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a b s t r a c t

Second order statistics of quaternion random variables and signals are revisited in order

to exploit the complete second order statistical information available. The conditions for

Q-proper (second order circular) random processes are presented, and to cater for the

non-vanishing pseudocovariance of such processes, the use of ı-E-k-covariances is

investigated. Next, the augmented statistics and the corresponding widely linear model

are introduced, and a generic multivariate Gaussian distribution is subsequently derived

for both Q-proper and Q-improper processes. The maximum entropy bound and an

extension of mutual information to multivariate processes are derived in order to

provide a complete description of joint information theoretic properties of general

quaternion valued processes. A comparative analysis with the corresponding second

order statistics of quadrivariate real valued processes supports the approach.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Standard techniques employed in statistical multichannel
processing typically do not fully exploit the ‘coupled’
nature of the available information within the channels.
Most practical approaches are based on channelwise
processing—this is often inadequate as the components of
a multichannel process are typically correlated. On the other
hand, the quaternion domain H facilitates modelling of
three- and four-dimensional signals, and accounts for the
mutual information between the data channels in a natural
way; this has been reflected in an increasing number of
recent applications based on quaternion modelling. In the
signal processing community, quaternions have been em-
ployed in Kalman filtering [1], MUSIC spectrum estimation
[2], singular value decomposition for vector sensing [3], and
the least-mean-square estimation [4]. However, these
ll rights reserved.

ok),
applications have also revealed some problems in using
standard second order statistics for general quaternionic
signals, especially for processes with of different powers in
data channels, such as in wind modelling [4]. For instance, it
is clear that in most scenarios the two horizontal wind
components will have much large dynamics than the vertical
wind component, leading to noncircular three-dimensional
signal. Recently, there has been a large effort to introduce
complex-valued algorithms suitable for the processing of
both circular and noncircular signals [5]. However, despite
quaternions being a natural generalisation of complex
numbers (their hypercomplex extension), the developments
in the ‘augmented’ statistics of general processes (both
second order circular and noncircular) in the quaternion
domain are still in their infancy.1

It is therefore natural to investigate whether the recent
developments in so-called augmented complex statistics
and widely linear modelling in the complex domain can
1 Second order circular signals are termed proper, whereas second

order noncircular signals are termed improper.
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Table 1
Summary of notations for quaternion variables q¼ qaþıqbþ Eqcþkqd .

Notations Description

Rf�g Scalar real part qa

If�g Vector imaginary part ıqbþ Eqcþkqd

Iı,E,kf�g ı-,E-,k-component of vector imaginary part of q

� Cross-product

qı,E,k ı-E-k-involution given in (6)

ð�Þ
� Quaternion conjugate operator

ð�Þ
T Quaternion transpose operator

ð�Þ
H Quaternion conjugate transpose operator

A 4N�4N mapping matrix H-R4 given in (10)

qa Augmented quaternion-valued vector defined in (10)

qr Quadrivariate real-valued vector defined in (10)

Cqq Standard covariance matrix defined in (13)

Cqı ı-covariancematrix defined in (14)

CqE E-covariance matrix defined in (15)

Cqj k-covariance matrix defined in (16)

s2 Variance

I ð�Þ Interaction information
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be extended to the quaternion domain, in order to provide
theoretical rigour and enhanced practical accuracy. One of
the pioneering results in augmented complex statistics is
the work by Neeser and Massey, who provide a compre-
hensive account of the concept of properness (second
order circularity, rotation invariant probability distribu-
tion). They demonstrated that the covariance matrix
E{zzH} of a complex random vector z alone is not adequate
to describe a complete second order statistical informa-
tion [6] for general signals and that the pseudocovariance
matrix or complementary covariance matrix E{zzT} also
needs to be considered. Further, Van Den Bos formulated a
generic multivariate Gaussian distribution of both proper
and improper complex processes, to show that the
traditional definition of the complex Gaussian distribution
(based on the covariance) is only a special case, applicable
to proper processes only [7]. These foundations have been
successfully used to design novel algorithms in adaptive
signal processing [5], autoregressive moving average
(ARMA) modelling [8], and independent component
analysis [9].

Existing statistical signal processing approaches in H

typically take into account only the information contained
in the quaternion-valued covariance [10,1,2,11]; by
analogy with the complex domain, this is not guaranteed
to maximise the use of the available second order
statistical information. In this direction, Vakhania ex-
tended the concept of ‘properness’ to the quaternion
domain; however, his definition of Q-properness is
restricted to the invariance of the probability density
function (pdf) under some specific rotations around angle
of p=2 [12]. Amblard and Le Bihan further relaxed the
conditions of Q-properness to an arbitrary axis and angle
of rotation j, that is [13]

q9enjq 8j ð1Þ

for any pure unit quaternion n (whose real part vanishes);
symbol 9 denotes equality in terms of pdf. These authors
formulated the Gaussian distribution for single quater-
nion-valued variables in the complex domain, based on
the Cayley–Dickson representation, whereby, a quater-
nion variable q is represented as a pair of two complex
variables z1 and z2, that is, q¼ z1þ{z2 [14]. Buchholz and
Le Bihan also employed the Cayley–Dickson representa-
tion to give further insight into the complex-valued
statistics for quaternion variables [15]. These results
provide an initial insight into the statistics of quaternion
variables; however, they are lacking generality, as they
either consider single quaternion variables or are formu-
lated indirectly via the complex domain. This makes them
not straightforward to apply to multivariate quaternion-
valued random vectors, or to provide a unifying frame-
work for the second order statistical modelling of general
quaternion signals.

This work aims to provide a unifying framework for
the second order statistics of quaternion variables
together with deriving the conditions for complete second
order statistical description of both second order circular
and noncircular signals. We demonstrate that in order to
exploit complete second order information, it is necessary
to incorporate complementary covariance matrices, thus
accounting for a possible improperness of quaternion
processes. The benefits of such an approach are thus likely
to be analogous to the advantages that the augmented
statistics provides for noncircular complex-valued data
[5,16]. The analysis shows that the basis for augmented
quaternion statistics should comprise quaternion involu-
tions. The so-introduced augmented covariance matrix
contains all the necessary second order statistical infor-
mation, and paves the way for widely linear modelling in
H. Next, multivariate Gaussian distribution is revisited in
order to cater for general quaternion processes, leading to
enhanced entropy based descriptors. Finally, conditions
for Q-properness (second order circularity) are presented,
and it is shown that Q-proper Gaussian processes attain
maximum entropy.

