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Abstract: The recently introduced multivariate multiscale entropy (MMSE) has been successfully
used to quantify structural complexity in terms of nonlinear within- and cross-channel correlations
as well as to reveal complex dynamical couplings and various degrees of synchronization over
multiple scales in real-world multichannel data. However, the applicability of MMSE is limited
by the coarse-graining process which defines scales, as it successively reduces the data length for
each scale and thus yields inaccurate and undefined entropy estimates at higher scales and for short
length data. To that cause, we propose the multivariate multiscale fuzzy entropy (MMFE) algorithm
and demonstrate its superiority over the MMSE on both synthetic as well as real-world uterine
electromyography (EMG) short duration signals. Based on MMFE features, an improvement in the
classification accuracy of term-preterm deliveries was achieved, with a maximum area under the
curve (AUC) value of 0.99.
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1. Introduction

The concept of structural complexity [1–3] and the study of complex adaptive systems [4,5]
spans a range of interdisciplinary approaches, from the theory of nonlinear dynamical systems to
information theory, statistical mechanics, biology, sociology, ecology and economics [6,7]. Structural
complexity can be interpreted as a manifestation of intricate inter-connectivity of elements within
a system and between a system and its surroundings [5]. Complex adaptive systems (CAS) are
comprised of multiple subsystems that exhibit nonlinear deterministic and stochastic characteristics,
and are regulated hierarchically [4]. Examples of CAS include stock markets, human heart and brain,
weather and climate systems, and the internet.

The complexity of a system is usually reflected in patterns of dynamical fluctuations of the output,
generated by free-running conditions. When it comes to signals, the notion of entropy is commonly
used to quantify signal complexity, by effectively assessing degrees of regularity/irregularity through
the amount of structure in a considered time series [8,9]. There are many established measures of
complexity, each based on a different version of entropy. Pincus [8] introduced a family of statistics,
named approximate entropy (ApEn), to quantify the regularity of typically short and noisy time series.
The concept of ApEn is based on the probability of finding similar patterns in the data, defined by a
certain number of consecutive sample points, the so-called delay vectors. The occurrences of similarity
are counted from the distances between all pairs of states in the so reconstructed phase space. However,
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as ApEn counts all such sequences, including self-matches (to avoid the occurrence of ln(0) in the
calculations), this introduces a bias in the entropy value which causes ApEn to greatly depend on
the time series length [9]. To address the lack of consistency in the ApEn estimates, Richman and
Moorman [9] introduced the sample entropy (SampEn) algorithm. SampEn represents the conditional
probability that two sequences of m consecutive data points, which are similar to within a tolerance
level r, will remain similar when the next consecutive point is included, that is, for sequences of (m+1)
points (provided that self-matches are not considered in calculating the probability). The SampEn
is largely independent of time series length and exhibits relative consistency over a wide range of
operating parameters. Costa et al. [10] noticed a discrepancy in the SampEn estimates when applied to
physiological time series and attributed this to the fact that SampEn estimates were only defined for a
single temporal scale. They argued that the dynamics of a complex nonlinear system manifests itself in
multiple inherent scales of the observed time series and, thus, SampEn estimates calculated over a
single scale are not sufficient descriptors. This led to the multiscale entropy (MSE) method in which
the multiple scales of input data are first extracted using the so-called “coarse graining” method and
SampEn estimates are subsequently calculated for each scale separately [10,11].

The MSE method has been successfully applied across biomedical research, such as in fluctuations
of the human heartbeat under pathologic conditions [10], EEG and MEG in patients with Alzheimer’s
disease [12], complexity of human gait under different walking conditions [13], variations in EEG
complexity related to ageing [14], and human red blood cell flickering [15]. Modifications and
refinements of the MSE algorithm include the improvement in the accuracy of entropy estimates,
and alternative mechanisms to generate scales [16–18]. Recently, Ahmed and Mandic [19,20] extended
the original MSE to suit multivariate/multichannel recordings. To that cause, they proposed a
multivariate sample entropy (MSampEn) algorithm for performing multiscale entropy analysis
simultaneously over a number of data channels. This extension, termed the multivariate multiscale
entropy (MMSE) [19,20], was shown to cater for linear and/or nonlinear within- and cross-channel
correlations as well as for complex dynamical couplings and various degrees of synchronization over
multiple scales, thus allowing for a direct analysis of multichannel data.

For both MSE and MMSE, as the scales are generated using the so-called coarse graining procedure,
this reduces the input data length by the scale factor, thereby imposing a limit on the length of input
data which can be effectively processed via MSE or MMSE. As a result, for shorter time series,
the accuracy of the entropy estimates is compromised at higher scales. This is reflected in the variance
of entropy estimates which grows fast with the decrease of the number of data points at higher scales.
Moreover, for some cases, the entropy value may be undefined when no template vectors are found to
be matching. To cater for the above issues, Wu et al. [21] proposed the composite MSE (CMSE) which
uses all the possible coarse grained time series corresponding to different starting points taken from
the first ε elements at each scale ε. The CMSE value at a given scale was defined as the average of the
sample entropies calculated at all the different coarse-grained series in that scale, however, this method
also increases the probability of inducing no template match. The method was further modified
within the refined composite multiscale entropy (RCMSE) [22] algorithm, which was also extended
to the multivariate case, termed the multivariate refined composite multiscale entropy (MRCMSE)
analysis [23].

