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The Theory of Quaternion Matrix Derivatives
Dongpo Xu and Danilo P. Mandic, Fellow, IEEE

Abstract—A systematic framework for the calculation of the
derivatives of quaternion matrix functions with respect to quater-
nion matrix variables is introduced. The proposed approach is
equipped with the matrix product and chain rules and applies to
both analytic and nonanalytic functions of quaternion variables.
This rectifies a mathematical shortcut in the existing methods,
which incorrectly use the traditional product rule. We also show
that within the proposed framework, the derivatives of quater-
nion matrix functions can be calculated directly, without using
quaternion differentials or resorting to the isomorphism with real
vectors. Illustrative examples show how the proposed quaternion
matrix derivatives can be used as an important tool for solving
optimization problems in signal processing applications.

Index Terms—GHR calculus, Jacobian, non-analytic functions,
quaternion differentials, quaternion matrix derivatives.

I. INTRODUCTION

Quaternion signal processing has recently attracted consid-
erable research interest in areas including image processing
[1]–[3], computer graphics [4], aerospace and satellite tracking
[5], [6], modeling of wind profile [7]–[9], processing of
polarized waves [10]–[12], and design of space-time block
codes [13]–[16]. Recent mathematical tools to support these
developments include the quaternion singular value decompo-
sition [10], quaternion Fourier transform [17], [18], augmented
quaternion statistics [19]–[21] and Taylor series expansion [22].
However, gradient based optimisation techniques in quaternion
algebra have experienced slow progress, as the quaternion
analyticity conditions are rather stringent. For example, the
generalised Cauchy-Riemann condition [23] restricts the class
of quaternion analytic functions to linear functions and con-
stants. One attempt to relax this constraint is the so-called
Cauchy-Riemann-Fueter (CRF) condition [24], however, even
the polynomial functions do not satisfy the CRF condition. The
slice regular condition was proposed in [25], [26], to enable
the derivatives of polynomials and power series with one-sided
quaternion coefficients, however, the product and composition
of two slice regular functions are generally not slice regular.
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In quaternion statistical signal processing, a common opti-
mization objective is to minimize a real cost function of quater-
nion variables, typically in the form of error power,

, however, such a function is obviously non-analytic ac-
cording to quaternion analysis [24], [27], [28] and therefore a
direct use of quaternion derivatives is not possible. To circum-
vent this problem, the so called pseudo-derivatives are often
employed, which treat as a real analytic function of the four
real components of quaternion variable, and then take the real
derivatives with respect to these independent real parts, sepa-
rately. However, this approach makes the computations cum-
bersome and tedious, even for very simple algorithms. An alter-
native and more elegant approach that can deal with non-an-
alytic functions directly in the quaternion domain is the HR
calculus [29], which takes the derivatives of with respect
to a quaternion variable and its involutions. The HR calculus
has been utilized in quaternion independent component analysis
[30], nonlinear adaptive filtering [31], affine projection algo-
rithms [32], and Kalman filtering [33]. However, the traditional
product rule does not apply within the HR calculus because of
the non-commutativity of quaternion product. The recently pro-
posed generalized HR (GHR) calculus [34] rectifies this issue by
making use of the quaternion rotation. It also comprises a novel
product rule and chain rule and is a natural extension of the com-
plex CR (or Wirtinger) calculus [35]–[37], which has been in-
strumental for the developments in complex-valued signal pro-
cessing [38]–[40] and optimization [41]. In [34], the authors
provide a systematic treatment of the derivatives of quaternion
scalar functions which depend on quaternion argument, how-
ever, themore general matrix case was not considered. Problems
where the unknown parameter is a quaternion matrix are wide
ranging, from array signal processing [10], [11] to space-time
coding [13]–[15], and quaternion orthogonal designs [16].
The derivatives of real matrix functions are well understood

and have been studied in [42]–[44]. For the complex-valued
vector case, the mathematical foundations for derivatives have
been considered in [36], where the major contribution is the no-
tion of complex gradient and the condition of stationary point in
the context of optimization. This work was further extended to
second order derivatives together with a duality relationship be-
tween the complex gradient and Hessian and their real bivariate
counterparts [45]. A systematic treatment of all the related con-
cepts is available in [37]. More general complex matrix deriva-
tives have been thoroughly addressed in [46], [47].
Our aim here is to establish a systematic theory for calcu-