The organisation of the paper is as follows: in Section 2
we briefly review the elements of quaternion algebra. In
Section 3, novel statistical measures for quaternion-
valued variables are introduced and the duality with
their quadrivariate real domain counterparts is addressed.
Next, Section 4 revisits the fundamentals of Q-properness
and illustrates its implications on quaternion statistics.
Section 5 illustrates an application of the augmented
quaternion statistics in adaptive filtering. Section 6
formulates a generic Gaussian distribution to cater for
both Q-proper and Q-improper signals. In Section 7, the
upper bound of the entropy of a multivariate quaternion-
valued data is derived, and it is shown that it is attained
for Q-proper signals. Further, the so-called interaction
information, an extension of mutual information to
multivariate processes, is introduced. We conclude this
work in Section 8. For convenience, a summary of nota-
tions is given in Table 1.

2. Properties of quaternion random vectors

2.1. Quaternion algebra

Quaternion domain provides a natural framework for
a unified treatment of three- and four-dimensional



2 Any four of fq,q� ,qı ,qE ,qkg or their conjugates can be used with the

same effect.
3 See for instance the work of Zhang [20]; the computation of

singular values can be performed conveniently using the quaternion

MATLAB toolbox [21].
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processes and can be regarded as a non-commutative
extension of complex numbers [17]. A quaternion variable
q 2 H comprises a real part Rf�g (denoted by subscript a)
and a vector-part, also called a pure quaternion If�g,
consisting of three imaginary components (denoted by
subscripts b, c, and d), and can be expressed as

q¼RfqgþIfqg

¼RfqgþıIıfqgþ EIEfqgþkIkfqg

¼ qaþıqbþ Eqcþkqd 2 H ð2Þ

The orthogonal unit vectors, ı,E,k not only describe the
three axes of the part of a quaternion, but are also
imaginary numbers; their relationships are given by

ıE¼ k Ek¼ ı kı¼ E
ıEk¼ ı2 ¼ E2 ¼ k2 ¼�1 ð3Þ

For every q1,q2 2 H, quaternion multiplication is
defined as

q1q2 ¼Rfq1q2gþIfq1q2g

where Rfq1q2g ¼ q1,aq2,aþq1,bq2,bþq1,cq2,cþq1,dq2,d

Ifq1q2g ¼ q1,aIfq2gþq2,aIfq1gþIfq1g � Ifq2g ð4Þ

where the symbol ‘�’ denotes the vector product;
observe that q1q2 ¼ q2q1�2Ifq2g � Ifq1gaq2q1. The non-
commutativity of the quaternion product is a conse-
quence of the vector product in (4). The quaternion
conjugate is defined as

q� ¼Rfqg�Ifqg ¼ qa�ıqb�Eqc�kqd ð5Þ

2.2. Quaternion involutions and the augmented basis vector

Complex calculus allows for the real and imaginary
part of a complex number z¼ zaþızb to be calculated as
za ¼

1
2 ðzþz�Þ and zb ¼ 1=2ıðz�z�Þ. The necessity to use both

z and z* to describe the elements of the corresponding
bivariate signal in R2 is used as a basis for the augmented
complex statistics, where the ‘augmented’ basis vector is
za=[z, z*]T. However, the quaternion domain does not
permit such convenient manipulation, and a correspon-
dence between the elements of a quadrivariate vector in
R4 and the elements of a quaternion valued variable in H

is not straightforward to establish. To deal with this issue,
we employ the three perpendicular quaternion involu-
tions (self-inverse mappings), given by

qı ¼�ıqı¼ qaþıqb�Eqc�kqd

qE ¼�EqE¼ qa�ıqbþ Eqc�kqd

qk ¼�kqk¼ qa�ıqb�Eqcþkqd ð6Þ

whose conjugates qı�, qE� and qk�are defined as

qı� ¼ qa�ıqbþ Eqcþkqd

qE� ¼ qaþıqb�Eqcþkqd

qk� ¼ qaþıqbþ Eqc�kqd ð7Þ
The four components of the quaternion q can now be
expressed as [18]

qa ¼
1

2
ðqþq�Þ qb ¼

1

2ı
ðq�qı�Þ

qc ¼
1

2E
ðq�qE�Þ qd ¼

1

2k ðq�qk�Þ ð8Þ

Notice that the quaternion conjugate operator ð�Þ� is also
an involution, that is

q� ¼
1

2
ðqıþqEþqk�qÞ ð9Þ

In analogy to the complex domain, to make the augmented
statistics in H suitable for dealing with both second order
circular and noncircular signals, we need to first establish
a one-to-one correspondence between the components of
a quadrivariate real variable (qa, qb, qc, qd) and its
quaternionic counterpart q¼ qaþıqbþ Eqcþkqd. To this
end, following on [19] (see pp. 118–119), the augmented
quaternion signal qa 2 H4N�1 is next considered, and is
related to real valued quadrivariate vectors in R4N�1. Based
on (6)–(9), for convenient manipulation of the components
of quaternion variables, we can use a combination2 of
fq,q�,qı,qE,qkg to define the augmented quaternion vector
qa ¼ ½qT qıT qET qkT �T , which is related to its vectorial
counterpart qr 2 R4N as

qa ¼ Aqr

q

qı

qE

qk

2
66664

3
77775¼

I ıI EI kI

I ıI �EI �kI

I �ıI EI �kI

I �ıI �EI kI

2
66664

3
77775

qa

qb

qc

qd

2
66664

3
77775 ð10Þ

where I 2 RN�N is the identity matrix, and q¼
½q1,q2, . . . ,qN �

T 2 HN�1; similar description also applies to
qı,qE,qk 2 HN�1, and qa, qb, qc and qd 2 R

