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Undecimated and decimated multivariate empirical mode decomposition filter banks
(MEMDFBs) are introduced in order to incorporate MEMD equipped with downsam-
pling into any arbitrary tree structure and provide flexibility in the choice of frequency
bands. Undecimated MEMDFBs show the same results as those of original MEMD
for an octave tree structure. Since the exact cut-off frequencies of MEMD are not

known (i.e. due to data-driven decomposition), employing just simple downsampling
in MEMD might cause aliasing. However, decimated MEMDFBs in this paper achieve
perfect reconstruction with aliasing cancelled for any arbitrary tree. Applications of dec-
imated/undecimated MEMDFBs for speech/audio and image signals are also included.
Since decimated MEMDFBs can be applied into any arbitrary tree structure, this extends
into MEMD packets. Arbitrary tree structures in decimated MEMDFBs also lead to
more diverse choices in frequency bands for various multivariate applications requiring
decimations.

Keywords: Multivariate empirical mode decomposition; empirical mode decomposition;
multivariate signal analysis; intrinsic mode function; multiscale analysis; filter banks.

1. Introduction

Although many real-world signals are neither stationary nor linear, many traditional
signal processing techniques are based on linear time invariant (LTI) assumption.
Although some signals are close enough to LTI property when considered over
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1450001-1

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

O
N

G
JI

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

1/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S1793536914500010


2nd Reading

January 23, 2014 15:53 WSPC/1793-5369 244-AADA 1450001

M.-S. Koh, D. P. Mandic & A. G. Constantinides

short-time frames, in many cases, the requirement of LTI is far rigid. To handle
real-world signals without stationarity and linearity assumptions, nontraditional
techniques are required. A new signal processing technique without stationary and
linear assumptions was introduced in Huang et al. [1998] and termed empirical mode
decomposition (EMD). The EMD decomposes a signal into intrinsic mode functions
(IMFs) and a residual, where IMFs are amplitude modulation (AM)/frequency
modulation (FM) like signals and the residual represents the trend within the origi-
nal signal. The 1st IMF is obtained by subtracting mean envelope from the original
signal, where the mean envelope is made by arithmetic average operation of upper
envelope and lower envelope. Upper and lower envelopes are respectively calculated
by interpolation of detected local maxima and minima points. Residual after tak-
ing 1st IMF is obtained by subtraction of the 1st IMF from the original signal,
where the residual must be monotonic function or satisfies stop criterion [Huang
et al. (1998)]. Otherwise, these steps, called the sifting process must be repeated.
To obtain the next IMF, the same processes are applied but the residual is now used
as the original signal. EMD is a fully data-driven decomposition, without requiring
any traditional filters, it is a very useful signal processing tool for nonstationary
and nonlinear signals and has been applied to many different applications such
as seismic signal analysis [Zhang et al. (2003)], EEG signal analysis [Park et al.
(2011)], signal denoising [Omitaoumu et al. (2011)], speech enhancement [Chatlani
and Soraghan (2012)], etc. to name only a few.

Traditional filters with LTI assumption were extended into filter banks, which
are composed of low pass filter, band-pass filters, and high pass filter. Filter banks
generate subband signals which might have different various signal characteris-
tics, e.g. different speech formants, image edges, etc. A tutorial for traditional filter
banks and subband approach can be found in Vaidyanathan [1993] and Vetterli and
Kovacevic [1995]. Most successful (and popular) traditional filter banks are filter
banks generated by wavelets and short-time Fourier transform (STFT). Those tradi-
tional filter banks have been used in many applications such as speech/audio, image,
video signal processing [Vaidyanathan (1993); Vetterli and Kovacevic (1995)], and
they provide a useful analysis tool to represent a signal in the time-frequency (T–F)
plane. Hence, in order to have a similar T–F analysis tool-like traditional filter
banks, EMD has also been expected to extend into filter banks. However, the most
challenging task to extend EMD into filter banks is incorporating down/up sam-
plings because down/up samplings are fundamental building blocks in filter banks
design for multirate processing of speech/audio, image, video signals, etc. Since
there are no traditional filters involved in EMD, any simple down/up sampling
process ends up with failure of perfect reconstruction. To resolve the problem, down-
sampling with even and odd indices is introduced for 1D/2D signals and named as
EMD filter banks (EMDFBs) in Koh and Rodriguez-Marek [2013a, 2013b, 2013c].
The EMDFBs provide perfect reconstruction without any traditional filters, while
keeping all desirable characteristics of EMD. While traditional filter banks built
by wavelets and STFT result in a fixed T–F plane, EMDFBs lead to an adaptive
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data-driven T–F plane without any fixed filters. Compared with traditional filter
banks, EMDFBs show several advantages: (i) Nonstationary and nonlinear signals
can be handled without approximate assumptions. (ii) Adaptive data-driven sub-
band signals are available, generating an adaptive data-driven T–F plane. (iii) There
are no filter delays because no filters are used. Hence, the additional step required
for the synchronization of each subband signal is not needed.