lating the derivatives of matrix functions with respect to quater-
nion matrix variables. To this end, the GHR calculus for scalars
is used to develop a new calculus for functions of quaternion
matrices. The ‘vectorise’ (vec) operator and the Jacobian ma-
trix play an important role in the proposed calculus, allowing,
for the first time, for general matrix product and chain rules. In
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TABLE I
NOTATION FOR FUNCTIONS AND VARIABLES

addition, the proposed rules are generic and reduce to scalar cal-
culus rules when the matrices involved are of order one. For a
real scalar function of quaternion matrix variable, the necessary
conditions for the optimality can be found by either setting the
derivative of the function with respect to the quaternion matrix
variable or its quaternion involutions to zero. Meanwhile, the
direction of maximum rate of change of the function is given by
the Hermitian of derivative of the function with respect to the
quaternion matrix variable. Our results therefore offer a gener-
alization of the results for scalar functions of vector variables
and make possible a direct calculation of the quaternion ma-
trix derivatives without use of the quaternion differentials. The
proposed theory is useful for numerous optimization problems
which involve quaternion matrix parameters.
The rest of this paper is organized as follows. In Section II,

some basic concepts of quaternion algebra and the quaternion
differential are introduced and the GHR derivatives are defined
and compared with the complex CR derivatives. The defini-
tion and rules of the quaternion matrix derivatives are given
in Section III. Section IV contains important results, related to
conditions for finding stationary points, and the steepest descent
method. In Section V, several key results are comprised into ta-
bles and some more practical results are derived based on the
proposed theory. Finally, Section VI concludes the paper. Some
of the detailed proofs are given in the appendices.

II. PRELIMINARIES

A. Notations

We use bold-face upper case letters to denote matrices, bold-
face lower case letters for column vectors, and standard lower
case letters for scalar quantities. Notation for functions and vari-
ables is shown in Table I. Superscripts , and denote
respectively the quaternion conjugate, transpose and Hermitian
(i.e., transpose and quaternion conjugate), while the operators

, and denote the real part, trace and norm of
, and and denote the Kronecker and Hadamard product.
The operator vectorizes a matrix by stacking its columns,

is the identity matrix of dimension , and denotes
the zero matrix. By we refer to any linear re-
shaping operator of the matrix, examples of such operators are
the transpose and .

B. Quaternion Algebra

Quaternions are an associative but not commutative algebra
over , defined as1

(1)

1For advanced reading on quaternions, we refer to [48], and to [49] for results
on matrices of quaternions.

where is a basis of , and the imaginary units
and satisfy , which implies

, , . For any
quaternion

(2)

the scalar (real) part is denoted by , while the
vector part comprises the three
imaginary parts. Quaternions form a noncommutative algebra,
i.e., in general for , . The conjugate of a quater-
nion is defined as , while the conjugate of the
product satisfies . The modulus of a quaternion
is defined as , and obeys . The inner
product of and is defined as The inverse
of a quaternion is , an important property
of the inverse is . If , we call a unit
quaternion. A quaternion is said to be pure if , then

and . Thus, a pure unit quaternion is a
square root of 1, such as the imaginary units and .
Quaternions can also be written in the polar form

, where is a pure
unit quaternion and is the angle (or ar-
gument). We shall next introduce the quaternion rotation, key
concepts for the material in this work.
Definition 2.1 (Quaternion Rotation [48, p. 81]): For any

quaternion , the transformation

(3)

geometrically describes a 3-dimensional rotation of the vector
part of by an angle 2 about the vector part of , where

is any non-zero quaternion.
In particular, if in (3) is a pure unit quaternion, then the

quaternion rotation (3) becomes the quaternion involution [50].
Important properties of the quaternion rotation (the proof of (4)
and (5) is given in Appendix I) are

(4)