N�1. The 4N�4N

matrix A provides an invertible mapping between the
augmented quaternion valued signal qa 2 H4N�1 and the

quadrivariate ‘composite’ real valued vector qr ¼ ½qT
a qT

b

qT
c qT

d �
T 2 R4N�1. The inverse mapping from R4N to H4N is

performed using

A�1
¼

1

4
AH

ð11Þ

thus yielding qr ¼ 1
4 AHqa. The determinant of A can be

calculated as a product of its singular values, and so, e.g. for
N=1, the singular values3 of A are {2,2,2,2} and thus
det(A)=16. For an arbitrary vector length N, the determinant
of matrix A therefore becomes

detðAÞ ¼ 16N
ð12Þ

The basis fq,qı,qE,qkg in (10) has been selected, so that the
matrix A satisfies (11), thus facilitating its algebraic
manipulation. In the sequel, we show that due to the



4 In the complex domain, both the covariance Cz ¼ EfzzHg and the

pseudocovariance Pz ¼ EfzzT g should be used, that is

Cza ¼
1

2
RfCzþPzg Czb

¼
1

2
RfCz�Pzg

Czazb
¼

1

2
IıfPz�Czg Czbza ¼ CT

zazb

where Cza and Czb
are, respectively, the componentwise covariance

matrices of the real part za and the imaginary part zb, whereas Czazb
and

Czb za denote the cross-covariance matrices.
5 If a different basis, e.g. fq,q� ,qı� ,qE�g is chosen, the full description of

the second order statistics is still obtained; this also applies to any other

combination of quadruples taken from fq,q� ,qı ,qE ,qkg.
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relation (9), any other combination of four elements of
fq,q�,qı,qE,qkg, for instance fq,q�,qı�,qE�g also represents a
valid basis, however, these bases do not guarantee the
elegant inverse property as in (11).

3. Augmented quaternion statistics

3.1. Preliminaries

The standard covariance matrix Cqq of a quaternion
random vector q=[q1,y, qN]T is given by

Cqq ¼ EfqqHg ð13Þ

and its structure is detailed in Table 3. Observe that the
real and imaginary parts of Cqq are linear functions of the
real-valued covariance and cross-covariance matrices of
the component vectors qa, qb, qc and qd 2 R

N�1. From
Table 3, the cross-correlation matrices have special
symmetry properties, e.g. Cqbqa

¼ CT
qaqb

, and it thus be-
comes apparent that RfCqqg is symmetric, whereas IfCqqg

is skew-symmetric, thus explaining the Hermitian prop-
erty of Cqq.

Based on (8) and (10), the real-valued componentwise
correlation matrices of the components qa, qb, qc and qd

cannot be estimated from the quaternion-valued covar-
iance matrix Cq alone. Hence, second order information
within the quaternion-valued vector q cannot be char-
acterised completely by the covariance matrix, and
complementary correlation matrices: the ı-covariance
Cqı, the E-covariance CqE, and the k-covariance Cqj

need to be used. Based on qıH ¼ ½qı�
1 , . . . ,qı�

N �
T , qEH ¼

½qE�1 , . . . ,qE�N �
T and qkH ¼ ½qk�1 , . . . ,qk�N �

T , these complemen-
tary covariance matrices are defined in (14)–(16), and will
be used to augment the information within the covar-
iance.

Cqı ¼ EfqqıHg ð14Þ

CqE ¼ EfqqEHg ð15Þ

Cqj ¼ EfqqkHg ð16Þ

The structures of the real and imaginary parts of Cqı, CqE,
and Cqk are given in Tables 3 and 4.

Observe that, e.g. all the components of the
ı-covariance Cqı are symmetric, except for the
ı-component IıfCqıg which is skew-symmetric, giving rise
to its ı-Hermitian property. Similarly, the E-covariance CqE

and the k-covariance Cqj are, respectively, E-Hermitian
and k-Hermitian, that is

Cqı ¼ CıH
qı

CqE ¼ CEHqE

Cqj ¼ CkH
qj ð17Þ

These properties are specific to the quaternion domain;
they do not arise in the statistics of complex valued
random variables [9,5], thus illustrating a non-trivial
nature of the extension of augmented complex statistics
to its quaternion counterpart.
3.2. Duality between the quaternionic and quadrivariate

statistics

To justify the need for augmented complex statistics,
where the covariance matrix alone is not adequate
to describe general complex-valued random vectors4

z¼ zaþızb, it was shown that the complete correlation
structure, catering for both proper and improper signals,
can be obtained if the covariance matrices of the
‘composite’ bivariate real vector can be computed from
their complex valued counterparts (see pp. 118–119 [19]).
In Section 2, we have already shown that components of a
composite quadrivariate real variable corresponding to
the quaternion variable q cannot be completely expressed
based on only q and q*, and to be able to introduce
augmented statistics in H, we need to consider an
augmented basis also comprising the involutions qı,qE,
and qk. Following on these results, we show that a
complete second order statistical description in H can be
obtained, provided that the quadrivariate real-valued
correlation matrices of each single component qa, qb, qc

and qd of the quaternion random vector q can be
expressed in terms of the quaternion-valued covariance
and the complementary covariance matrices,5 that is

Cqa
¼

1

4
RfCqqþCqıþCqEþCqjg

Cqb
¼

1

4
RfCqqþCqı�CqE�Cqjg

Cqc
¼

1

4
RfCqq�CqıþCqE�Cqjg

Cqd
¼

1

4
RfCqq�Cqı�CqEþCqjg

Cqbqa
¼

1

4
IıfCqqþCqıþCqEþCqjg

Cqcqa
¼

1

4
IEfCqqþCqıþCqEþCqjg

Cqdqa
¼

1

4
IkfCqqþCqıþCqEþCqjg

Cqcqb
¼

1

4
IkfCqqþCqı�CqE�Cqjg

Cqdqb
¼�

1

4
IEfCqqþCqı�CqE�Cqjg
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Cqdqc
¼

1

4
IıfCqq�CqıþCqE�Cqjg ð18Þ

The augmented quaternion-valued covariance matrix of
an augmented random vector qa ¼ ½qT qıT qET qkT �T (see
also (10)), then becomes