Although EMD has been applied successfully to various applications [e.g. Zhang
et al. (2003); Park et al. (2011); Omitaoumu et al. (2011); Chatlani and Soraghan
(2012)] to deal with nonstationary and nonlinear signals, it typically suffers from
mode-mixing [Wu and Huang (2009)] and aliasing problems. The mode-mixing
problem refers to one mode appearing in different IMFs and the aliasing problem
refers to problems caused by extrema sampling and interpolations [Mandic et al.
(2013); Rehman et al. (2013)]. In addition, the original EMD in Huang et al. [1998]
is not applicable to multichannel speech signals because an interpolation to make
upper and lower envelops is not clearly defined for multichannel signals. To extend
the same idea of original EMD to multivariate (or multichannel) signals, multi-
variate EMD (MEMD) and noise-aided MEMD (NA-MEMD) were developed in
Mandic et al. [2013], Rehman and Mandic [2010], and Rehman et al. [2013], which
project data onto hyperspheres to find the multidimensional envelopes. They show
good results in signal decompositions and on T–F analysis, which enables better
interpretation of physical meanings in each decomposed signal. Mode-mixing and
aliasing problems are also alleviated through MEMD, as all IMFs are well aligned
[Mandic et al. (2013); Rehman and Mandic (2010); Rehman et al. (2013)]. How-
ever, the theory of filter banks based on MEMD is still lacking. Hence, similar
idea to Koh and Rodriguez-Marek [2013a, 2013b, 2013c] is adopted in this paper
to design MEMD filter banks (MEMDFBs), resulting in an adaptive data-derived
T–F plane. Moreover, since MEMDFBs is applicable into any arbitrary tree struc-
ture, it will be extended in this paper into MEMD and/or NA-MEMD packets
coined by similar name to wavelet packets. The paper is organized as follows. The
MEMD and NA-MEMD introduced in Mandic et al. [2013], Rehman and Mandic
[2010], and Rehman et al. [2013] are briefly summarized in Sec. 2. Undecimated
and decimated MEMDFBs are introduced respectively in Secs. 3 and 4. Section 5
shows some applications of undecimated/decimated MEMDFBs into multichannel
signals, speech, and image signals. Conclusions are given in Sec. 6.

2. MEMD and NA-MEMD

Although EMD in Huang et al. [1998] provides a new way to deal with nonstation-
ary and nonlinear signals, the mode-mixing and mode alignment problems need
to be resolved when the traditional EMD is considered for multichannel applica-
tions. As briefly mentioned, MEMD resolved the concepts of local maxima and
minima in a multivariate setting by utilizing a projection concept into (N − 1)
spheres, where N is the number of variables (or channels) [Mandic et al. (2013);
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Rehman and Mandic (2010)]. To identify local maxima and minima points in mul-
tidimensional signals, MEMD projects a signal along multiple direction vectors.
Then, it interpolates identified local maxima and minima points in each directional
projection to make each directional envelope curves. The mean envelope of a mul-
tidimensional signal is obtained by an approximated integral of all interpolated
envelope curves. In this process, each directional vector is chosen to be spaced uni-
formly on the same multidimensional sphere in order to have better accuracy of
the approximated integral. Uniformly spaced directional vectors are obtained by
a special technique using the Hammersley sequence [Rehman and Mandic (2010)].
The MEMD extracts well common rotational modes buried in a multidimensional
signal with good mode alignment property, where rotational modes in MEMD are
corresponding to AM/FM oscillating modes in EMD. MEMD, as summarized in
Table 1, is shown in Mandic et al. [2013] and Rehman and Mandic [2010].

Since traditional EMD needs a sufficient number of extrema points for a sifting
process, a signal without enough extrema (e.g. impulse signal having only one peak)
is not decomposed successfully. To resolve the issue, ensemble EMD (EEMD) is
developed in Wu and Huang [2009] and the EEMD adds zero-mean white Gaussian
noises to a signal to be decomposed at the beginning of EEMD so that it can have
enough extrema. Then, each decomposed IMF by EEMD from the noisy original
signal is ensemble averaged so that any effects from remaining noise in IMFs due to
the included noise can be removed. Since zero-mean white Gaussian noise can be
averaged out statistically through the ensemble mean for a large ensemble number,
this helps to resolve the problem. However, since EEMD needs a large ensemble
number to cancel out the effect of noise, it has a disadvantage in reconstructing
original signal from the decomposed IMFs if a sufficient large ensemble mean is
not used. Within NA-MEMD [Rehman et al. (2013)], noise is not directly added
to original signal but is contained in other channel signals in MEMD. Therefore,
NA-MEMD uses zero-mean white Gaussian noises in separate channels (2 or 3
channels) from the original signal and subsequently performs MEMD. In this paper,

Table 1. Algorithm for MEMD [Mandic et al. (2013); Rehman and Mandic (2010)].