(5)

where is an unit quaternion, that is, . Hence, the
quaternion in (3) does not need to be an unit quaternion due

to . Note that the real representation in (1) can be
easily generalized to a general orthogonal basis
given in [48], where the following properties hold

(6)
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TABLE II
SUMMARY OF RESULTS FOR QUATERNION MATRIX DIFFERENTIALS

Moreover, quaternion rotations around the quaternions
are given by

(7)

which allows us to express the four real-valued components of
a quaternion as

(8)

C. Quaternion Differential

The differential has the same size as the matrix it is applied to,
and can be found component-wise, that is, .
A convenient way to find the differentials of is to calculate
the difference

First-order Higher-order (9)

Then , comprising the first order
terms of the expression for above. This definition complies
with the multiplicative and associative rules

(10)

where . If and are product-conforming matrices,
it can be verified that the differential of their product is

(11)

Some of the most important results on quaternion matrix dif-
ferentials are summarized in Table II, assuming , , and
to be quaternion constants, and to be quaternion matrix
variables.
The following lemma is useful to distinguish the GHR deriva-

tives from the differential of a quaternion function.
Lemma 2.1: Let , and ,
. If satisfies any of the following equations

(12)

(13)

for all , then for .
Proof: The proof of Lemma 2.1 is given in Appendix II.

D. The GHR Calculus

The quaternion derivative in quaternion analysis is defined
only for analytic functions of quaternion variables. However, in
engineering problems, often the goal is to minimize a measure
of error power, typically a real scalar function of quaternion
variables, that is

(14)

Notice that according to the definition of analytic (regular) func-
tion given in [24]–[28], the function is not analytic. In order
to take the derivative of such functions, the HR calculus extends
the classical idea of the complex CR calculus [35]–[37] to the
quaternion field, whereby the HR derivatives are given by [29]

(15)

Recently, a complementary version of HR derivative is pro-
posed in [34], [52]–[54], that is

(16)

It is important to note that the traditional product rule is not valid
for the HR derivatives (15) and (16), see Example 2.1.
Example 2.1: Find the HR derivative of the real scalar func-

tion given by

(17)

where , .
Solution: By (15) or (16), the HR derivative of is

(18)

(19)

Whenwemisuse the product rule of the HR derivatives, we have
. In contrast, using the novel

product rule (44) and (30), we have
. This shows that the HR derivatives (15) and (16) do

not admit the product rule, however, the GHR derivatives solve
this problem.
We shall now introduce the GHR derivatives (the derivation

of GHR calculus is given in Appendix III).
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Definition 2.2 (The GHR Derivatives [34]): Let
, where . Then, the left GHR

derivatives of the function with respect to and
are defined as

(20)

(21)

while the right GHR derivatives are defined as

(22)

(23)

where , , and are the partial derivatives of
with respect to , , and , respectively, and the set

is a general orthogonal basis of .
For space consideration, without loss in generality, in the

sequel we only consider the left GHR derivatives and write
and . The GHR derivatives can be

regarded as a generalization of the complex CR derivatives in
[36], [37], [46], however, there are significant differences:
• Placement of imaginary units . In (20) and (22),
the terms and cannot be swapped with

due to the non-commutativity of quaternion
product. However, the multiplication operator is commu-
tative in the complex domain.

• The differential of . From (98) and (106), we have
and

. In comparison

in [36], the complex differential is .
• The derivatives of . From (20) and (21), we have

and . In contrast, the complex

CR derivatives .
• Product rule. By Corollary 3.1, we have

. In contrast, the product rule of the complex CR

derivatives is , as given in [36], [37].
• Chain rule. When the matrices in (45) are of order one,
we have .
In contrast, the chain rule of complex CR derivatives is

in [36], [37], [40].
Observe that for , the HR derivatives (15)

and (16) are a special case of the right GHR derivatives (22)
and (20), which are more concise and easier to understand. In
particular, we show that for real functions of quaternion vari-
ables, such as the standard real mean square error (MSE) objec-
tive function, the left and right GHR derivatives are identical,
as shown in (24). This indicates that the choice of the left/right
GHR derivative is irrelevant for practical applications of quater-
nion optimization, a major current source of confusion in the
quaternion community.
Lemma 2.2: Let . Then the following holds

(24)

(25)

(26)

Proof: The proof can be found in Appendix IV.
Lemma 2.3: Let . Then the following holds

(27)

(28)

where and are quaternion constants.
Proof: The proof can be found in Appendix IV.