Ca
q ¼ EfqaqaHg ¼

Cqq Cqı CqE Cqj

CH
qı Cqıqı CqıqE Cqıqk

CH
qE CqEqı CqEqE CqEqk

CH
qj Cqkqı CqkqE Cqjqj

2
666664

3
777775 ð19Þ

where the submatrices within (19) are calculated accord-
ing to (13)–(16), and Cab ¼ EfabH

g8a,b 2 fq,qı,qE,qkg. To
verify that the augmented covariance matrix in (19)
provides a complete second order statistical description,
we need to show that it permits a static invertible one-to-
one mapping (isomorphism) with the corresponding real
valued quadrivariate covariance matrix CR, defined as

CR ¼ EfqrqrTg ¼

Cqa
Cqaqb

Cqaqc
Cqaqd

Cqbqa
Cqb

Cqbqc
Cqbqd

Cqcqa
Cqcqb

Cqc
Cqcqd

Cqdqa
Cqdqb

Cqdqc
Cqd

2
66664

3
77775 ð20Þ

Based on the relationship between the augmented
quaternion-valued vector qa and the corresponding real
valued ‘composite’ vector qr in (10), and since from (11)
qr ¼A�1qa ¼ 1

4 AHqa, the real valued quadrivariate covar-
iance matrix can be expressed in terms of the augmented
quaternion valued covariance matrix in (19) as

CR ¼A�1Ca
qA�H

¼
1

16
AHCa

qA ð21Þ

where A�H=(A�1)H. The so-introduced augmented qua-
ternion statistics provides a general tool for unified
second order modelling, of both proper and improper
quaternion random processes.

3.3. Second order stationarity

Recall that a real-valued quadrivariate variable is
wide-sense stationary if all its four components are
jointly wide-sense stationary [22]. Thus, to define statio-
narity in H, it is sufficient to consider the correlation
matrices Cqq, Cqı, CqE, and Cqj, as from (18) they provide
the complete description of quaternion second order
statistics.6

We can now state that a quaternion-valued random
process q(n) is wide-sense stationary, provided
1.
the

PEq
The mean is constant, that is, m¼ EfqðnÞg ¼ K , 8n

2.
 The covariance and its complementary matrices are

function of only the lag t, that is

CqqðtÞ ¼ EfqðnÞqHðnþtÞg

CqıðtÞ ¼ EfqðnÞqıHðnþtÞg
6 Notice that if another basis was chosen (for instance fq,q� ,qı� ,qE�g),

n another set of covariance matrices (Cqq ,Pq ¼ EfqqT g, Pı
q ¼ EfqqıT g,

¼ EfqqET g) would be employed to define stationarity.
CqEðtÞ ¼ EfqðnÞqEHðnþtÞg

CqjðtÞ ¼ EfqðnÞqkHðnþtÞg

All entries of the covariance matrix Cqq ¼ EfqðnÞqHðnÞg
3.

are finite.

Notice that the wide-sense stationarity of Cqq, Cqı, CqE, and
Cqj also implies the wide-sense stationarity of the
corresponding real-valued quadrivariate cross-covar-
iances such as Cqbqa

in (18).

4. Second order circularity in H and Q-properness

The notion of second order circularity (or properness)
in the complex domain refers to complex-valued variables
having rotation-invariant probability distributions, and
consequently a vanishing pseudocovariance [23]. The two
conditions imposed on a complex variable z¼ zaþızb to be
proper (C-proper) are therefore

s2
za
¼ s2

zb

Efzazbg ¼ 0 ð22Þ

that is, the real and imaginary part are of equal power and
not correlated, which amounts to a vanishing pseudocov-
ariance matrix P ¼ EfzzTg.

By continuity, a quaternion-valued second order circular
(Q-proper) variable should satisfy the two conditions in (22)
of a C-proper variable for the six pairs of axes:
f1,ıg,f1,Eg,f1,kg,fı,Eg,fk,Eg and fk,ıg, where ‘1’ represents the
real axis and ı,E,k denote the corresponding imaginary axes.
In other words, the probability distribution of a Q-proper
variable is rotation-invariant with respect to all these six
pairs of axes, leading to the properties of a Q-proper variable
summarised in Table 2 [12].

The first property, P1, states that all the four compo-
nents of a Q-proper variable have equal powers. The
property P2 implies that the components of q are
uncorrelated. Property P3 indicates that the pseudocov-
ariance matrix does not vanish for Q-proper signals, in
contrast to the complex case. Finally, the fourth property
illustrates that the covariance of a quaternion variable is a
sum of the covariances of the process components. Notice
that properties P1 and P2 imply properties P3 and P4.

For quaternion random vectors qW and qu to be jointly
proper, the composite random vector having qW and qu as
subvectors7 also has to be proper. In addition, to
guarantee joint Q-properness, each element of the vectors
qW and qu should satisfy properties P1 and P2 in Table 2,
and they should be uncorrelated (their joint
ı-E-k-covariance matrices vanish). This is discussed in
more detail below.

4.1. Augmented statistics and Q-properness

Following on the complex properness (as detailed in
Section IIIA of [6]), we shall now consider Q-proper random
vectors q¼ ½q1,q2, . . . ,qN�

T 2 HN�1. As shown in [13], by
7 Any subvector of a proper random vector is also proper.



Table 3
Structures of the quaternion-valued covariance matrices in terms of

their quadrivariate real-valued counterparts.

Covariance

matrix
Cqq ¼ EfqqHg Cqı ¼ EfqqıHg

Rf�g Cqa
þCqb

þCqc
þCqd

Cqa
þCqb

�Cqc
�Cqd

Iıf�g Cqbqa
�Cqa qb

þCqdqc
�Cqc qd

Cqb qa
�Cqa qb

þCqc qd
�Cqdqc

IEf�g Cqc qa
�Cqa qc

þCqbqd
�Cqdqb

Cqa qc
þCqc qa

�Cqdqb
�Cqbqd

Ikf�g Cqdqa
�Cqaqd

þCqc qb
�Cqb qc

Cqdqa
þCqa qd

þCqb qd
þCqdqb

Table 4
Structures of the quaternion-valued covariance matrices in terms of

their quadrivariate real-valued counterparts.