1. Generate a V -point Hammersley sequence used for uniformly sampling a N-dimensional sphere.

2. Calculate the projections qθv (t) of the original signal s(t) along the direction vector xθv , for
v = 1, 2, . . . , V to give the set of projections {qθv (t)}V

v=1.

3. Find the time instants {tiθv
}V

v=1 corresponding to the maxima of the set of projected signals

{qθv (t)}V
v=1.

4. Interpolate [tiθv
, s(tiθv

)] to obtain the multivariate envelope curves {eθv (t)}V
v=1.

5. Calculate the mean of the V mulitidimensional envelopes:

m(t) =
1

V

VX

v=1

eθv (t)

6. Extract the “detail” d(t) = s(t)−m(t). If d(t) fulfills some stoppage criterion for a multivariate
IMF, apply the above procedure to s(t) − d(t), else, repeat for d(t).
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NA-MEMD is used without ensemble mean because noise is not directly added to a
signal. Hence, the NA-MEMD algorithm is the same as the MEMD but additional
2 or 3 channels are included at the beginning of MEMD as shown in Mandic et al.
[2013] and Rehman et al. [2013].

3. Undecimated MEMDFBs

In this paper, undecimated MEMDFBs are designed by extending the concept of
undecimated EMDFBs in Koh and Rodriguez-Marek [2013b]. To make a filter bank
structure with MEMD, just one IMF and one residual are considered at each decom-
position step, like EMDFBs in Koh and Rodriguez-Marek [2013a, 2013b]. Since one
IMF (usually the first IMF) and the residual are corresponding to a high frequency
and a low frequency respectively, those two signals are used for a filter bank struc-
ture in this paper. Hence, the concept of Koh and Rodriguez-Marek [2013a, 2013b] is
easily extended into MEMD by applying it to each variable (or channel) in MEMD.
Each MEMD in MEMDFBs produces multiple first-IMFs and multiple residuals for
all N variables. Then, as an example, an undecimated MEMDFB can be obtained
as Fig. 1 for decomposition level of 2, where X00 ∈ RL×N is the original multivari-
ate signal for N variables with L data points each. In Fig. 1, the node signals, X10

and X11, are corresponding respectively to one residual and one IMF of the mother
node signal, X00. Figure 1 is similar to those in Koh and Rodriguez-Marek [2013b]
except for the use of MEMD in order to accommodate multivariate signals.

Since MEMD in Mandic et al. [2013] and Rehman and Mandic [2010] shows a
good mode-splitting property at each IMF, an octave tree structure in undecimated
MEMDFBs shows the same results as those of MEMD. For instance, consider an
octave tree structure at the decomposition level of 2 (i.e. (2, 0), (2, 1), and (1, 1)

Fig. 1. Undecimated MEMD analysis filter banks of full binary tree at decomposition level of 2.
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nodes only to be an octave tree in Fig. 1), then the 1st, 2nd IMFs, and residual are
respectively corresponding to (1, 1), (2, 1), and (2, 0) node signals. An example of
an octave tree is shown in Fig. 2(b), which is the results of undecimated EMDFB
with an octave tree having (8, 0), (8, 1), (7, 1), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1), and
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Fig. 2. Comparison of undecimated MEMDFB with MEMD in Mandic et al. (2013) and Rehman
and Mandic (2010). (a) Results of MEMD in Mandic et al. [2013] and Rehman and Mandic [2010]
and (b) undecimated MEMDFB results for an octave tree.
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(1, 1) end-nodes. Figure 2(a) is the results of MEMD developed in Mandic et al.
[2013] and Rehman and Mandic [2010] for a comparison. Notice that the first row of
Figs. 2(a) and 2(b) contains the given signals for three channels. In Fig. 2(a), the 2nd
and the last rows are for the 1st IMF and residual, respectively. In Fig. 2(b), 2nd,
3rd, 4th and the last rows are respectively for (1, 1), (2, 1), (3, 1), and (8, 0) node
signals. All other IMFs and node signals are listed in the same manner in Fig. 2.

For undecimated MEMFBs, other further decompositions are effectively the
same, with an octave tree structure, because of the good mode-splitting property
of MEMD. In other words, even with a further decomposition of (1, 1) node signal
into (2, 2) and (2, 3) nodes, the undecimated MEMDFB shows no residual at the
(2, 2) node, and the same for the (1, 1) node signal at (2, 3) node. However, this is
not true for decimated EMDFBs, which will be explained in next section, this is
because downsamplings make it different from the results of original MEMD.