Although the MRCMSE showed lower standard deviation of entropy values compared to MMSE,
for both methods the multivariate sample entropy estimates are consistent only for data length
N >= 300. This seriously hampers their utility for short time series. In (multivariate) sample entropy,
the degree of similarity between any two delay vectors is based on a Heaviside function for which the
boundary is rigid-the contributions of all data points inside the boundary are treated equally, whereas
the data points outside the boundary are ignored. This principle is similar to a two-state classifier;
the hard boundary causes discontinuity, which may lead to abrupt changes in entropy values even
when the tolerance r is slightly changed, and sometimes it fails to find a SampEn value because no
template match can be found for a small tolerance r. In contrast, in the physical world, boundaries
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between classes may be ambiguous as well as imprecise, and it is difficult to determine whether an
input pattern belongs completely to a given class. For that reason, using Zadeh’s concept [24] of fuzzy
set theory, the Heaviside function is replaced with any fuzzy membership function within the fuzzy
entropy calculation [25]. In practice, Gaussian function, Sigmoid function, bell-shaped function, or
any other fuzzy membership function can be chosen to describe the similarities between two data sets.
As there is no rigid boundary in a fuzzy membership function and as the function vary continuously
and smoothly, it makes FuzzyEn continuous and robust to slight changes in r.

The fuzzy extension of MMSE in this work is based on our definition of multivariate fuzzy
sample entropy (MFSampEn). The proposed multivariate multiscale fuzzy entropy (MMFE) evaluates
MFSampEn over different time scales and is shown to be able to analyze very short signals.
The advantages of the proposed multivariate fuzzy entropy approach are illustrated for both synthetic
stochastic processes and the classification of real world uterine EMG data.

2. Multivariate Multiscale Fuzzy Entropy (MMFE)

In MSampEn, the similarity between two delay vectors is based on a Heaviside function. In other
words, the similarity of a vector Xm(i) to another vector Xm(j) is guaranteed if the maximum norm
distance between two vectors is smaller than a defined threshold r, which can be described as follows:

f (dij, r) =

{
1 dij ≤ r
0 dij > r

(1)

where
dm

ij = d[Xm(i), Xm(j)] = max
l=1,...,m

{|x(i + l − 1)− x(j + l − 1)|} (2)

denotes the Chebyshev or maximum norm distance between two vectors.
Within the proposed MFSampEn, for a delay vector Xm(i), the degree of similarity is examined

through a fuzzy membership function—the closer the neighbouring Xm(j) is, the more similar Xm(j)
to Xm(i), while the degree of similarity between Xm(j) and Xm(i) decreases gradually to zero (unlike
sharp discontinuity in SampEn/MSampEn) as the maximum norm distances between the vectors
increase. The calculation of MFSampEn entropy is similar to the standard MSampEn, except for the
following modifications:

1. For each delay vector, the baseline/local mean is first removed in the following way: Xm(i) =

[x(i)− x0(i), x(i + 1)− x0(i), . . . , x(i + m− 1)− x0(i)] where x0(i) = 1
m

m−1
∑

j=0
x(i + j);

2. Any fuzzy membership function (like the Gaussian one used in the following) can be used in

calculating MFSampEn: µ(dij, r) = exp(
−(dij)

2

2r2 ).

2.1. The Multivariate Fuzzy Sample Entropy

To calculate multivariate fuzzy sample entropy (MFSampEn), recall from multivariate embedding
theory [26], that for a p-variate time series {xk,i}N

i=1, k = 1, 2, . . . , p, observed through p measurement
functions hk(yi), the multivariate embedded reconstruction is based on the composite delay vector

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1
, x2,i, x2,i+τ2 ,

. . . , x2,i+(m2−1)τ2
, . . . , xp,i, xp,i+τp , . . . , xp,i+(mp−1)τp ], (3)

where M = [m1, m2, . . . , mp] ∈ Rp is the embedding vector, τ = [τ1, τ2, . . . , τp] the time lag vector,
and the composite delay vector Xm(i) ∈ Rm (where m = ∑

p
k=1 mk). It is also important to note that if

some channels of a multivariate data have different amplitude range, the distances calculated on such
composite delay vectors could be biased towards the variates with largest ranges. On the other hand,
the different data channels may also be of different nature and measured in different units. To this end,
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in our proposed formulation of multivariate fuzzy sample entropy, we first normalize the multivariate
data (with zero mean and unit variance). This allows us to cater for multimodal signals obtained from
different sources.