Covariance

matrix
CqE ¼ EfqqEHg Cqk ¼ EfqqkHg

Rf�g Cqa
�Cqb

þCqc
�Cqd

Cqa
�Cqb
�Cqc

þCqd

Iıf�g Cqbqa
þCqa qb

þCqdqc
þCqc qd

Cqbqa
þCqaqb

�Cqc qd
�Cqdqc

IEf�g Cqc qa
�Cqa qc

þCqdqb
�Cqb qd

Cqa qc
þCqc qa

þCqdqb
þCqb qd

Ikf�g Cqdqa
þCqa qd

�Cqbqc
�Cqc qb

Cqdqa
�Cqa qd

þCqbqc
�Cqc qb

Table 2

Properties of a Q-proper random variable.

Property Mathematical description

P1 Efq2
dg ¼ s

2 8d¼ a,b,c,d

P2 Efqdqeg ¼ 0 8d,e¼ a,b,c,d and dae
P3 Efqqg ¼�2Efq2

dg ¼�2s2 8d¼ a,b,c,d

P4 Efjqj2g ¼ 4Efq2
dg ¼ 4s2 8d¼ a,b,c,d
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analogy to single quaternion variables, Q-properness implies
that the quaternion vector q is not correlated with its vector
involutions qı, qE, qk, that is,8

EfqqıHg ¼ 0 EfqqEHg ¼ 0 EfqqkHg ¼ 0 ð23Þ

and thus has vanishing complementary covariance matrices
(specified in Tables 3 and 4). A Q-proper random vector is
invariant under a linear or affine transformation, similar
to the complex case (see Lemma 3 [6]). Based on (17),
it is straightforward to show the condition of vanishing
ı-covariance matrix, Cqı ¼ 0, in (14) is equivalent to the
conditions

Cqbqa
¼ CT

qbqa
Cqcqd

¼ CT
qcqd

Cqcqa
¼�CT

qcqa
Cqdqb

¼�CT
qdqb

Cqdqa
¼�CT

qdqa
Cqbqc

¼�CT
qbqc

ð24Þ

and the vanishing E-covariance matrix, CqE ¼ 0, in (15)
implies

Cqbqa
¼�CT

qbqa
Cqcqd

¼�CT
qcqd

Cqcqa
¼ CT

qcqa
Cqdqb

¼ CT
qdqb

Cqdqa
¼�CT

qdqa
Cqbqc

¼�CT
qbqc

ð25Þ

whereas, the vanishing the k-covariance matrix, Cqk ¼ 0,
in (16) yields

Cqbqa
¼�CT

qbqa
Cqcqd

¼�CT
qcqd

Cqcqa
¼�CT

qcqa
Cqdqb

¼�CT
qdqb

Cqdqa
¼ CT

qdqa
Cqbqc

¼ CT
qbqc

ð26Þ

Since from above Cqbqa
¼�CT

qbqa
for (25) and (26), whereas

Cqbqa
¼ CT

qbqa
for (24), this means that Cqbqa

¼ 0. Similar
observations can be made for the other componentwise real-
valued cross-correlation matrices, meaning that for a
Q-proper signal, all the real-valued cross-correlation matri-
ces of the components qa, qb, qc, and qd need to vanish. This,
in turn, implies that
�

me

E{z
All the four individual components of a quaternion
variable q‘ are uncorrelated (property P2 in Table 2).

�
 The components of q‘ and qR are uncorrelated for ‘aR

(in contrast to the complex case [6,23]).
8 Similarly, for a complex-valued random vector z, C-properness

ans that z is not correlated with z* in ‘complex sense’, because

(z*)H}=E{zzT}=0.
�
 The augmented covariance matrix Ca
q of a Q-proper

random vector q is real-valued, positive definite, and
symmetric.

For a Q-proper random vector, it follows from properties
P2 and P4 in Table 2, that the covariance matrices
(13)–(16) are real-valued and diagonal, and the covar-
iance matrix of a Q-proper process is positive definite,
leading to a simpler structure of the augmented covar-
iance matrix Ca

q, given by

Ca
q ¼

Cqq 0 0 0

0 Cqıqı 0 0

0 0 CqEqE 0

0 0 0 Cqkqk

2
66664

3
77775¼ 4s2I ð27Þ

Notice that the cross-covariance matrices Cab also vanish
and the determinant can be readily expressed as
detðCa

qÞ ¼ ð4s2Þ
4N .

Another kind of properness in H is the so-called
C-properness [13], whereby the variable q is correlated
with one of fqı,qE,qkg, but it is not correlated with the
remaining two perpendicular involutions. However, when
applied to general signals, the concept of C-properness is
restrictive, as it implies a rotation of p=2 in two specific
two-dimensional planes. For instance, Cı-properness
involves only the planes spanned by f1,ıg and fE,kg, and
due to its insufficient number of degrees of freedom, it is
not further discussed,9 highlighting the fact that it is not
straightforward to extend the augmented statistics from
C to H. Instead, we perform our analysis directly in H,
addressing complete ‘augmented’ second order statistics
for the generality of multivariate quaternion-valued
random vectors including Q-proper, C-proper or impro-
per random vectors.
9 For more details on C-properness for single quaternion variables,

see for instance [13].
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5. The quaternion widely linear model

To exploit the complete second order statistics of
quaternion valued signals in linear mean-squared error
(MSE) estimation, we need to consider a filtering model
similar to the widely linear model developed for the
complex case [24]. To this end, consider the MSE
estimator of a real-valued signal y in terms of another
observation x, that is, ŷ ¼ E½yjx�; for zero mean, jointly
normal real valued y and x, the solution is a linear model

ŷ ¼ hT x ð28Þ

Standard widely used linear models in H are assumed to
be simple extensions of the real-valued MSE estimator in
(28), that is, ŷ ¼ hHx. Based on the augmented quaternion
statistics introduced in Section 3, it is not sufficient to
simply replace the real variables in (28) by quaternion
variables; instead it is important to realise that the
estimator ŷ ¼ E½yjx� must be applied to every component
(the real and the three imaginary parts) of quaternion
variables, that is