4. Decimated MEMDFBs

Although the original EMD for a single variable in Huang et al. [1998] has many
advantages in dealing with real-world signals, it decomposes a signal only by a fixed
tree structure, which is an octave tree structure. This is because only the residual
(corresponding to a low pass signal) is further decomposed. Hence, the so-obtained
IMFs are not further decomposed by the original EMD although there might be a
signal to be further decomposed in an IMF [i.e. mode-mixing problem addressed
in Mandic et al. (2013)]. Moreover, all decomposed signals have the same length of
data because there is no downsampling, which is used in traditional filter banks.
Downsampling is a key element in modern filter banks to reduce data obtained
by various decompositions. However, it is not straightforward to incorporate down-
samplings into (M)EMD because traditional filters satisfying perfect reconstruction
property (e.g. quadrature mirror filters, QMFs) are not available in (M)EMD. To
overcome those drawbacks of original EMD, EMDFBs are introduced in Koh and
Rodriguez-Marek [2013a, 2013b, 2013c] as an extension of Huang et al. [1998] into
filter bank theory. EMDFBs introduced in Koh and Rodriguez-Marek [2013a, 2013b,
2013c] incorporate downsamplings to reduce decomposed data and it is applicable
into any arbitrary tree structure so that chosen frequency bands are flexible to cre-
ate any nonuniform filter banks. Figure 3 shows one stage of analysis and synthesis
filter banks in decimated EMDFBs. Figure 3(a) decomposes a signal, Xij , into one
IMF denoted by Xi+1,2j+1 and one residual denoted by Xi+1,2j , where Xi+1,2j and
Xi+1,2j+1 are down sampled by 2. The signal denoted by ∆i+1,j is an error sig-
nal between the estimated even-indexed signal and true even-indexed signal, where
the estimated even-indexed signal is obtained by downsampling of the interpolated
signal of the odd-indexed residual denoted by Ro. Figure 1(b) is a counterpart of
(a) to recover the original signal Xij , where the interpolation must be the same
interpolation used in the analysis stage of Fig. 1(a). The delay operators, denoted
by Z−1 in Fig. 1(a), take even indexed samples and the operator denoted by Z in
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(a)

(b)

Fig. 3. Single stage of the decimated EMD analysis and synthesis filter banks [Koh and
Rodriguez-Marek (2013a, 2013b)]. (a) One analysis stage and (b) one synthesis stage

Fig. 1(b) moves back the even indexed samples into the original positions [Koh and
Rodriguez-Marek (2013a, 2013b)].

Figure 3 guarantees a perfect reconstruction for any arbitrary EMDFBs, as
proved in Koh and Rodriguez-Marek [2013a]. Since Fig. 3 is extended into deci-
mated MEMDFBs for multichannel data in this paper, we next state the theorem
of perfect reconstruction for EMDFBs, where a detailed proof is given in Koh and
Rodriguez-Marek [2013a].
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Theorem 1. (Perfect reconstruction of EMDFBs) [Koh and Rodriguez-Marek
(2013a)]: The decimated EMD filter banks in Figs. 3(a) and 3(b) have perfect recon-
struction and cancel aliasing, provided the same interpolation technique is used for
analysis and synthesis.

Since MEMD has a property of filter banks as shown in Rehman and Mandic
[2011], MEMD opens some possibilities to be used as a new filter bank with
downsamplings for nonlinear and nonstationary signals. Decimated MEMDFBs
introduced in this section apply to Fig. 3 in multichannel settings and incorpo-
rate downsamplings. Hence, a similar idea to Koh and Rodriguez-Marek [2013a,
2013b] is used as shown in Fig. 4, where Fig. 4 is an extended version of Koh and
Rodriguez-Marek [2013a, 2013b] for N variables (or channels). In Fig. 4, suppose
a Xi,j ∈ RL×N , then Xi+1,2j , ∆i+1,j , and Xi+1,2j+1 ∈ R

L
2 ×N are respectively cor-

responding to down sampled residuals, errors, and IMFs of all N channels for the
mother node signal, Xi,j .

As shown in Fig. 4, each stage produces three outputs, which are one IMF,
residual, and error signals. One stage in Fig. 4 is connected into lower nodes for a
given arbitrary tree, as shown in Fig. 5 with a decomposition level of 2. Figure 5 is
the same as for a single variable case shown in Koh and Rodriguez-Marek [2013b]
but note that the data sizes are different for multivariable cases. For instance,
all node signals at the decomposition level 2 have the dimension of L

4 × N for a
given X00 ∈ RL×N (i.e. X20, X21, X22, X23, ∆20, and ∆21 ∈ R

L
4 ×N ) because two

downsampling steps are applied into each node path at the first and the second
decomposition levels.