One example is when and , then we have

(29)

Another example is when and , we have

(30)

Example 2.2: Find the HR derivative of the real scalar func-
tion given by

(31)

where and are quaternion constants.
Solution: When we apply the product rule in conjunction

with the HR derivatives, we obtain

(32)

In contrast to the incorrect result in (32), using the novel product
rule (44) and (30), we have

(33)

This indicates the generic and general nature of the GHR deriva-
tives with respect to the HR derivatives, which do not admit the
product and chain rules. We should, however, mention that the
HR calculus is perfectly correct when these rules are not used.

III. DEFINITION OF QUATERNION MATRIX DERIVATIVES

In the differentiation of matrix functions with respect to a
matrix variable , it is always assumed that all the elements
of are linearly independent.
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TABLE III
NOTATION FOR QUATERNION DERIVATIVES

For a scalar function of an vector , the GHR
derivatives are comprised in the vector

(34)

The gradient of is then the vector

(35)

The existing quaternion gradients are summarized in [55], illus-
trating that the CRF-gradient [27] is not defined for real func-
tions of quaternion variables, and the calculation of the pseudo-
gradient (also known as component-wise gradients) is cumber-
some and tedious [7], [51], making the derivation of quaternion
optimization algorithms prone to errors. The HR-gradient [29]
and the I-gradient [56] are a step forward, but do not admit the
product and chain rules, complicating the calculation of gradient
of nonlinear quaternion functions. On the contrary, the GHR-
gradients defined in (35) comprise the product rule (40)-(41)
and chain rule (45)–(48), while the gradient denotes the
direction of the maximum rate of change of real function ,
see Corollary 4.1.Further, if is an vector function of a
vector variable , then the matrices

...
... (36)

are called the derivatives or Jacobian matrices of . General-
izing these concepts to matrix functions of matrices, we arrive
at the following definition.

Definition 3.1: Let . Then the
GHR derivatives (or Jacobian matrices) of with respect to

are the matrices

(37)

The transposes of the Jacobian matrices and are
called the gradients.
Using the matrix derivative notations in Definition 3.1, the

differentials of the scalar function in (98) and (106) can be
extended to the following matrix case

(38)

(39)

This is different from the complex-valued matrix variable case
in [46], where .
It can be shown by using Lemma 2.1 that the matrix derivatives
in (38) and (39) are unique.
Table III shows the connection between the differentials and

derivatives of the function types in Table I. In Table III, ,
, , , and .

Furthermore, , , ,
, , ,
, , ,

and each of these may be a function of or .

A. Product Rule

In [34]s, we have given an example to show that the tradi-
tional product rule is not valid for the HR calculus of quater-
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nion scalar variable. Now, we shall generalize the product rules
in [34] to the case of quaternion matrix variable.
Theorem 3.1: Let be given by
, where and .

Then, the following relations hold

(40)

(41)

Proof: The differential of can be expressed as

(42)

By using the differentials of and after applying the
operator, we have

(43)

where (4) and (10) are used in the last equality. Hence, the
derivatives of with respect to can be identified as in
(40). The second equality can be proved in similar manner.
Corollary 3.1: Let . Then, the following novel

product rules hold

(44)

Proof: If and the matrices involved in (40) are of
order one, then . Upon using (27),

we have . Hence,
the first part of (44) follows, and the second part can be proved
in a similar way.

B. Chain Rule

A major advantage of the matrix derivatives defined in Defi-
nition 3.1 is that the chain rule can be obtained in a very simple
form, as stated in the following theorem.
Theorem 3.2: Let and suppose

has the GHR derivatives at an interior point of the set .
Let be such that for all .
Assume has GHR derivatives at an inner point

, then the GHR derivatives of the composite function

are as follows:

(45)

(46)

(47)

(48)

Proof: From (38), we have

(49)

The differential of is given by

(50)

By substituting (50) into (49), we have

(51)

According to (38), the derivatives of with respect to can
now be identified as in (45). The other equalities can be proved
in a similar manner.