ŷb ¼ E½ybjxa,xb,xc ,xd�, b 2 fa,b,c,dg

The conditional estimator of a quaternion variable thus
becomes

ŷ ¼ E½yajxa,xb,xc ,xd�þıE½ybjxa,xb,xc ,xd�

þ EE½ycjxa,xb,xc ,xd�þkE½ydjxa,xb,xc ,xd� ð29Þ

and the use of involutions in (8) allows us to replace the
components xa,y,xd in (29) by full quaternions (variable x

and its involutions), and thus express the quaternion
estimator in the form

ŷ ¼ E½yjx,xı,xE,xk�þıE½yıjx,xı,xE,xk�

þ EE½yEjx,xı,xE,xk�þkE½ykjx,xı,xE,xk� ð30Þ

The widely linear model for general quaternion signals
therefore becomes [25]

y¼waHxa ¼ gHxþhHxıþuHxEþvHxk ð31Þ

The Wiener solution which minimises the MSE Efjy�dj2g

based on the QWL model (31) is then given by10

wa ¼ EfxaxaHg�1Efxad�g ð32Þ

Observe that the QWL Wiener solution has the same
general form as the standard solution, but is based on the
augmented covariance matrix Ca

xa
in (19). For Q-proper

signals, the augmented covariance matrix simplifies to
(27), leading to the solution

wa ¼
1

4s2
Efxad�g

The corresponding real-valued quadrivariate model relies
on the real-valued covariance matrix in (20) [26], and to
provide insight into the duality between the quadrivariate
and quaternion second order modelling, we need to
establish the relationship between the eigenproperties
of CR and Cxa . Based on the roots of CR�lI¼ 0, the
relationship (21), and the fact that I¼ A�1A¼AHA=4, we
10 For clarity the derivation is given in Appendix A.1. Symbol d

denotes the desired signal.
obtain

CR�lI¼
1

16
AHCa

xa
A�l

AHA

4
¼

1

16
AH
½Ca

xa
�4lI�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
@

A ð33Þ

Notice that @¼ ½Ca
xa
�4lI�, and thus the eigenvalues of the

augmented quaternion covariance matrix (19) are four
times those of the quadrivariate real-valued covariance
matrix (20). Thus, for instance, if the quaternion least
mean square (QLMS) adaptive filtering algorithm exploits
the widely linear model, it will converge four times faster
than its multichannel quadrivariate counterpart, for the
same learning rate (see also [4]). Another example of the
use of augmented statistics in an information-theoretic
context is the derivation of the Gaussian distribution and
its relevance to the maximum entropy theorem in H,
similar to the complex case as described in [6]; this is next
discussed in Section 6.

6. A multivariate Gaussian distribution for Q-proper and
Q-improper variables

In the complex domain, based on the duality between
a complex variable z¼ zaþızb 2 C and a corresponding
composite real variable o¼ ½za,zb� 2 R

2, Van Den Bos
proposed a generic complex-valued Gaussian distribution
to cater for both C-proper and C-improper processes [7];
this was further elaborated by Picinbono [27]. In the same
spirit, we shall address the expressions for probability
distributions of both proper and improper processes in H,
and will next introduce a generic Gaussian distribution for
multivariate quaternion valued random signals.

A quaternion valued random variable is Gaussian if all its
components are jointly normal, and their joint Gaussian
probability distribution is given by

pðqa,qb,qc ,qdÞ ¼
1

ð2pÞ2NdetðCRÞ
1=2

expf�1
2f ðqa,qb,qc ,qdÞg

ð34Þ

where

f ðqa,qb,qc ,qdÞ ¼ qrTC�1
R qr ¼ qrHC�1

R qr ð35Þ

It is assumed that qa, qb, qc and qd 2 R
N�1 have zero mean,

but this does not restrict the generality of the results. To
make the Gaussian distribution (34) cater for both Q-proper
and Q-improper signals, we need to involve the augmented
quaternion valued vector qa in (10). This is achieved based
on the investigation of the determinant of the quadrivariate
covariance CR and the quadratic function in (35).

The determinant of CR can be expressed as a function of
Ca

q, that is

detðCRÞ ¼ detðA�1Ca
qA�H

Þ ¼ detðA�1
ÞdetðCa

qÞdetðA�H
Þ ð36Þ

where A is given in (10). From (12), det(A)=16N and since
det(A�1)=det(A)�1, the above expression can be further
simplified to

detðCRÞ ¼ ð
1

16Þ
2NdetðCa

qÞ ð37Þ

The quadratic function (35) can be also expressed as a
function of the augmented quaternion-valued random



Table 5
Summary of complex-valued and quaternion-valued algebra and statistics.

The complex domain C The quaternion domain H

z¼ zaþızb q¼ qaþıqbþ Eqcþkqd

za ¼
1

2
ðzþz�Þ qa ¼

1

2
ðqþq�Þ

zb ¼
1

2ı
ðzþz�Þ qb ¼

1

2ı
ðq�qı�Þ

qc ¼
1

2E
ðq�qE�Þ

qd ¼
1

2kðq�qk�Þ

ız¼ zı ıqaqı EqaqE kqaqk
Augmented C-variable za={z,z*} Augmented Q-variable qa ¼ fq,qı ,qE ,qkg

Cz ¼ EfzzHg Pz ¼ EfzzT g Cq ¼ EfqqHg Cı
z ¼ EfqqıHg

CEq ¼ EfqqEHg Ckz ¼ EfqqkHg

Properness does not imply that EfRfz‘gIfzkgg ¼ 0 8ka‘ Q-Properness implies that EfRfq‘gIfqkgg ¼ 0 8ka‘

For a proper signal, E{zzT}=0 For a Q-proper signal, EfqqT ga0
Complex-valued Gaussian distribution

pðzaÞ ¼
1

pNdetðCa
z Þ

1=2
exp �

1

2
zaHCa�1

z za

� � Quaternion-valued Gaussian distribution

pðqaÞ ¼
1

ðp2=4ÞNdetðCa
qÞ

1=2
exp �

1

2
qaHCa�1

q qa

� �
Mutual information Interaction information
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vector qa, that is

f ðqa,qb,qc ,qdÞ ¼ qrHC�1
R qr ¼ ðqaHA�H

ÞðAHCa�1

q AÞðA�1qaÞ

¼ qaHCa�1

q qa ¼ pðq,qı,qE,qKÞ ð38Þ

Substitute (37) and (38) into (34) to express the Gaussian
probability density function for an augmented multi-
variate quaternion-valued random vector qa as

pðqaÞ ¼ pðq,qı,qE,qKÞ ¼
1

ðp2=4ÞNdetðCa
qÞ

1=2
expf�1

2qaHCa�1

q qag

ð39Þ

For a Q-proper vector, it can be shown (using (27)) that
the Gaussian distribution (39) simplifies to

pðq,qı,qE,qKÞ ¼
1

ð2ps2Þ
2N

expf� 1
2s2qHqg ð40Þ

that is, the argument in the exponential is a real function of
only jqj ¼ qHq, thus highlighting the correspondence with
the real and proper complex Gaussian distributions [5].
11 The proof is given on p. 336 of [29].
7. A note on information theoretic measures

