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ABSTRACT

The strict Cauchy-Riemann-Fueter (CRF) analyticity conditions es-
tablish that only linear quaternion-valued functions are analytic, pro-
hibiting the development of quaternion-valued nonlinear adaptive
filters for the recurrent neural network architecture (RNN). In this
work, the requirement of local analyticity in gradient based learn-
ing is exercised and proposes to use the local analyticity condition
(LAC) to introduce quaternion-valued nonlinear feedback adaptive
filters. The introduced class of algorithms make full use of quater-
nion algebra and provide generic extensions of the corresponding
real and complex solutions. Simulations in the prediction setting
support the analysis presented.

Index Terms— Nonlinear Adaptive Filtering, Recurrent Neural
Networks, Quaternion Analyticity, IIR filters, RTRL

1. INTRODUCTION

The emergence of vector sensors in many areas of technology,
robotics and biomedicine has highlighted the need to develop fun-
damental algorithmic solutions for the class of three- and four-
dimensional signals. This class of signals is typically encountered in
3D body motion sensors and aeronautic applications, which require
precise descriptors of 3D rotations and orientations. In this respect,
quaternions do not suffer from singularities inherent to the vector
algebra in R

3 and R
4, such as the gimbal lock, and therefore are

widely used in the representation of three- and four-dimensional
measurements. Enabling tools for quaternion signal processing in-
clude spectrum analysis [1], algebraic matrix decompositions [2],
and augmented statistics [3]. For practical filtering and tracking ap-
plications, current quaternion-valued adaptive filters have addressed
the linear system modelling of both the finite impulse response
(FIR) [4] and the infinite impulse response (IIR) [5], and more re-
cently, the more generic class of nonlinear systems and signals [6].

Quaternion-valued nonlinear filtering algorithms makes use of
elementary transcendental functions (ETF) [7], which do not satisfy
the Cauchy-Riemann-Fueter (CRF) conditions; in fact these strict
conditions are met by only linear quaternion-valued functions. To
circumvent this analyticity problem, we adopted an approximate al-
ternative to the CRF conditions, that is, the local analyticity condi-
tion (LAC) [8]. It treats the quaternion variable similarly to a com-
plex variable and can only guarantee the first-order differentiabil-
ity of single variable quaternion functions at a point. Notice, how-
ever, that for most gradient based learning algorithms the first order
derivative is only adequate, enabling the derivation of nonlinear al-
gorithms as shown in [6].

This class of nonlinear algorithms in [6] was based on the feed-
forward architecture and requires a long filter length for the mod-
elling of systems with long term correlations. For such a case, the

IIR architecture is more appropriate due to the feedback, as these
can model long term correlations with a small-scale model. For
completeness, our aim is to investigate the suitability of LAC in
the derivation of gradient-based learning algorithms for feedback ar-
chitectures and to provide building block for recurrent neural net-
works in the context of quaternion-valued signal processing. The
LAC will then allow us to make use of the ‘fully’ rather than the
‘split’ quaternion functions. Similarly to the complex domain [7, 9],
these ‘fully’ quaternion functions permit rigorous treatment of the
cross-information across the data channels, in contrast to the com-
ponentwise operation of the ‘split’ quaternion functions. The use
of the recurrent architecture and the fully quaternion functions will
thus enhance the generality of the existing class of quaternion-valued
adaptive filtering algorithms [4–6]. To demonstrate the usefulness
of our proposed technique, we shall assess the performance of the
proposed Quaternion-valued RTRL (QRTRL) against existing tech-
niques for the prediction of the synthetic 3D Lorenz attractor and
real-world 3D body motion signals.

2. ELEMENTS OF QUATERNION ALGEBRA

A quaternion variable q can be expressed as

q = [qa, q̄] = qa + qbı+ qcj+ qdκ (1)

where qa, qb, qc, qd ∈ R and ı, j, κ are both orthogonal unit vectors
and imaginary units variable. q is called a pure quaternion when its
real part vanishes, i.e., qa = 0. The relationships of these orthogonal
unit vectors are given as

ıj = −jı = κ; jκ = −κj = ı; κı = −ıκ = j;

ıjκ = ı
2 = j

2 = κ
2 = −1 (2)

Quaternion multiplication is calculated as

wx = [wa, w̄][xa, x̄] = [waxa − w̄ · x̄, wax̄+ xaw̄+ w̄× x̄] (3)

where the symbols “·” and “×” denote respectively the dot-product
and cross-product. Observe that the quaternion multiplication is non-
commutative because of the outer product between w̄ and x̄.