For a p-variate time series {xk,i}N
i=1, k = 1, 2, . . . , p, we introduce MFSampEn through the

following procedure:

1. Form (N − n) composite delay vectors Xm(i) ∈ Rm, where i = 1, 2, . . . , N − n and
n = max{M} ×max{τ};

2. For each delay vector, remove the local mean: Xm(i) = [x(i) − x0(i), x(i + 1) − x0(i), . . . ,

x(i + m− 1)− x0(i)] where x0(i) = 1
m

m−1
∑

j=0
x(i + j);

3. Define the distance between any two composite delay vectors Xm(i) and Xm(j) as the maximum
norm [27], that is, dm

ij = d[Xm(i), Xm(j)] = maxl=1,...,m{|x(i + l − 1)− x(j + l − 1)|};
4. For a given composite delay vector Xm(i) and a tolerance r, calculate the similarity degree Dm

ij to
other vector Xm(j) through a fuzzy membership function µ(dm

ij , r), i.e., Dm
ij (r) = µ(dm

ij , r). Then,
define the function

Bm(r) =
1

N − n

N−n

∑
i=1

(
1

N − n− 1

N−n−1

∑
j=1,j 6=i

Dm
ij

)
; (4)

5. Extend the dimensionality of the multivariate delay vector in Step 1 from m to (m + 1).
This can be performed in p different ways, as from a space defined by the embedding vector
M = [m1, m2, . . . , mk, . . . , mp] the system can evolve to any space for which the embedding vector
is [m1, m2, . . . , mk + 1, . . . , mp] (k = 1, 2, . . . , p). Thus, a total of p × (N − n) vectors Xm+1(i) in
Rm+1 are obtained, where Xm+1(i) denotes any embedded vector upon increasing the embedding
dimension from mk to (mk + 1) for a specific variable k. In the process, the embedding dimension
of the other data channels is kept unchanged, so that the overall embedding dimension of the
system undergoes the change from m to (m + 1);

6. For a given Xm+1(i), calculate the similarity degree Dm+1
ij to another vector Xm+1(j) through a

fuzzy membership function µ(dm+1
ij , r), i.e., Dm+1

ij (r) = µ(dm+1
ij , r). Then, define the function

Bm+1(r) =
1

p(N − n)

p(N−n)

∑
i=1

(
1

p(N − n)− 1
×

p(N−n)−1

∑
j=1,j 6=i

Dm+1
ij

)
(5)

7. In this way, Bm(r) represents the probability that any two composite delay vectors are similar in
the dimension m, whereas Bm+1(r) is the probability that any two composite delay vectors will be
similar in the dimension (m + 1).

8. Finally, for a tolerance level r, MFSampEn is calculated as the negative of a natural logarithm of the
conditional probability that two composite delay vectors close to each other in an m-dimensional
space will also be close to each other when the dimensionality is increased by one, and can be
estimated by the statistic

MFSampEn(M, τ, r, N) = −ln

[
Bm+1(r)

Bm(r)

]
(6)

The multivariate multiscale fuzzy entropy (MMFE) plots, that is, multivariate fuzzy sample
entropy evaluated as a function of the scale factor, are next used to assess the relative complexity of
normalized multi-channel temporal data.

2.2. Fuzzy Membership Function

Any fuzzy membership function which has smooth transitional boundaries can be used to
calculate the degree of similarity between any two delay vectors. In this study, two fuzzy membership
functions known as the Gaussian and Z-shaped membership function are considered to examine the
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degrees of similarity as they are known to yield consistent entropy values when applied to a variety of
datasets [25]. It is possible to apply other fuzzy membership functions with the MMFE, however, they
would produce only slightly different results from the two functions which we have selected.

The Z-shaped membership function (Zmf) is a spline-based function of x and is so named because
of its Z-shape. The parameters a and b determine the extremes of the sloped portion of the curve,
given by:

f (x; a, b) =



1, x ≤ a

1− 2

(
x− a
b− a

)2

, a ≤ x ≤ a + b
2

2

(
x− b
b− a

)2

,
a + b

2
≤ x ≤ b

0, x ≤ b

(7)

The second fuzzy function considered, the Gaussian curve membership function (Gmf), is a
symmetric Gaussian function which depends on two parameters, σ and c, and is given by:

f (x; σ, c) = exp(
−(x− c)2

2σ2 ) (8)

Figure 1 illustrates the Z-shaped membership function with a = 0 and for different values of
b (in Figure 1a) and the Gaussian curve membership function with c = 0 and for different values
of σ (in Figure 1b). Both the functions are suitable for calculating MFSampEn and are considered
in this paper. From Figure 1, observe that the fuzzy function changes continuously and gradually,
unlike the Heaviside function used in SampEn and MSampEn which changes abruptly. It should
be noted that although the qualitative behavior of both the fuzzy functions are relatively similar,
numerically Z-shaped function yields higher entropy estimates than the Gaussian function. This is
due to the fact that the integrals under the respective curves are rather different for the considered
setting (b = sigma = r) and, thus, the weights (according to the fuzzy function) associated with all
paired composite delay vectors are essentially different.
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Figure 1. Two fuzzy membership functions used to calculate the degree of similarity.
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3. Validation on Synthetic Data

The multivariate MSE analysis has shown [19,20] that for multi-channel random white noise
(uncorrelated), the multivariate sample entropy values decrease monotonically with scale, whereas for
multi-channel 1/ f noise (long-range correlated) multivariate sample entropy remains more or less
constant over multiple time scales. This indicates that the multivariate 1/ f noise is structurally more
complex than uncorrelated multivariate random signals.