7.1. Differential entropy for quaternion-valued random

vectors

Based on Section 6 and the results in [6], we can now
generalise the maximum entropy principle to the quater-
nion-valued multivariate case [6,28]. The differential
entropy of a generic (Q-proper or Q-improper) quater-
nion-valued Gaussian random vector can be expressed as
(the derivation is included in Appendix A.2)

HðqÞ ¼ log½ðpe=2Þ2NdetðCa
qÞ

1=2
� ð41Þ

The upper bound on the differential entropy of a
quaternion valued random vector q is given by

HðqÞr2N log½ð2pes2Þ� ¼Hproper ð42Þ
The equality holds for a centered Q-proper Gaussian
random vector q (as shown in Appendix A.3). It is
straightforward to show11 that the differential entropy of
a quaternion random vector with arbitrary probability
density function pA(q) cannot be greater than that of a
vector with the Gaussian distribution (39) with the same
augmented covariance matrix, thus confirming that a
Q-proper Gaussian process attains the upper entropy limit.
The difference in entropy values is due to the improperness
of a quaternion-valued Gaussian random vector and can be
quantified by the difference between (42) and (41).

7.2. Beyond mutual information–interaction information

Standard mutual information (MI) considers only two
variables, and its generalisation to higher dimensions
is provided using the so-called ‘interaction information’
I [30]. Unlike mutual information, the interaction
information I can be negative; physical meaning of a
positive I can be interpreted as the consequence of an
increase in the degree of association between the variates
of a multivariate quantity, when one variable is kept
constant. The reverse applies for Io0 [30]. The interac-
tion information I between quaternion-valued Gaussian
random vectors q, qı, qE and qk can be measured as

I ðq;qı;qE;qkÞ ¼ I ðqa;qb;qc;qdÞ

¼HðqaÞþHðqbÞþHðqcÞþHðqdÞ�Hðqa,qb,qc ,qdÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hproper�HðqÞ

þHðqa,qb,qcÞþHðqa,qb,qdÞþHðqa,qc ,qdÞ

þHðqc ,qb,qdÞ�Hðqa,qbÞ�Hðqa,qcÞ�Hðqa,qdÞ

�Hðqb,qcÞ�Hðqb,qdÞ�Hðqc ,qdÞ ¼ log
ð8s4Þ

N

detðCa
qÞ

1=2

" #

þHðqa,qb,qcÞþHðqa,qb,qdÞþHðqa,qc ,qdÞ

þHðqc ,qb,qdÞ�Hðqa,qbÞ�Hðqa,qcÞ�Hðqa,qdÞ

�Hðqb,qcÞ�Hðqb,qdÞ�Hðqc ,qdÞ ð43Þ
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attaining the value of I ¼ 0, for Q-proper signals. Table 5
gives a comparative overview of both second order
statistics and information theoretic measures in C and H.

8. Concluding remarks

Second order statistics and information theoretic mea-
sures for quaternion-valued random variables and processes
have been revisited. To make use of complete information
within quaternion-valued second order statistics, comple-
mentary statistical descriptors the ı-covariance, the
E-covariance, and the k-covariance matrices have been
employed. The so-introduced augmented statistics has
served as a basis for a widely linear quaternion model and
the widely linear Wiener solution, and the concept of
Q-properness (second order circularity) has been addressed
based on the properties of the augmented covariance
matrix. Further, the generic Gaussian multivariate distribu-
tion has been extended to quaternion-valued data, so as to
cater for both Q-proper and Q-improper variables and
vectors. The upper bound on the entropy of multivariate
quaternion-valued processes has been provided, and it has
been shown that this bound is attained for Q-proper
processes. Comparative analysis with real quadrivariate
statistics supports the analysis.

Whereas Le Bihan et al. demonstrated how complex-
valued statistics can be employed to give an insight into the
statistics of quaternion-valued signals, we set out to
introduce the augmented statistics directly in H, thus
providing a unifying framework for the analysis of second
order circular and noncircular signals based on the
isomorphism with quadrivariate real processes. The choice
of the preferred approach depends on the particular
application. A related work [31,32] uses a different basis
to address quaternion statistics and develop closed form
solutions in the context of principal component analysis
and canonical correlation analysis. In this work and our
companion articles [33,25], we have focused on statistical
signal processing aspects such as widely linear model,
stationarity, ‘interaction information’, and the Wiener filter.
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Appendix A

A.1. Derivation of the widely linear Wiener solution in H

Consider the standard real valued mean square error
(MSE) function, that is,

E¼ Efee�g ¼ Ef½d�y�½d��y��g

¼ Efdd�gþEfyy�g�Efyd�g�Efdy�g ð44Þ

The derivative of the cost function (44) can be expressed as

rwa E¼ Efðrwa yÞy�þyðrwa y�Þ�ðrwa yÞd��dðrwa y�Þg

¼ Ef4½xay��xad��g|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Y

þEf2½dðnÞxa�yxa�g|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

ð45Þ
To obtain the Wiener solution, the expectations of the terms
Y and F in (45) are both set to zero. In the complex domain
C, the terms Y and F in (45) are summed up; however, due
to the non-commutativity of the quaternion product, we
need to treat the terms in (45) separately, yielding the
Wiener solution

Y : wa ¼ EfxaxaHg�1Efxad�g ð46Þ

F : wa ¼ Efxa�xaHg�1Efxa�d�g ð47Þ

The first term (46) requires the inversion of the augmented
covariance Ca

x ¼ EfxaxaHg, whereas the second condition (47)
also relies on the conjugate of pseudocovariance matrix of
the augmented vector xa, which conforms with the observa-
tion in [4] that the quaternion domain accounts inherently
for the information contained in pseudocovariance.