Fig. 4. One stage of analysis filter banks for decimated MEMDFBs (at the ith decomposition
level).
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Fig. 5. Decimated MEMD analysis filter banks of a full binary tree at the decomposition level
of 2.

Fig. 6. One stage of synthesis filter banks for decimated MEMDFBs (at the ith decomposition
level).

To achieve perfect reconstruction, synthesis filter banks are also required for
each node signal. One stage of the synthesis filter bank is shown in Fig. 6, which
is an extension of Fig. 3 to the multivariate case. As mentioned, a single variable
version of Figs. 4 and 6 guarantees perfect reconstruction with aliasing cancelled
through Theorem 1. Since decimated MEMDFBs are an extension of the single
variable case, Figs. 4 and 6 also guarantee a perfect reconstruction, with aliasing
cancelled. To recover the given original signal, Fig. 6 is applied with a given tree
structure starting from the end-nodes up to (0, 0) node. The perfect reconstruction
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ability of MEMDFBs is summarized in the following corollary. Since the Corollary
is an extension of Theorem 1 into multichannel cases, the proof of Corollary is a
simple extension of the proof in Koh and Rodriguez-Marek [2013a] applied to each
channel.

Corollary 1. (Perfect reconstruction of MEMDFBs): Decimated analysis and syn-
thesis MEMDFBs of Figs. 4 and 6 respectively form a perfect reconstruction with
aliasing cancelled.

The data reduction ratio (DRR) of decimated MEMDFBs compared with tradi-
tional MEMD [Mandic et al. (2013); Rehman and Mandic (2010)] for one channel
is the same, with DRR = (P+1)L

L(2− 1
2P )

= P+1
(2− 1

2P )
as shown in Koh and Rodriguez-Marek

[2013a], where P is a given decomposition level and L is data length of each channel.
The numerator, (P + 1)L, reflects the intrinsic octave tree structure of MEMD in
one channel. In other words, if P of IMFs are obtained by MEMD, with one residual
for data length of L, then traditional MEMD has (P + 1)L decomposed data for a
single channel. For the same octave tree, decimated MEMDFBs have the denom-
inator of L(2 − 1

2P ), which is obtained by adding all lengths of node signals and
error node signals for the same P decomposition level with one channel case [Koh
and Rodriguez-Marek (2013a)]. Hence, DRR for all MEMD channels is obtained
by DRR = (P+1)N

(2− 1
2P )

for an N -channel case. For instance, assume that traditional

MEMDs have seven IMFs and one residual (i.e. P = 7) with eight-channels (i.e.
N = 8), then DRR ≈ 32. In other words, decimated MEMDFBs have 32 times less
decomposed data compared with traditional MEMD.

5. Applications of MEMDFBs to Multivariate, Image,
and Speech Signals

The MEMDFBs, explained in previous sections, are now applied to multivariate sig-
nals, one-dimensional signals (e.g. speech and audio signals), and two-dimensional
signals (e.g. images). Since speech and images are usually one-channel applications,
revised MEMDFBs are required for those one channel signals, and the revisions are
explained below.

5.1. Multivariate signals

Undecimated and decimated MEMDFBs are first applied to real-world signals.
Figure 7(a) shows all decomposed signals by a decimated MEMDFB for a hexavari-
ate real world taichi dataset with a tree having end-nodes of (6, 0), (6, 1), (5, 1),
(4, 1), (3, 1), (2, 1), and (1, 1). The first row of Fig. 7(a) is corresponding to the (1, 1)
node signal and the last row of Fig. 7(a) is corresponding to the (6, 0) node signal.
In Fig. 7(a), note that the decomposed signal lengths are getting reduced by a factor
of 2, as the decomposition level increases. Also, note that the delta signals in Fig. 4,
which are required to achieve perfect reconstruction for decimated MEMDFBs, are
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Fig. 7. Results of decimated MEMDFBs and original MEMD. (a) Decomposed signals by a
decimated MEMDFB and (b) IMFs and residual decomposed by MEMD in Mandic et al. [2013]
and Rehman and Mandic [2010].
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not included in Fig. 7(a). For comparison with MEMD, Fig. 7(b) shows the IMFs
decomposed by MEMD in Mandic et al. [2013] and Rehman and Mandic [2010].
The first row of Fig. 7(b) is corresponding to the first IMF decomposed by MEMD.