To illustrate the corresponding behaviour for the multivariate multiscale fuzzy entropy (MMFE),
we generated two trivariate time series, for which in one time series, all the data channels were
realizations of mutually independent white noise and in other series all the data channels were
realizations of mutually independent 1/ f noise. Figure 2 shows both the MMSE and MMFE curves
for the cases considered. The analysis in Figure 2 therefore confirms that the multivariate 1/ f noise
exhibits long-range correlations and thus has higher overall complexity than the multivariate random
white noise and that the multivariate fuzzy sample entropy is more consistent and accurate at larger
scales compared to MMSE, as indicated by smaller error bars.
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MMSE analysis for trivariate white noise

MMSE analysis for trivariate 1/f noise

MMFE analysis for trivariate white noise

MMFE analysis for trivariate 1/f noise

Figure 2. MMFE/MMSE analysis for 3-channel data containing white and 1/ f noise, each with
10,000 data points. The curves represent an average of 20 independent realizations and error bars
represent the standard deviation (SD).

3.1. Effect of Data Length on Multivariate Fuzzy Sample Entropy

It has been empirically found in [18,20] that MSampEn estimates are consistent for data length
N ≥ 300 and are sufficient for robust estimation. To assess the sensitivity of the proposed multivariate
fuzzy sample entropy (MFSampEn) to the data length parameter, we evaluated MFSampEn of a
3-channel white as well as 1/ f noise as a function of sample size N, where for each channel the
embedding dimension mk = 2 and the threshold r = 0.15. Figure 3 shows that for both the white
and 1/ f 3-channel noise, MFSampEn estimates were consistent for data lengths which were by far
shorter than those required by MSampEn. Note also that the MFSampEn estimates are more robust
for shorter data lengths than MSampEn estimates, as seen from the error bars in Figure 3. The MMSE
(MSE) calculates MSampEn (SampEn) for different scales generated by the coarse-graining process and
the length of each coarse-grained time series is equal to the length of the original time series divided
by the scale factor, ε. The coarse graining procedure of the standard MMSE approach thus imposes
the constraint that the highest scale should have enough data points (at least 300 points) to be able to
calculate a valid entropy estimate. This limits the applicability of coarse graining based MMSE for
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short data. Our proposed MMFE overcomes this limitation and is applicable to short data, even as
small as 30 samples, using Gaussian curve fuzzy membership function, as shown in Figure 3a.
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(a) Gaussian curve fuzzy membership function with σ = r (b) Z-shaped fuzzy membership function with b = r

Figure 3. MSampEn/MFSampEn as a function of data length N, for r = 0.15 and mk = 2 in each
data channel. Shown are the mean values for 30 simulated trivariate time series containing white and
1/ f noise, while error bars represent the standard deviation (SD). (a) Using Gaussian curve fuzzy
membership function with σ = r; (b) Using Z-shaped fuzzy membership function with b = r.

3.2. Sensitivity to the Embedding Dimension

Physically, for the standard univariate sample entropy, the increase in sample entropy values
with an increase in embedding dimension m is due to progressively fewer delay vectors to compare
as m increases. On the contrary, for MSampEn the increase in m does not reduce the number of the
available delay vectors, as the composite multivariate embedded vectors are constructed in parallel,
as pointed out in [18]. Nevertheless, a valid MSampEn estimate at higher mk requires a progressively
higher number of samples. On the other hand, for higher mk, MFSampEn can be estimated with
comparatively lower number of samples. This phenomenon is shown in Figure 4 which presents
an MFSampEn/MSampEn vs. mk plot for a 3-channel white and 1/ f noise with 1000 points in each
channel. Figure 4 illustrates that the result for MFSampEn is more consistent, as white noise remains
higher in complexity than 1/ f noise at the lowest scale for the embedding dimension up to mk = 4,
for a Gaussian membership function (Figure 4a), and for the embedding dimension up to mk = 3 for
Z-shaped membership function(Figure 4b). On the other hand, MSampEn estimates are consistent
only for the embedding dimension of up to mk = 2 for 1000 samples and undefined for higher mk
values. For a large mk, the length of the time series required for a valid entropy estimate would be
higher, and therefore for practical purposes, mk is selected in the range of 1–3 in the literature.
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(a) Gaussian curve fuzzy membership function with σ = r (b) Z-shaped fuzzy membership function with b = r

Figure 4. MSampEn/MFSampEn as a function of the embedding parameter mk, where for each channel
1000 samples were considered, and r = 0.15. Shown are the mean values for 30 simulated trivariate
time series containing white and 1/ f noise, while error bars correspond to the standard deviation
(SD). (a) Using Gaussian curve fuzzy membership function with σ = r; (b) Using Z-shaped fuzzy
membership function with b = r.

4. Applications to Uterine EMG Signal Chracterization

Uterine electromyogram (UEMG) or Electrohysterogram (EHG) represents the spontaneous
myometrial bioelectrical activity in the form of intermittent bursts of action potentials that triggers the
mechanical contraction of the uterus [28]. The UEMG is gaining popularity as promising and powerful
new tool for characterizing the parturition process due to its non-invasive and economical nature.