Similar to the complex case, the quaternion conjugate and the
norm square are respectively given as q∗ = [qa, q̄]

∗ = [qa,−q̄]
and ‖ q ‖22= qq∗ = q∗q. From this point onwards, all values are
quaternion-valued unless mentioned otherwise.

3. QUATERNION-VALUED NONLINEAR FUNCTIONS

The Cauchy-Riemann (CR) equations which govern the analyticity
in the complex domain C are given by

∂f

∂x
+

∂f

∂y
ı = 0 ⇔

∂f

∂z∗
= 0 (4)
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where f(z) = u(x, y)+ v(x,y)ı and z = x+ yı. Analyticity in the
quaternion domain H is stricter than that in C and is defined by the
Cauchy-Riemann-Fueter (CRF) conditions given by

∂f

∂qa
+

∂f

∂qb
ı+

∂f

∂qc
j+

∂f

∂qd
κ = 0 (5)

It is important to note that only linear quaternion functions satisfy
the CRF conditions prohibiting nonlinear adaptive filtering in H [6].

To relax the restriction imposed by the CRF conditions, the “lo-
cal” analyticity condition (LAC) was used and is defined as [8]

∂f

∂qa
= −

∂f

∂α
ζ̂ (6)

where ζ̂ and α are given by

ζ̂ =
qbı+ qcj+ qdκ

α
; α =

√
q2b + q2c + q2d (7)

The term “local” reflects the fact that the “imaginary” unit ζ̂ is de-
pendent on the values of qb, qc and qd.

The class of functions that satisfy the LAC in (6) are shown to
be fully quaternion functions and their descriptions are given in [6].
The locally analytic exponential function which is used as a building
block for fully quaternion functions, can be expressed

eq = eqa+qbı+qcj+qdκ = eqaeqbı+qcj+qdκ (8)

Then, the definition for the locally analytic tanh(q) and its deriva-
tive are given by [6]

tanh(q) =
e2q − 1

e2q + 1
;

∂ tanh(q)

∂q
= sech2(q) (9)

The entire class of fully quaternion functions and their derivatives
are elaborated in [6].

4. ANALYSIS OF QUATERNION-VALUED FUNCTIONS

We next show that the fully-quaternion functions are superior in cap-
turing the cross-correlations between the dimensions compared to
the split-quaternion functions. Consider again the function eq as it
serves as a building block to construct other quaternion elementary
transcendental functions, that is

eq = eqa + eqb ı+ eqc j+ eqdκ = ya + ybı+ ycj+ ydκ (10)

where ya, yb, yc and yd are the real-valued elements of the
quaternion-valued output. Analyzing the output component ya
shows that E{ya} = E{eqa} contains the corresponding input qa
thus not accounting for the interchannel couplings.

Now consider a “fully” eq function that gives the output

eq = eqaeqbı+qcj+qdκ

= eqa
(
cos(

√
q2b + q2c + q2d) +

qb sin(
√

q2b + q2c + q2d)√
q2b + q2c + q2d

ı

+
qc sin(

√
q2b + q2c + q2d)√

q2b + q2c + q2d
j+

qd sin(
√

q2b + q2c + q2d)√
q2b + q2c + q2d

κ

)

= ya + ybı+ ycj+ ydκ (11)

Examining the output ya componentwise shows that E{ya} =

E

{
eqa cos(

√
q2b + q2c + q2d)

}
represents a nonlinear combination

of all the input components qa, qb, qc, qd, and therefore accounts
for the internal couplings. This analysis holds true for the other
components of a quaternion as well.

5. FCRNN ALGORITHMS IN H

The Fully Connected Recurrent Neural Network (FCRNN) consists
of N neurons and p external inputs. The network has two distinct lay-
ers consisting a feedback layer and a layer of processing elements.
In order to make these terms consistent with past recurrent neural
network literature, we let yl(k) denote the quaternion-valued output
of each neuron, l = 1, . . . , N at time index k and s(k) the (1 × p)
external quaternion-valued input vector. The overall input to the net-
work z(k) represents the concatenation of vectors y(k), s(k) and
the bias input (1 + ı+ j+ κ), and is given by

z(k) = [s(k−1), . . . , s(k−p), 1+ı+j+κ, y1(k−1), . . . , yN(k−1)]T

= z
a
n(k) + z

b
n(k)ı+ z

c
n(k)j+ z

d
n(k)κ (12)

where zan, zbn, zcn and zdn are the real-valued input components cor-
responding to the nth element from the input vector z(k).