5.2. Two-dimensional signals

The undecimated and decimated MEMDFBs are next applied to an image, where
three channels are used. The first, second, and third channels are obtained by scan-
ning an image in column, row, and diagonal directions. To avoid abrupt changes
at the end of each column, row, and diagonal, every other column, row, diagonal
vectors are flipped. The results of undecimated MEMDFBs is shown in Fig. 8,
where an octave tree of (3, 0), (3, 1), (2, 1), and (1, 1) end-nodes is used. Since each
end-node of Fig. 1, which is for undecimated MEMDFBs, has redundant subim-
ages because of three channels for column, row, and diagonal scanning of an image,
the end-node images are arithmetically averaged. For instance, each channel col-
umn vector in X11 node signal is changed into three channel images of X img

11,c,
X img

11,r, and X img
11,d and those three channel images are arithmetically averaged as

X img
11 = (X

img

11,c + X img
11,r + X img

11,d)/3. Note that X11 is a matrix node signal having
three column vectors and X img

11 is an image node signal. Hence, any matrix node

(3,0) node image

(2,1) node image

(3,1) node image

(1,1) node image

Fig. 8. Decomposed signals by an undecimated MEMDFB.
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signal, Xij , is changed into an image node signal, X img
ij , by

X img
ij = (X img

ij,c + X img
ij,r + X img

ij,d )/3, (1)

All image node signals for the given octave tree of (3, 0), (3, 1), (2, 1), and (1, 1)
end-nodes are shown in Fig. 8. Since Fig. 8 is the result of undecimated EMDFBs,
all node images have the same size.

For decimated MEMDFBs, a similar idea to Koh and Rodriguez-Marek [2013c]
is used within MEMD in this paper. Like Koh and Rodriguez-Marek [2013c], down-
samplings are applied into row and column directions after changing each chan-
nel data into an image at each decomposition level. After downsamplings in the
row and column directions, images are put back into column vectors for the next
level decompositions. Those ideas are shown in Fig. 9 as block diagrams, where
Figs. 9(b) and 9(d) are the same analysis and synthesis filter banks used for 2D-
EMD in Koh and Rodriguez-Marek [2013c]. In Fig. 9(a), the V/I block implies

(a) (b)

(c) (d)

Fig. 9. Analysis and synthesis MEMFBs for image application only. (a) One stage of analy-
sis MEMDFBs, (b) Downsampling block in (a), (c) One stage of synthesis MEMDFBs and (d)
Upsampling block in (c).
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“(column) vector to image”, which changes the given column vector into an image.
For instance, Xi,j = [xc, xr, xd] ∈ RL×3, in Fig. 9(a) is a matrix input, which is
scanned from an image in column, row, and diagonal directions, as mentioned. The
given matrix input, Xi,j , is decomposed into two matrices, R and I by MEMD,
where R = [rc, rr, rd] and I = [ic, ir, id] having three column vectors each. For
instance, ir and rr means respectively the first IMF and residual decomposed by
MEMD from the 2nd column vector of xr, which is composed by pixels in row
direction, of an image. Other column vectors of rc/ic and rd/id are obtained by the
same manner for the image pixels in column and diagonal direction, respectively.
Hence, it is obvious that xs = is + rs for any subscript s ∈ {c, r, d} because of
the MEMD nature. The Rs in Fig. 9(a) implies a subimage changed respectively
from a column vector of rc, rr, or rd. The block denoted by “I/V ” implies “image
to (column) vector” by scanning an image in column, row, or diagonal direction.
For instance, Xi+1,2j in Fig. 9(a) has three column vectors, which are respectively
changed from Ree

c , Ree
r , and Ree

d subimages because Ree
s implies Ree

c , Ree
d , or Ree

d

subimage. Since each column of Xi+1,2j is changed from down sampled image in
row and column directions as Fig. 9(b), Xi+1,2j is a L

4 × 3 matrix for Xi,j ∈ RL×3,
where L = MN for a given M × N image. In Figs. 9(a) and 9(b), ∆oe

s implies
∆oe

c , ∆oe
r , or ∆oe

d , depending on a channel and those are error subimages in (odd,
even) indices made by “down sample block (DSB)”. The DSB is shown in Fig. 9(b),
where the input subimage, Rs, is a subimage made from rc, rr, or rd column vec-
tors in the R matrix. For instance, if two subimages of Rd and Id obtained by the
rd column vector are applied to Fig. 9(b) for Rs and Is, then five output images
in Fig. 9(b) imply Ree

d , Iee
d ∆oe

d , ∆eo
d , and ∆oo

d subimages. Note that each ∆XX
s

subimage in Fig. 9(a) is changed into three column vectors of [doe
s , deo

s , doo
s ] defined

by a matrix, ∆s. For instance, Rd and Id are applied into DSB inputs, then ∆s

in Fig. 9(a) implies ∆d = [doe
d , deo

d , doo
d ] ∈ R

L
4 ×3 for given Rd, Id ∈ RM×N , where

L = MN . Hence, the total error node matrix denoted by ∆i+1,j = [∆c, ∆r, ∆d]
has a size of L

4 × 9. Since Fig. 9(b) is similar in structure to the analysis part
in Koh and Rodriguez-Marek [2013c], a detailed explanation is given in Koh and
Rodriguez-Marek [2013c] for a single channel.