A.2. Derivation of the maximum entropy of a quaternion-

valued random vector

Let pA(q) be an arbitrary probability density function
and p(q) the Gaussian distribution (39). For convenience
(with a slight abuse of notation), we denote

RR RR
� � �
RR RR

by
a single integration symbol

R
and dqa,1dqb,1dqc,1dqd,1 � � �

dqa,Ndqb,Ndqc,Ndqd,N by dqZ
pAðqÞlog

1

pðqÞ

� �
dq

¼

Z
pAðqÞlog ðp2=4ÞNdetðCa

qÞ
1=2expf12qaHCa�1

q qag

h i
dq

�

Z
pAðqÞlog ðp2=4ÞNdetðCa

qÞ
1=2expf2Ng

h i
dq

� log ðp2e2=4ÞNdetðCa
qÞ

1=2
h i Z

pAðqÞdq

� log ðpe=2Þ2NdetðCa
qÞ

1=2
h i

ð48Þ

Notice that the approximation in (48) arises because of
the approximation of expf12 qaHCa�1

q qag � expf12 tracefCa�1

qaqaH
gg ¼ expf2Ng. For a Q-proper Gaussian random

vector, the augmented covariance matrix has the special
structure (27), its determinant is detðCa

qÞ ¼ ð4s2Þ
4N , and

the expression (48) can be further simplified into

Hproper ¼ 2Nlog½ð2pes2Þ� ð49Þ

A.3. Maximisation of entropy for a Q-proper random

variable

To demonstrate that the entropy of q¼ qaþıqbþ

Eqcþkqd 2 H is maximised for a Q-proper random
variable, we first address the maximum entropy of the
corresponding real-valued quadrivariate vector qr

s=[qa qb

qc qd]T. According to the maximum entropy principle, the
entropy of qr

s satisfies (see p. 234 [28])

Hðqr
sÞr

1

2
log½ð2peÞ4detðCRÞ� ð50Þ

where the equality holds, iff qr
s is a centered Gaussian

random vector. Upon evaluating the corresponding en-
tropies for N=1, observe that the real quadrivariate
covariance matrix CR in (20) is positive definite and has
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a special block structure

CR ¼
C B

BT C

� �
ð51Þ

which implies that (see [34, p. 478])

detðCRÞ ¼ detðCÞdetðC�BTC�1BÞrdetðCÞdetðCÞ ð52Þ

and is maximised (equality holds) when B=0, yielding

Efqaqcg ¼ Efqaqdg ¼ Efqbqcg ¼ Efqbqdg ¼ 0 ð53Þ

Since for the two 2 �2 matrices detðCÞ ¼ Efq2
agEfq

2
bg�

Efqaqbg
2 and detðCÞ ¼ Efq2

c gEfq
2
dg�Efqcqdg

2, the determi-
nant detðCRÞ satisfies

detðCRÞr ½Efq2
agEfq

2
bg�Efqaqbg

2�½Efq2
c gEfq

2
dg�Efqcqdg

2�

¼ Efq2
agEfq

2
bgEfq

2
c gEfq

2
dgþEfqaqbg

2Efqcqdg
2

�Efqaqbg
2Efq2

c gEfq
2
dg�Efqcqdg

2Efq2
agEfq

2
bg

rEfq2
agEfq

2
bgEfq

2
c gEfq

2
dgþEfqaqbg

2Efqcqdg
2 ð54Þ

The equality holds if and only if

Efqaqbg
2 ¼ Efqcqdg

2 ¼ 0 ð55Þ

Eqs. (53) and (55) satisfy property P2 of a Q-proper
variable in Table 2. Therefore, the determinant of CR is
upper bounded by

detðCRÞrEfq2
agEfq

2
bgEfq

2
c gEfq

2
dg ð56Þ

Using constrained equality based optimisation, we show
below that inequality (56) is maximised when the
condition P1 of Q-properness in Table 2 is satisfied,
yielding

detðCRÞr
Efjqj2g

4

� �4

ð57Þ

This optimisation problem can be posed as

max fdetðCRÞg ¼maxfEfq2
agEfq

2
bgEfq

2
c gEfq

2
dgg

subject to Efq2
agþEfq2

bgþEfq2
c gþEfq2

dg ¼ Efjqj2g

and can be solved using Lagrange multipliers as

f ðEfq2
ag,Efq

2
bg,Efq

2
c g,Efq

2
dg,lÞ ¼ Efq2

agEfq
2
bgEfq

2
c gEfq

2
dg

þlðEfq2
agþEfq2

bgþEfq2
c gþEfq2

dg�Efjqj2gÞ ð58Þ

Set the derivative df=0, to yield the system of equations

@f

@Efq2
ag
¼ Efq2

bgEfq
2
c gEfq

2
dgþl¼ 0 ð59Þ

@f

@Efq2
bg
¼ Efq2

agEfq
2
c gEfq

2
dgþl¼ 0 ð60Þ

@f

@Efq2
c g
¼ Efq2

agEfq
2
bgEfq

2
dgþl¼ 0 ð61Þ

@f

@Efq2
dg
¼ Efq2

agEfq
2
bgEfq

2
c gþl¼ 0 ð62Þ

@f

@l
¼ Efq2

agþEfq2
bgþEfq2

c gþEfq2
dg�Efjqj2g ¼ 0 ð63Þ

Solving the Eqs. (59)–(62) leads to

Efq2
ag ¼ Efq2

bg ¼ Efq2
c g ¼ Efq2

dg ð64Þ
which when replaced in (63) yields the solution

Efq2
ag ¼ Efq2

bg ¼ Efq2
c g ¼ Efq2

dg ¼
Efjqj2g

4
ð65Þ

Since the function logð�Þ is monotically increasing, we can
substitute the maximum value of detðCRÞ from (57) into
(50), to obtain the upper entropy bound in the form

Hðqr
sÞr log

ðp2e2Efjqj2g2

4

" #
r log½4p2e2s4� ð66Þ

This upper bound is equivalent to the entropy of a
Q-proper Gaussian quaternion random variable (42)
when N=1, thus illustrating that the entropy of a
quaternion variable q is maximised for Q-proper random
variables. This also confirms the validity of the introduced
form of probability density function (39) for quaternion
random variables.
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