IV. QUATERNION OPTIMIZATION USING GHR CALCULUS

The objective functions in engineering applications are often
real-valued and thus non-analytic. We next show how to use
matrix GHR derivatives to find stationary points for scalar real-
valued functions dependent on quaternion matrices, together
with the directions where such functions have maximum rates
of change.

A. Stationary Points

We shall now identify five equivalent ways which can be used
to find stationary points of , a necessary condition for
optimality.
Lemma 4.1: Let . Then the following holds

(52)

Proof: Using (25) and (26), the lemma follows.
Theorem 4.1: Let , and let

, where . A stationary point
of the function can be founded by one of the
following five equivalent conditions

(53)

(54)

where and .
Proof: In [42], a stationary point is defined as point where

the derivatives of the function vanish. Thus, gives
a stationary point by definition. Applying the chain rule (45) on
both sides of , gives

(55)

From , it then follows that
, where is the identity

matrix. A substitution of these results into (55), gives

(56)
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TABLE IV
MATRIX DERIVATIVES OF FUNCTIONS OF THE TYPE and

where and is the
matrix in (56), which satisfies

(57)

From (56) and (57), the equalities in (53) are equivalent. The
other equivalent relations can be proved by Lemma 4.1.

B. Direction of Maximum Rate of Change

We next investigate how to find the maximum rate of change
of , a key condition in steepest descent methods, such
as quaternion adaptive filters.
Theorem 4.2: Let . Then, the gradient

defines the direction of the max-
imum rate of change of with respect to .

Proof: From (38), (52), we have

(58)

Using (4) and (52), we further obtain

(59)

where is the Euclidean inner product between real vec-
tors in . By applying the Cauchy-Schwartz inequality
to (59), we obtain

(60)

which indicates that the maximum change of occurs when
is in the direction of . Thus, the

steepest descent method can be expressed as

(61)

where is the step size, and is the value of the
unknown matrix after iterations.
Corollary 4.1: Let . Then the gradient

defines the direction of the
maximum rate of change of with respect to .

Proof: The proof follows directly from Theorem 4.2.

V. ENABLING OF QUATERNION DERIVATIVES IN SIGNAL
PROCESSING APPLICATIONS

A. Derivatives of

Let be . This kind of
function frequently appears in quaternion filter optimiza-
tion [7]–[10] and array signal processing [10]. For example,
the optimization of the output power , where is the
vector of filter coefficients and is the input covariance
matrix. i.e., . Using the product rule in Theorem
3.1, we have

. Some results for such func-
tions are shown in Table IV, assuming ,
to be constant, and to be vector variable.
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1) Quaternion Least Mean Square: This section derives the
quaternion least mean square (QLMS) adaptive filtering algo-
rithm [7], [29], [56] using the left/right GHR derivatives. The
cost function to be minimized is a real-valued function

(62)

where

(63)

and . To illustrate the
versatility of GHR calculus, the QLMS algorithm shall be de-
rived using the left/right GHR derivatives. The weight update
of QLMS based on the left GHR derivatives is given by

(64)

where is the step size and denotes the
left gradient of with respect to . Using the results in
Table IV, the left gradient in (64) can be calculated as

(65)

where time index ‘ ’ is omitted for convenience. Then, the up-
date rule for QLMS becomes

(66)

where the constant in (65) is absorbed into .
Based upon the right GHR derivatives, the QLMS update be-

comes

(67)

where is the step size, and the right gradient of with
respect to , , can be calculated by

(68)

From (67) and (68), the update rule of QLMS becomes

(69)

Remark 5.1: From (66) and (69), notice that the QLMS de-
rived using the left GHR derivatives is exactly the same as that
using the right GHR derivatives, a consequence of the cost func-
tion in (62) being real-valued and Lemma 2.2. In addi-
tion, if we start from in (63),
the final update rule of QLMS would become