A quaternion-valued weight matrix of the network is denoted by
W, where for lth neuron, we have wl = [wl,1, . . . , wl,p+F+1]

T .
In the following subsections, we shall only consider the output from
the first neuron y1(k) (recurrent perceptron) which will result in the
cost function of

E(k) = e1(k)e
∗

1(k) = (ea1(k))
2+(eb1(k))

2+(ec1(k))
2+(ed1(k))

2

(13)
where the error e1(k) = d(k) − y1(k) with d(k) being the desired
signal. The terms ea1 , eb1, ec1 and ed1 denote the error component in
the real part, ı part, j part and κ part.

5.1. Derivation of the Split Quaternion-valued RTRL

The split Quaternion-valued Real-Time Recurrent Learning (QRTRL)
algorithm for FCRNN utilizes the split-quaternion function, whose
output at the lth neuron yl(k) is given by

yl(k) = Φs

(
w

T
l (k)z(k)

)
= Φs

(
netl(k)

)
= Φa

(
netal (k)

)
+Φb

(
netbl (k)

)
ı+Φc

(
netcl (k)

)
j+Φd

(
netdl (k)

)
κ (14)

where Φs(·) denotes the “split” quaternion nonlinearity, Φa is a real-
valued nonlinear activation function applied to the real part of netl,
Φb to the ı part, Φc to the j part and Φd to the κ part. The terms
netal , netbl , netcl and netdl are real-valued, and are given by [6]

⎡
⎢⎢⎣

netal
netbl
netcl
netdl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(wa
l )

Tza − (wb
l )

Tzb − (wc
l )

Tzc − (wd
l )

T zd

(wa
l )

Tzb + (wb
l )

T za + (wc
l )

Tzd − (wd
l )

Tzc

(wa
l )

Tzc + (wc
l )

T za + (wd
l )

T zb − (wb
l )

T zd

(wa
l )

Tzd + (wd
l )

Tza + (wb
l )

Tzc − (wc
l )

T zb

⎤
⎥⎥⎦ (15)

The split QRTRL then minimizes the cost function (13) through
a gradient descent weight update specified by ws,t(k + 1) =
ws,t(k) − μ∇ws,tE(k) where μ is the real-valued learning rate
and the gradient ∇ws,tE(k) is given by

∇ws,tE(k) =
∂E(k)

∂w∗

s,t(k)
=

∂E(k)

∂wa
s,t(k)

+
∂E(k)

∂wb
s,t(k)

ı+
∂E(k)

∂wc
s,t(k)

j+
∂E(k)

∂wd
s,t(k)

κ

(16)
We first expand the term ∂E

∂wa
s,t

in (16) based on the cost function in

(13) to give

∂E(k)

∂wa
s,t(k)

=−e
a
1(k)

∂ya
l (k)

∂wa
s,t(k)

−e
b
1(k)

∂yb
l (k)

∂wa
s,t(k)

−e
c
1(k)

∂yc
l (k)

∂wa
s,t(k)

−e
d
1(k)

∂yd
l (k)

∂wa
s,t(k)

(17)
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where the terms ∂ya
l

∂wa
s,t

, ∂yb
l

∂wa
s,t

, ∂yc
l

∂wa
s,t

and ∂yd
l

∂wa
s,t

represents the real-

valued sensitivity of the network. For convenience, we denote the

sensitivity terms in (17) with Ψ
l,(ηa)
s,t =

∂y
η
l

∂wa
s,t

where η ∈ {a, b, c, d},

resulting in

∂E(k)

∂wa
s,t(k)

=−e
a
1(k)Ψ

l,(aa)
s,t (k)− e

b
1(k)Ψ

l,(ba)
s,t (k)− e

c
1(k)Ψ

l,(ca)
s,t (k)

−e
d
1(k)Ψ

l,(da)
s,t (k) (18)

In order to make further calculations feasible, we assume a small
stepsize so that [5, 10]

w(k) ≈ w(k − 1) ≈ · · · ≈ w(k −M)

∂y(k)

∂w(k)
≈

∂y(k)

∂w(k − 1)
≈ · · · ≈

∂y(k)

∂w(k −M)
(19)

We begin calculating the sensitivity Ψ
l,(aa)
s,t (k) by differentiating

ya
l (k) w.r.t. wa

s,t and applying the assumptions in (19) to yield

Ψl,aa
s,t (k) =

∂ya
l (k)