The process of parturition involves a relatively long conditioning (preparatory) phase, followed
by a short active labor [29]. During the preparatory phase, excitability of the myometrial cells increases
due to the changes in transduction mechanisms and synthesis of several new proteins, including ion
channels and receptors for uterotonins. As the delivery approaches, cell-to-cell gap junctions form and
electrical coupling between myometrial cells increase, thus creating the electrical syncytium required
for effective contractions. Eventually, the preparatory process becomes irreversible and leads to active
labor. In labor, this bioelectrical activity becomes more synchronous resulting towards the complete
dilation of the cervix and expulsion (delivery) of the fetus [28,30].

Normally, pregnancy in humans lasts about 40 weeks. According to the World Health
Organization (WHO) and the International Federation of Gynecology and Obstetrics (FIGO), delivery
of babies born alive before 37 weeks of gestation is considered preterm delivery/birth whereas term
delivery implies birth between 37 to 42 weeks [31]. Preterm birth is a global problem. It occurs in
high, low, and middle-income countries. About 15 million babies are born preterm each year, that is,
more than 1 in 10 babies worldwide and this number is rising [32]. Preterm birth complications are the
leading cause of death among children under 5 years of age, responsible for nearly 1 million deaths in
2013 [32]. In addition to its significant contribution to neonatal mortality, many survivors of preterm
birth face a lifetime of disability, including learning disabilities, visual and hearing problems, as well
as long-term physical health issues with a higher risk of non-communicable disease [32–34]. These
certainly add significant costs to the economy as well as throw a heavy burden on families, society and
the health system [35].

Although numerous risk factors of preterm birth have been identified, such as diabetes, conization,
hypertension, uterine abnormalities, preterm premature rupture of membranes (PPROM), previous
preterm delivery, multiple births, recurrent antepartum haemorrhage, illnesses and infections, any
invasive procedure or surgery, underweight or obesity, ethnicity, alcohol and drug use, smoking,
folic acid deficiency, a positive fibronectin test and others, the exact causes of many preterm births
are still unresolved [35,36]. Current methods of preterm birth prediction based on calculating the
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aforementioned risk factors alone are unreliable and uncertain [37]. However, predicting preterm birth
and diagnosing preterm labor obviously have important consequences for babies, families, societies
and the economy. Effective prediction of preterm births could contribute to improving prevention,
through appropriate medical and lifestyle interventions [36]. Nevertheless, none of the currently
available clinical methods can distinguish reliably between true and false term and preterm labor. On
the other hand, evidence from many studies suggest that UEMG recordings can diagnose true labor
more accurately than any other method used today [30]. As a result, UEMG provides a strong basis for
objective prediction and diagnosis of preterm birth [36].

So far, various signal processing techniques have been used to analyze UEMG signals.
To understand the underlying parturition mechanisms of the uterus, traditionally linear analysis
methods based on either time domain or transform domain parameters are used. As the uterus is an
extremely complex biological structure consisting billions of intricately interconnected myometrial cells
whose responses are non-linear, it may be considered as a complex, non-linear dynamic system [38].
Besides, it is widely accepted that the underlying physiological mechanisms in all biological systems
are non-linear processes [39–41]. As a result, nonlinear signal processing techniques are also used to
characterize UEMG signals lately. G. Fele-Zorz et al. applied several linear and nonlinear methods
to separate term and preterm deliveries and showed better discrimination results with nonlinear
methods [38]. Fergus et al. [36] showed an improvement over existing studies using both linear
and non-linear features extracted from the UEMG recording within a supervised machine-learning
paradigm. Using SampEn and adaptive autoregressive (AAR) method for feature extraction and
support vector machine classifier for classification, Smrdel et al. [37] concluded that the SampEn better
reflected the physiological mechanisms of the term and preterm UEMG records which were confirmed
by the better classification accuracy achieved. Improved prediction of preterm delivery by using
empirical mode decomposition, a novel nonlinear time-frequency approach was reported in [35].

In this paper, we used two nonlinear, multiscale and multivariate methods, namely the
multivariate multiscale entropy (MMSE) and multivariate multiscale fuzzy entropy (MMFE), to
characterize and extract features from the UEMG records. The so extracted features were classified
within a supervised machine learning paradigm, with a view to demonstrate the superiority of MMFE
over MMSE for short data lengths.

4.1. TPEHG Database

The Electrohysterogram records (uterine EMG records) used in this study are included in
the Term-Preterm Electrohysterogram Database (TPEHG DB) which is publicly available from
PhysioNet [42]. The records were obtained during regular check-ups either around the 22nd week of
gestation or around the 32nd week of gestation. The database contains 300 uterine EMG records from
300 pregnancies (one record per pregnancy) of which:

• 262 records were obtained during pregnancies where delivery was on term (duration of gestation
at delivery >37 weeks):

– 143 records were obtained before the 26th week of gestation (Term-early);
– 119 were obtained later during pregnancy, during or after the 26th week of gestation (Term-Late);

• 38 records were obtained during pregnancies which ended prematurely (pregnancy duration
≤37 weeks), of which:

– 19 records were obtained before the 26th week of gestation (Preterm-early);
– 19 records were obtained during or after the 26th week of gestation (Preterm-late).