Figure 9(c) shows one stage of synthesis MEMDFBs, which is the counterpart
of Fig. 9(a). Note that in Fig. 9(c) each column vectors in Xi+1,2j is changed
respectively into Ree

c , Ree
r , and Ree

d subimages but those subimages are denoted by
Ree

s for a general input belong to subscripts s ∈ {c, r, d}, whose notation is also
used for “up sample block (USB)” in Fig. 9(d). USB in Fig. 9(c) recovers an image
and the recovered image (denoted by X̂s) is changed into a column vector by “I/V ”
implying a conversion from an image to a (column) vector. Detailed parts of USB
are given in Fig. 9(d), where if Ree

r , Ieo
r , ∆oe

r , ∆eo
r , and ∆oo

r subimages are applied
into the USB, then the recovered subimage X̂s is changed into a column vector
xr in Xi,j by I/V block. Figures 9(a) and 9(c) form perfect reconstruction filter
banks, and this is guaranteed by the following Theorem. A detailed proof of the
Theorem 2 is given in Appendix A.
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Theorem 2. Decimated MEMDFBs shown in Figs. 9(a) and 9(c) form perfectly
reconstructable filter banks, with aliasing cancelling as long as identical 2D-
interpolation techniques are applied in DSB and USB of the synthesis and analysis
respectively.

The results of decimated MEMDFBs using the structure of Fig. 9 are shown in
Fig. 10, where (a) shows perfect reconstruction of a decimated MEMDFB. Since

Original image Recovered image by MEMDFBs, SNR=325 [dB]

(a)

(b)

Fig. 10. Results applied into an image for a decimated MEMDFB and a comparison with wavelet
filter banks. (a) Original image (256 × 256) and recovered image by a decimated MEMDFB
for a tree having (3, 0), (3, 1), (2, 1), and (1, 1) end-nodes, (b) Left: Octave tree used for deci-
mated MEMDFBs. Right: Corresponding subimages, (c) Left: Decomposed signals by a decimated
MEMDFB for an octave tree of (b), where the corresponding subimages are indexed by right side
of (b). Right: Decomposed signal by wavelet filter banks with the same octave tree of (b) and (d)
Doo

ij images required for decimated MEMDFBs to achieve perfect reconstruction, each one from

left is respectively corresponding to Doo
10 ∈ R128×128 , Doo

20 ∈ R64×64 , and Doo
30 ∈ R32×32 .
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(c)

dee image at decomposition level 1

dee image at decomposition level 2

dee image at decomposition level 3

(d)

Fig. 10. (Continued)

each node matrix, Xi+1,2j and Xi+1,2j+1, in Fig. 9(a) has three redundant images
with pixels in the column, row, and diagonal directions, note that the node images
of X Img

i+1,2j and X Img
i+1,2j+1 in Fig. 10(c) are reconstructed from each node matrices

by an arithmetic average of three images, given as{
X Img

i+1,2j = (Ree
c + Ree

r + Ree
d )/3

X Img
i+1,2j+1 = (Iee

c + Iee
r + Iee

d )/3.
(2)

Those averaged node images are used in Fig. 10. Figure 10(b) shows an octave
tree used for decimated MEMDFBs and subimages indices to make left-hand side
image of Fig. 10(c). Figure 10(c) is a combined image by error images [i.e. error
subimages changed from ∆ij matrices in Fig. 9(a)] and one residual at each level.
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Again, since each error subimage of ∆ij in Fig. 9(a) also has redundant images,
those are arithmetically averaged and shown in Figs. 10(c) and 10(d). For instance,
the error image at node (1, 0) denoted by Deo

10 in Figs. 10(b) and 10(d) is obtained
by Deo

10 = (∆eo
c + ∆eo

r + ∆eo
d )/3. All other error subimages in Figs. 10(b)–10(d) are

obtained by the same manner as


Doe
i+1,j = (∆oe

c + ∆oe
d + ∆oe

r )/3

Deo
i+1,j = (∆eo

c + ∆eo
d + ∆eo

r )/3

Doo
i+1,j = (∆oo

c + ∆oo
d + ∆oo

r )/3.