∂netal (k)

∂netal (k)

∂wa
s,t(k)

= Φ
′

s

(
netal (k)

)(
δslz

a
l (k) +

N∑
q=1

∂yl(k − 1)

∂wa
s,t(k)

)

= Φ
′

s

(
netal (k)

)(
δslz

a
l (k) +

N∑
q=1

w
a
l,p+1+q(k)Ψ

q,(aa)
s,t (k − 1)

− w
b
l,p+1+q(k)Ψ

q,(ba)
s,t (k − 1)− w

c
l,p+1+q(k)Ψ

q,(ca)
s,t (k − 1)

− w
d
l,p+1+q(k)Ψ

q,(da)
s,t (k − 1)

)
(20)

Following a similar approach, we may derive recursive equations for
the other 15 sensitivity terms. We can then group these sensitivity
terms together to obtain the compact solution of

Ψ
l
s,t(k) = Φs

′

(k)

( N∑
q=1

W(k)Ψq
s,t(k− 1) + δslzsplit(k)

)
(21)

where δsl is the dirac-delta function. Each of the real-valued matri-
ces are given as

Ψ
l
s,t=

⎡
⎢⎢⎢⎣

Ψ
l,(aa)
s,t Ψ

l,(ab)
s,t Ψ

l,(ac)
s,t Ψ

l,(ad)
s,t

Ψ
l,(ba)
s,t Ψ

l,(bb)
s,t Ψ

l,(bc)
s,t Ψ

l,(bd)
s,t

Ψ
l,(ca)
s,t Ψ

l,(cb)
s,t Ψ

l,(cc)
s,t Ψ

l,(cd)
s,t

Ψ
l,(da)
s,t Ψ

l,(db)
s,t Ψ

l,(dc)
s,t Ψ

l,(dd)
s,t

⎤
⎥⎥⎥⎦

Φs

′

=

⎡
⎢⎢⎢⎣

Φ
′

a(net
a
l ) 0 0 0

0 Φ
′

b(net
b
l ) 0 0

0 0 Φ
′

c(net
c
l ) 0

0 0 0 Φ
′

d(net
d
l )

⎤
⎥⎥⎥⎦

W=

⎡
⎢⎢⎣

wa
l,p+1+q −wb

l,p+1+q −wc
l,p+1+q −wd

l,p+1+q

wa
l,p+1+q wb

l,p+1+q wc
l,p+1+q −wd

l,p+1+q

wa
l,p+1+q −wb

l,p+1+q wc
l,p+1+q wd

l,p+1+q

wa
l,p+1+q wb

l,p+1+q −wc
l,p+1+q wd

l,p+1+q

⎤
⎥⎥⎦

zsplit=

⎡
⎢⎢⎣

zal zbl zcl zdl
−zbl zal −zdl zcl
−zcl zdl zal −zbl
−zdl −zcl zbl zal

⎤
⎥⎥⎦ (22)

5.2. Derivation of the Quaternion-valued RTRL

For fully Quaternion-valued RTRL, the ouptut yl(k) is given by

yl(k) = Φ
(
w

T
l (k)z(k)

)
= Φ

(
netl(k)

)
(23)

We shall first express the gradient ∇wE(k) as

∇wE(k) = e1(k)
∂e∗1(k)

∂w∗

+
∂e1(k)

∂w∗

e
∗

1(k) = −e1(k)Υ(k)−Ψ(k)e∗1(k)

(24)
where Υ(k) and Ψ(k) are the conjugate sensitivities and sensitivi-
ties respectively, defined by

Ψ(k) =

[
∂y1(k)

∂w1,1(k)
, . . . ,

∂yl(k)

∂wN,N+p+1(k)

]

Υ(k) =

[
∂(y1)

∗(k)

∂w1,1(k)
, . . . ,

∂(yl)∗(k)

∂wN,N+p+1(k)

]
(25)

Calculate the sensitivity Ψl
s,t(k) by differentiating yl(k) in (23)

w.r.t. ws,t, resulting in

Ψl
s,t(k) =

∂yl(k)

∂wa
s,t(k)

+
∂yl(k)

∂wb
s,t(k)

ı+
∂yl(k)

∂wc
s,t(k)

j+
∂yl(k)

∂wd
s,t(k)

κ (26)

To find the term ∂yl

∂wa
s,t

, differentiate yl w.r.t. wa
s,t to yield

∂yl(k)

∂wa
s,t(k)

=
∂yl(k)

∂netl(k)