Each record is composed of three channels, recorded from 4 electrodes, sampled at 20 Hz and of
30 min in duration. The first electrode (E1) was placed 3.5 cm to the left and 3.5 cm above the navel;
the second electrode (E2) was placed 3.5 cm to the right and 3.5 cm above the navel; the third electrode
(E3) was placed 3.5 cm to the right and 3.5 cm below the navel; and the fourth electrode (E4) was
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placed 3.5 cm to the left and 3.5 cm below the navel. The differences in the electrical potentials of
the electrodes were recorded, producing 3 data channels: S1 = E2 − E1 (first channel); S2 = E2 − E3
(second channel); and S3 = E4 − E3 (third channel).

Next, each signal was digitally filtered using three different 4-pole digital Butterworth filters with
a double-pass filtering scheme to ensure zero phase shift. A detailed discussion about the database
is given in [38]. We have chosen three different m values, that is m = 2, 3, and 4 for MMFE/MMSE
analysis. Previous research has suggested that the UEMG frequency band from 0.3 to 3 Hz contains
the most useful information and leaves out most artefacts due to respiration, motion and cardiac
signals [35,36,38]. Therefore, only the filtered data with cut-off frequency 0.3–3Hz was used in this
study. In all the cases, r was taken as 0.15 times the total variation of the 3-channel UEMG signal.

4.2. Feature Extraction Using MMFE and MMSE

Due to the transients at the beginnings and ends of the filtered signals, a 1.5-min portion of the
signals from the beginnings and ends of the 30 min UEMG records were not considered, as suggested
in [38]. Thus, the middle 27 min of each signal of the UEMG records were considered. To show the
better suitability of the MFSampEn over MSampEn for short record lengths, each 27-min duration
records were further divided into 27 one-min epochs. Then both MMFE and MMSE analyses were
performed on each one-min epoch (which had 60× 20 = 1200 samples) and afterwards averaged over
the 27 epochs to produce the MMFE or MMSE curves for each record. In this multiscale study, we
considered 10 scales for each epoch, so that the coarse graining process of MMFE/MMSE analysis
yielded only 120 samples at the highest scale, which however was sufficient for MFSampEn calculation.
These MSampEn or MFSampEn values calculated on 10 different coarse-graining scales were used as
features in classification stage.

Figure 5 shows the multivariate complexity profiles of the three channel UEMG recordings
determined by MMSE (Figure 5a–c), MMFE with Gaussian curve fuzzy membership function
(Figure 5d–f) and MMFE using Z-shaped fuzzy membership function (Figure 5g–i). Initially, we
calculated those profiles for the embedding dimension m = 2 (Figure 5a,d,g). In each figure, six
different scenarios were analyzed. The top-left panel shows the complexity curve for preterm subjects
recorded early (before 26 weeks of gestation) vs. those recorded late (after 26 weeks of gestation).
The top-right panel depicts similar comparison (early vs. late recordings) but now for termed subjects.
The complexity of the Preterm-early versus Term-early is illustrated in the middle-left panel, and for
the Preterm-late versus Term-late is shown in the middle-right panel. Finally, the bottom-left panel
compares all the early recordings vs. late recordings, irrespective of preterm or term birth, while the
bottom-right panel compares the complexity profiles between preterm and term births, irrespective of
their recording times. Both complexity estimates (MSampEn and MFSampEn) could discriminate well
between different cases in each scenario.

Observe significant differences between the UEMG signals recorded early and late (top-left,
top-right and bottom-left panel of Figure 5a,d,g). In other words, as the time of gestation progresses,
the MSampEn/MFSampEn values for both term and pre-term delivery records drop, indicating higher
predictability or less complexity of the signals as the delivery approaches [43]. On the other hand,
the MSampEn/MFSampEn values are lower for pre-term delivery records (middle-left, middle-right
and bottom-right panel of Figure 5a,d,g) regardless of the gestation duration at the time of recording,
which confirms that the preterm delivery records are less complex or more predictable than the signals
of term delivery records. In addition, in all the cases, the separation is better if we consider the
multiscale complexity curves rather than the measures in scale 1 only. This also confirms that the
original signal not only contains information at the smallest scale but also reveals new information at
all scales. This makes it possible to even classify between term and preterm labor earlier in pregnancies.
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To demonstrate the suitability of the proposed MMFE method over the MMSE method for
short time series, we also calculated the complexity profiles with the embedding dimension m = 3
(Figure 5b,e,h) and m = 4 (Figure 5c,f,i) for both methods. Figure 5b,c confirm that for higher
embedding dimensions, there were not enough sample points to calculate MSampEn at higher scales
whereas we could calculate MFSampEn with a Gaussian fuzzy membership function for scales up to 10,
as shown in Figure 5e,f. However, although we had enough sample points to calculate MFSampEn up
to scale 10 with a Z-shaped fuzzy membership function for embedding dimension m = 3 (Figure 5h),
we could calculate only up to scale 4 for embedding dimension m = 4 (Figure 5i). This corresponds to
the simulation result in Figure 4b.

