
= v

T
n+1v

∗
n+1=

(

|µl|
2 − 2R [µl]

)

‖xn‖
−2

2
v
T
nxnx

H
n v

∗
n+

v
T
nv

∗
n + |µl|

2
σ2
η ‖xn‖

−2

2
+ cross terms.

Upon taking statistical expectations of both sides of the above

equation, the mean square deviation (MSD) becomes

E
{

‖vn+1‖22
}

=E
{
vT
nFv

∗
n

}
+ |µl|2 σ2

ηE
{

‖xn‖−2
2

}

F=I+
(

|µl|2 − 2R [µl]
)

E
{

‖xn‖−2
2 xnx

H
n

}

.
(14)

The recursion in (14) converges if and only if all eigenvalues

of F are within (−1, 1) [27], which is equivalent to

−2 <
(

|µl|2 − 2R [µl]
)

λ
(

E
{

‖xn‖−2
2 xnx

H
n

})

< 0.

It can be proved that 0 < λ
(

E
{

‖xn‖−2
2 xnx

H
n

})

≤ 1, and

so the above inequality can be tightened to 2R [µl]−|µl|2 > 0.

This establishes that the normalised QLMS converges in the

mean and mean square sense for 2R [µl]− |µl|2 > 0.

Note that (14) yields

E
{

‖vn+1‖22
}

= E
{

‖vn‖22
}

+ |µl|2 σ2
ηE

{

‖xn‖−2
2

}

+
(

|µl|2 − 2R [µl]
)

E
{

‖xn‖−2
2 |ean|

2
}

where ean = vT
nxn is the a priori error. At the steady

state, lim
n→∞

E
{

‖vn+1‖22
}

= lim
n→∞

E
{

‖vn‖22
}

, and we make

a further assumption that ‖xn‖22 is statistically independent

from |ean|2 to obtain the steady-state excess MSE (EMSE) in

the form

lim
n→∞

E
{

|ean|
2
}

= |µl|2 σ2
η

(

2R [µl]− |µl|2
)−1

. (15)
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