. The QLMS algorithm in (66) is there-

fore a generic extension of complex LMS [57] to the case of
quaternion vector.
Remark 5.2: Comparing (66) with the QLMS given in [51],

we can see that the GHR-QLMS is essentially the same as the
QLMS derived using the pseudo-gradient in [51], however, the
use of pseudo-gradient is cumbersome and tedious [7], [51]. No-
tice that the GHR-QLMS is different and more compact than the
original QLMS [7] based on pseudo-gradient, the HR-QLMS
[29] based on the HR-gradient, and the I-QLMS [56] based on
the I-gradient. The difference from the original QLMS arises
due to the rigorous use of the non-commutativity of quaternion
product within the GHR calculus in (65). The difference from
the HR-QLMS and I-QLMS is also due to the rigorous use of
the novel product rules (40)-(41) within the GHR calculus in
(65).
2) Quaternion Affine Projection Algorithm: This section red-

erives the quaternion affine projection algorithm (QAPA) [32]
based on the GHR calculus. The aim of QAPA is to minimize
adaptively the squared Euclidean norm of the change in the
weight vector , that is

(70)

where denotes the
desired signal vector and

denotes the matrix of past input vectors. Using the
Lagrangemultipliers, the constrained optimisation problem (70)
can be solved by the following cost function

(71)

where denotes the Lagrange multipliers. Using the
results in Table IV, we have

(72)

Setting (72) to zero, the weight update of QAPA can be obtained
as

(73)

Using the fact that
, and based on (73), can be solved as

(74)

which gives

(75)

To prevent the normalization matrix within (75)
from becoming singular, a small regularization term
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TABLE V
MATRIX DERIVATIVES OF FUNCTIONS OF THE TYPE

is usually added, where is the identity matrix, while a step size
controls the convergence and the steady state performance.

The final weight update of QAPA becomes

(76)

and is a generic extension from the real and complex case.

B. Derivatives of

For scalar functions , it is common to define
the following matrix derivatives

...
. . .

...
...

. . .
... (77)

which are referred to as the gradient of with respect to
and . Equations in (77) are generalizations of the real- and
complex-valued cases given in [42], [46] to the quaternion case.
A comparison of (37) and (77), gives the connection

(78)

Then, the steepest descent method (61) can be reformulated as

(79)

where is the step size. Some important results of functions
of the type are summarized in Table V, where
or possibly , and are chosen such that
the functions are well defined.
1) Quaternion Matrix Least Squares: Given ,

and , the task is to find such
that the error of the overdetermined linear system of equations

(80)

is minimized. Using the results in Table V, the gradient of
can be calculated as

(81)

Setting (81) to zero, we obtain a normal equation

(82)
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TABLE VI
MATRIX DERIVATIVES OF FUNCTIONS OF THE TYPE

If and are invertible, then the system (80) has a
unique solution

(83)

C. Derivatives of

We next present the derivatives of some elementary matrix
functions which are often used in nonlinear adaptive filters and
neural networks. Other useful examples of matrix functions can
be obtained by simply applying the basic concepts of this work
and the results summarized in Table VI, where or
possibly , and are chosen such that the
functions are well defined.
1) Derivatives of Power Function: Let

be given by , where is a positive integer.
Using the product rule in Theorem 3.1, we have

(84)

where the term , given in Table VI, was used in the
last equality. Note that the above expression is recurrent about

. Expanding this expression and using the initial con-
dition , yields

(85)

In a similar manner, we have

(86)

2) Derivatives of Exponential Function: Let

be given by . From (85), we have

(87)

In a similar manner, we have

(88)

The two examples are a generalization of the quaternion scalar
variable case treated in [34] to the quaternion matrix variable
case. Likewise, the derivatives of the trigonometric functions
and hyperbolic functions can be derived in terms of the expo-
nential function.