4.3. Approach for Imbalanced Learning

As the TPEHG database used in this study was unbalanced, comprising 38 true positives (minority
class, preterm delivery) and 262 true negatives (majority class, term delivery), their prior probabilities
were not equal. As a result, classifiers would be more sensitive in detecting the majority class than the
minority one which could lead to biased classification. There are two approaches to imbalanced
learning: over-sampling and under-sampling. The under-sampling in this case would remove
224 records from the majority class to make both the classes balanced, leaving us with a small dataset
of only 38 records in each class. On the other hand, the over-sampling would generate additional
synthetic data in the minority class to make the number of records equal to the majority one. Generally,
the over-sampling approach is preferred due to no data loss and accurate results in terms of the area
under the ROC (receiver operator curve ) curve (AUC) [44].

In this study, to solve the class skew problem, the Adaptive Synthetic Sampling
(ADASYN) [44,45] technique was used. The purpose of the ADASYN technique is to improve class
balance by synthetically creating new examples from the minority class via linear interpolation
between existing minority class examples. This approach is known as the SMOTE method (Synthetic
Minority Oversampling TEchnique) [44,46]. The ADASYN is an extension of SMOTE, which creates
more examples in the vicinity of the boundary between the two classes than in the interior of the
minority class.

4.4. Classifiers Used

Within the supervised machine learning paradigm, a total of 23 classifiers were tested which
fall under six broad classifier categories, namely, decision trees, discriminant analysis, logistic
regression, support vector machines (SVM), nearest neighbour (NN) classifiers and ensemble classifiers.
The decision tree classifier is a simple and widely used non-parametric classification technique where
the goal is to create a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features. Three subtypes, namely, simple, medium and complex tree
were used in this category. The discriminant analysis assumes that different classes generate data
based on different Gaussian distributions. Both linear and quadratic discriminants were tested in this
category. The logistic regression is a popular simple classification algorithm which models the class
probabilities as a function of the linear combination of predictors. An SVM classifies data by finding the
best hyperplane (the one with the largest margin between the two classes) that separates data points
of different classes mapping into a higher dimensional space through some kernel function. In this
category, linear, quadratic, cubic, fine Gaussian, medium Gaussian and coarse Gaussian SVM classifiers
were used. Nearest neighbour (NN) classifiers are also a class of non-parametric methods which classify
objects based on closest training examples in the feature space. In this category, six classifiers were
chosen, namely, fine K-nearest neighbour (KNN), medium KNN, coarse KNN, cosine KNN, cubic
KNN and weighted KNN. Ensemble classifiers combine results from many weak learners into one
high-quality ensemble predictor. Boosted trees, Bagged trees, Subspace discriminant, Subspace KNN
and RUSBoost trees were tested in this category. The classification learner App of the MATLAB
program (R2016a) was used to implement all the above classifiers. The default values of the different
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parameters were chosen for the classifiers. Besides, a 10-fold cross-validation was employed where
the original dataset was first divided into ten equal subsets and then one subset was tested using
the classifier which was trained on the remaining nine subsets. This procedure was repeated until
every subset had been tested. The overall accuracy of the classifier was then calculated as the average
of the ten classification runs. Moreover, sensitivity (which refers the proportion of true positives or
preterm records) and specificity (which refers the proportion of true negatives or term records) which
measure the predictive capabilities of binary classifiers, were also computed. In our study, sensitivities
were given higher priority than specificities as predicting preterm delivery is more important than
misclassifying term delivery. Finally, the receiver operator curve (ROC), which is a standard technique
to evaluate binary classifier performance, was calculated and the area under the curve (AUC) was
determined for each classification method. The greater the AUC value, the greater the discrimination
potential of a classifier [44,46].

4.5. Results and Discussion

Table 1 summarizes the classifier performances on the TPEHG database. From Figure 5a, it can
be seen that at scale 10, the MSampEn value for early recordings from the term pregnancies are not
defined. From Figure 5b, observe that for ε > 3, MSampEn for this study was undefined. Similarly,
from Figure 5c, it can be seen that for ε > 1, MSampEn for this study was also undefined. As a result,
only classification performances for the parameters which were defined were reported in Table 1.
Moreover, to make a fair comparison between MMSE and MMFE in Table 1, only first 9 components
were taken after applying principal component analysis(PCA) on the 10-element feature vectors which
explained 100% variance in total. Among the categories of early recordings, late recordings and
both categories combined, the highest classification accuracy (CA) is shown in bold. In the early
recordings category, the fine Gaussian SVM yielded 95.4% classification accuracy in detecting the
term and preterm recordings when the feature vectors were computed using MMFE with a Z curve
membership function and embedding parameter m = 2. This was 2.4% higher than the classification
accuracy calculated using MMSE features. For the late recordings category, the highest 94.4% CA
was achieved with the same classifier when the feature vectors were calculated using MMFE with
the Gaussian membership function and the embedding parameter m = 2. This was 6% higher than
that calculated using MMSE features. When both early and late recordings were combined, the same
classifier (fine Gaussian SVM) with MMFE features yielded the highest 94.9% CA with the embedding
parameter m = 2, a 3% increase compared to the CA calculated with the MMSE features. Moreover,
the best AUC values were also observed for MMFE features.

Table 1. Summary of classifier performance on TPEHG database. The feature vector was composed of
9 elements. The highest classification accuracy (CA) in each recording category is shown in bold.