∂netl(k)

∂wa
s,t(k)

= Φ
′

(netl(k))

(
δsl

(
z
a
l (k) + z

b
l (k)ı+ z

c
l (k)j+ z

d
l (k)κ

)

+
N∑

q=1

ws,t(k)
∂yq(k − 1)

∂wa
s,t(k)

)
(27)

Similar to the derivation of ∂yl
∂wa

s,t
, the terms ∂yl

∂wb
s,t

, ∂yl
∂wc

s,t
and ∂yl

∂wd
s,t

can also be found. Upon summing up these terms and applying the
assumption of small weight change, this yields

Ψl
s,t(k) = Φ

′

(netl(k))

(
− 2δslz

∗

l (k) +
N∑

q=1

ws,t(k)Ψ
q
s,t(k− 1)

)

(28)
Proceeding in a similar manner, the expression for Υl

s,t becomes

Υl
s,t(k) = Φ

′
∗(netl(k))

(
4δslz

∗

l (k) +

N∑
q=1

Υq
s,t(k − 1)w∗

s,t(k)

)

(29)
It is clear that we only need two quaternion-valued sensitivities Υ

and Ψ in (28) - (29) to govern the system in contrast with the 16
real-valued sensitivities in the split-quaternion case shown in (22),
resulting in a reduced computational complexity.

6. SIMULATIONS

The tanh(q) was chosen as the nonlinear activation function and ini-
tial values for Ψ(k) and Υ(k) were set to zero for both algorithms.
The algorithms had the input tap length of p = 3 and output neu-
rons of N = 2; the performance was assessed in a predictive setting.
For simulation purposes, the three-dimensional Lorenz chaotic sig-
nal [10] and three-dimensional real-world Tai Chi motion recorded
from 3D inertial motion sensors were considered.
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6.1. Three-dimensional Lorenz Chaotic Signal

The Lorenz attractor is a three-dimensional chaotic system used to
model atmospheric turbulence with the governing equations given in
[10]. For this experiment, the learning rate for both algorithms were
set to μ = 5 × 10−4. Figure 1a shows the original Lorenz attractor
and the reconstruction of the attractor in the phase space for both
algorithms for one step ahead (M = 1) prediction. Although both
algorithms were able to reconstruct the attractor, the QRTRL esti-
mated a more accurate replica of the attractor than the split QRTRL.

Figure 1b depicts the Lorenz attractor and the reconstructed at-
tractor for both algorithms for ten steps ahead prediction (M = 10).
It is apparent that the output of the QRTRL still resembles the origi-
nal Lorenz attractor, therefore outperforming the split QRTRL.

6.2. Motion Estimation

Five 3D gyroscopes were placed on the left arm, left hand, right arm,
right hand and the waist of an athlete performing Tai Chi movements

and 3D motion data were recorded using the XSense MTx 3DOF
Orientation Tracker. The movement of the left arm was used as a
pure quaternion input for this simulation. For a fair comparison, we
also considered the performance of three parallel real-valued RNNs
trained with RTRL [10]. The learning rate was set to μ = 1× 10−3

for the quaternion-valued algorithms and μ = 1 × 10−2 for the
RTRL since it performed poorly at smaller learning rate.

Figure 2 shows the componentwise performance of the one
step ahead prediction M = 1 of the Tai Chi motion using the
split QRTRL, QRTRL and RTRL algorithms. It can be seen that
the algorithms performed similarly in the X-component. However,
the QRTRL outperformed the split QRTRL and RTRL in Y- and
Z-components. The performance for both the split QRTRL and
RTRL were similar for all three-dimensions. The performances of
the QMLP for both experiments were identical to the split QRTRL
and were omitted due to space limitations.

7. CONCLUSION

A class of quaternion-valued learning algorithms has been intro-
duced. This has been achieved by using a local gradient in [8]
for nonlinear adaptive filters with feedback. The superior perfor-
mances of the fully-quaternion algorithm (QRTRL) compared to the
split-quaternion algorithm (split QRTRL) stems from the fact that
QRTRL accounts for the interchannel couplings in contrast with the
split QRTRL. The componentwise channel processing which oper-
ates on both split QRTRL and RTRL explains their similar perfor-
mances. Simulations over the chaotic Lorenz attractor and real world
three-dimensional motion data illustrate the advantages of the pro-
posed approach. The same framework can be used to introduce any
other nonlinear gradient based learning algorithm, and by removing
the nonlinearity, learning algorithms for IIR filters are obtained.
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