VI. CONCLUSIONS

A systematic framework for the calculation of derivatives of
quaternion matrix functions of quaternion matrix variables has
been proposed based on the GHR calculus. New matrix forms
of product and chain rules have been introduced to conveniently
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calculate the derivatives of quaternion matrix functions, and
several results have been developed for quaternion gradient op-
timisation, such as for the identification of stationary points, di-
rection of maximum change problems, and the steepest descent
methods. Furthermore, the usefulness of the presented method
has been illustrated on some typical gradient based optimization
problems in signal processing. For convenience, key results are
given in a tabular form.

APPENDIX I
PROOF OF (4) AND (5)

1) The proof of (4): From (3), we have

, where is an unit quaternion, i.e.,

;
;

;

.
2) The Proof of (5): From (3), we have

;

.
APPENDIX II

PROOF OF LEMMA 2.1

Proof: Let ,
where . From (4) and (10), we
have ,

,
and

. By substituting
and into (12),

we have

. Since the dif-
ferentials and are independent, then

, ,
and . Hence,

it follows that . The second part can
be proved in a similar way.

APPENDIX III
THE DERIVATION OF THE GHR CALCULUS

For any quaternion-valued function , we can state
(since the fields and are isomorphic) that

(89)

where . Then, the function can be
equally seen as a function of the four independent real variables

and , and the differential of can be expressed as
[24]:

(90)

(91)

where , , and are the partial derivatives of with
respect to , , and , respectively. Note that the two equa-
tions are identical since , , and are real quantities.
As a result, both equations are equally valid as a starting point
for the derivation of the GHR calculus.

A. The Derivation of the Left GHR Derivatives From (90)

There are two ways to link the real and quaternion differen-
tials, based on the approach in (8) and its conjugate, which re-
spectively induce the left GHR derivatives and conjugate left
GHR derivatives.
1) The Left GHR Derivatives: By applying the differential

operator to both sides of each expression in (8), we have

(92)

(93)

(94)

(95)

By inserting (92)–(95) into (90), the differential of becomes

(96)

Grouping together and in (96) yields

(97)

Now, we can define the formal left GHR derivatives
and so that

(98)

holds. Comparing (98) with (96) and applying Lemma 2.1, gives
the left GHR derivatives in the form

(99)
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2) The Left Conjugate GHR Derivatives: Apply the conju-
gate operator to equations in (8) and take the differential, to give

(100)

(101)

(102)

(103)

By inserting (100)–(103) into (90), the differential of becomes

(104)

Grouping together and in (104) yields

(105)

We can now define the formal conjugate left GHR derivatives
and so that

(106)

holds. Upon comparing (106) with (104) and applying Lemma
2.1, the following left conjugate GHR derivatives are obtained

(107)

B. The Derivation of the Right GHR Derivatives From (91)

The derivation of the right GHR derivatives is similar to that
of the left GHR derivatives and is omitted for space considera-
tion. We therefore only give the differential of using the right
GHR derivatives

(108)

(109)

Note that the terms cannot swap position
with the differentials because of the non-
commutative nature of quaternion product. By comparing (98)
and (106) with (108) and (109), we notice that the left GHR
derivatives stand on the left side of the quaternion differential
(98) and (106), which is consistent with our common sense.

APPENDIX IV
PROOFS OF LEMMA 2.2 AND LEMMA 2.3

1) The Proof of (24): Since is real-valued, its partial deriva-
tives , , and are real numbers, that is the partial

derivatives , and can swap positions with the imag-
inary units . Hence, the first part of (24) follows from
(20) and (22), and the second part can be proved in a similar
way.
2) The Proof of (25): Since is real-valued, its partial deriva-

tives , , and are real numbers, so that

, where . From (5) and (20), we have

Hence, the first part of (25) follows, and the second part can be
proved in a similar way.
3) The Proof of (26): Since is real-valued, its partial deriva-

tives , , and are real numbers, which yields

, where . From (5) and (20), we

have .
Hence, the first part of (25) follows, and the second part can be
proved in a similar way.
4) The Proof of (27): By the definition of the left GHR

derivative (20) and (5), we have

Hence, the first part of (27) follows, and the second part can be
proved in a similar way.
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5) The Proof of (28): By the definition of the right GHR
derivative (22) and (5), we have

Hence, the first part of (28) follows, and the second part can be
proved in a similar way.
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