Different Parameters Best Classifier Sensitivity Specificity CA AUC

Early

m = 2, MMSE Bagged tree 97 90 93 0.98
m = 2, MMFE with Gaussian function Fine Gaussian SVM 90 100 95 1
m = 2, MMFE with Z function Fine Gaussian SVM 91 100 95.4 0.99
m = 3, MMFE with Gaussian function Fine Gaussian SVM 90 99 94.1 0.99
m = 4, MMFE with Gaussian function Fine Gaussian SVM 87 100 93.6 0.99

Late

m = 2, MMSE Fine Gaussian SVM 78 99 88.5 0.99
m = 2, MMFE with Gaussian function Fine Gaussian SVM 90 99 94.4 1
m = 2, MMFE with Z function Fine Gaussian SVM 84 99 91.7 0.99
m = 3, MMFE with Gaussian function Quadratic SVM 98 89 93.7 0.98
m = 4, MMFE with Gaussian function Fine Gaussian SVM 84 98 91.1 0.98

Early and Late combined

m = 2, MMSE Fine Gaussian SVM 84 99 91.9 0.99
m = 2, MMFE with Gaussian function Fine Gaussian SVM 92 98 94.9 0.99
m = 2, MMFE with Z function Fine Gaussian SVM 90 99 94.3 0.99
m = 3, MMFE with Gaussian function Fine Gaussian SVM 87 97 92.1 0.98
m = 4, MMFE with Gaussian function Fine Gaussian SVM 91 98 94.3 0.98

We also examined whether the number of features had any impact on the classification
performance. To that cause, after PCA, for further classification, we only took the first 6 components of
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the feature vector, which explained 99.5% variance in total. The result is shown in Table 2, which depicts
that although CA decreased in most cases (but remained higher for MMFE features), the difference
between the CA calculated using MMFE features and that using MMSE features was increased.
This confirms that MMFE features performed better in classification when the number of features
was smaller.

Table 2. Summary of classifier performance on TPEHG database. The feature vector was composed of
6 elements. The highest classification accuracy (CA) in each recording category is shown in bold.

Different Parameters Best Classifier Sensitivity Specificity CA AUC

Early

m = 2, MMSE Fine Gaussian SVM 88 95 91.3 0.98
m = 2, MMFE with Gaussian function Fine Gaussian SVM 91 92 91.5 0.98
m = 2, MMFE with Z function Fine Gaussian SVM 89 94 91.8 0.97
m = 3, MMFE with Gaussian function Fine Gaussian SVM 94 99 96.5 0.99
m = 4, MMFE with Gaussian function Fine Gaussian SVM 81 97 89.4 0.98

Late

m = 2, MMSE Fine Gaussian SVM 76 97 86.4 0.94
m = 2, MMFE with Gaussian function Fine Gaussian SVM 91 93 92.3 0.98
m = 2, MMFE with Z function Fine Gaussian SVM 88 97 92.5 0.98
m = 3, MMFE with Gaussian function Bagged tree 94 87 90.4 0.96
m = 4, MMFE with Gaussian function Fine Gaussian SVM 88 95 91.6 0.96

Early and Late combined

m = 2, MMSE Fine Gaussian SVM 83 95 88.7 0.95
m = 2, MMFE with Gaussian function Fine Gaussian SVM 91 91 90.9 0.97
m = 2, MMFE with Z function Fine Gaussian SVM 94 92 92.6 0.97
m = 3, MMFE with Gaussian function Fine Gaussian SVM 92 93 92.7 0.98
m = 4, MMFE with Gaussian function Fine Gaussian SVM 93 94 93.5 0.97

In comparison with the previous studies using UEMG signals from the same TPEHG database,
our study produced significantly better results than those reported in [35–37]. Using four features
(root mean squares, peak frequency, median frequency, sample entropy) and eleven items of additional
clinical information (in total, a 15-element feature vector), the best classification accuracy (regardless of
the time of recording) reported in [36] was 92%, with a 0.95% AUC value. In [35], the highest AUC
value of 98.6% was obtained when an AdaBoost classifier with a 180-element feature vector extracted
from EMD (empirical mode decomposition) based approach was used. Considering sample entropy
estimation from three channels separately and additional clinical information (yielding 14 element
feature vector per record), an 87% classification accuracy was achieved using SVM classifier in [37].
However, using only 9 element feature vectors extracted from MMFE analysis, we achieved the highest
AUC of 99% with the classification accuracy of 95% in classifying between the term and preterm records,
regardless of the time of recording. This validates the proposed MMFE method, and demonstrates its
superiority over MMSE.

5. Conclusions

We have extended the recently introduced multivariate multiscale entropy (MMSE) method using
fuzzy membership functions, in order to cater for short time recordings. The so introduced multivariate
multiscale fuzzy entropy (MMFE) algorithm has been validated on the classification of uterine EMG
recordings and has shown that differences in the UEMG signals exist in terms of the gestational age,
which can be utilized to predict preterm delivery. Overall, our study has suggested that the MMFE
analysis can characterize the physiology of parturition well and can also provide a better way of
discriminating women at risk of preterm delivery than the existing methods.
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