(3)

Note that one image of Doo
ij at each level is not included in right-hand side

image of Fig. 10(b) and left-hand side image of Fig. 10(c). Those extra images
of Doo

10 ∈ R128×128, Doo
20 ∈ R64×64, and Doo

30 ∈ R32×32 at each level — which are
required for decimated MEMDFBs to achieve perfect reconstruction — are shown
in Fig. 10(d). More details for subimages are also explained in Koh and Rodriguez-
Marek [2013c] for single channel applications. Moreover, the right-hand side image
on Fig. 10(c) shows the results of wavelet filter banks for the same end-nodes, where
the mother wavelet of “db4” is used. Comparing the two images in Fig. 10(c),
note that MEMDFBs show clearer directional edges in images of (3, 1), (2, 1), (1, 1)
nodes, and ∆oo

ij images. In other words, MEMDFBs shows clear vertical, horizontal,
and diagonal edges, because of directional scanning of an image to apply MEMD.
However, as shown in Fig. 10(d), it should be noted that one extra quarter size
image is generated at each node in decimated MEMDFBs. The reason is explained
in Koh and Rodriguez-Marek [2013c] for the univariate case. Wavelet filter banks
show smaller variance in LH, HL, and HH subimages (i.e. good energy compaction
in LL band), than those of MEMDFBs as shown in Fig. 10(c). A small variance
in detail subimages (i.e. images on HL, LH, HH planes) is a good property for
signal compression perspectives. As a comparison between decimated and undeci-
mated MEMDFBs, note that all four images in Fig. 8 have the same size, 256×256
because there is no downsampling for undecimated MEMDFBs. Furthermore, note
that any extra ∆ij images are not required for undecimated MEMDFBs as shown
in Fig. 8 because there is no downsampling involved.

All intermediate nodes in Fig. 9(a) are matrices having multichannels. Since
the image size is getting reduced by factor of 4 at each decomposition level, each
node signal (i.e. Xi,j) and error node signal (i.e. ∆i,j) have respectively MN

4i × 3
and MN

4i × 9 matrices at ith decomposition level when it is applied to an original
image of M × N . In other words, each node and error signal in Fig. 9(a) is not
an image but a matrix. However, all of intermediate node matrices in the analysis
filter banks are not required for synthesis filter banks. Only end-node signals and
∆ijs are required for perfect reconstruction at synthesis filter banks. Furthermore,
all end-node signals in Fig. 9(a) have redundant data (i.e. redundant three channel
subimages) because one image is scanned through the column, row, and diagonal
directions. To keep only one subimage at each end-node like wavelet filter banks
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(a) (b)

(c)

Fig. 11. (a) Intermediate nodes in decimated analysis MEMDFBs for image applications only,
(b) end nodes in decimated analysis MEMDFBs for image applications only, (c) one stage for
decimated synthesis MEMDFBs for image applications only.

(other intermediate nodes are fine with matrix form because they will not be kept
and be used internally), the decimated EMDFBs in Figs. 9(a) and 9(c) needs a little
revised form given in Fig. 11. First of all, DSB in Figs. 11(a) and 11(b) indicates
Fig. 9(b). The “AVG” block does arithmetic average operation of three subimages in
order to keep only one subimage and the AVG block is applied into end-nodes only.
Since all intermediate nodes keep a matrix form, it uses “I/V ” block as shown
in Fig. 11(a), which is for intermediate node only. For each end-node, only one
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subimage is kept as shown in Fig. 11(b), which is for end-node only. For instance,
Xi+1,2j and Xi+1,2j+1 node image in Fig. 11(b) is obtained by the average operation
given in Eq. (2). Note in Fig. 11(b), that superscript “Img” to denote image form
is dropped in node signal, Xi+1,2j and Xi+1,2j+1, because the output of “AVG”
block implies an image. And the averaged error images denoted by Doe

i+1,j , Deo
i+1,j ,

and Doo
i+1,j in Fig. 11 are also obtained by Eq. (3). Note that synthesis filter banks

in Fig. 11(c) have the same structure of synthesis filter banks for 2D-EMD in Koh
and Rodriguez-Marek [2013c] and it is re-drawn for further explanation of synthesis
MEMDFBs. Figure 11 — which is for image applications only — provides all end-
node and error subimages only with size of M

2i × N
2i at ith decomposition level

instead of end-node and error node matrices with size of MN
2i × 3 in Figs. 9(a) and

9(c). Hence, summing up all end-node images of Xi,j in Fig. 11(b) results in the
same size of original given image like wavelet theory. However, note that decimated
MEMDFBs in Fig. 11(b) need extra error-node images denoted by Di,j ∈ R

M

2i × 3N

2i

at each ith decomposition level. Since all end-nodes and error-nodes have an image
form, data reduction analysis of Fig. 11(b) is exactly same with that of Koh and
Rodriguez-Marek [2013c]. Decimated MEMDFBs of Fig. 11(b) has about 1.33 times
bigger size of decomposed data compared with traditional wavelet filter bank having
an octave tree [Koh and Rodriguez-Marek (2013c)] because of extra error-node
images. It can be analyzed like this: Since an octave filter banks have only one Dij

at each decomposition level, it has total data size of ( M
2P × N

2P ) +
∑P

l=1(
M
2l × N

2l )
for node images, where the first term of ( M

2P × N
2P ) is for XP,0 node image (e.g.

X3,0 for P = 3) and the second term of
∑P

l=1(
M
2l × N

2l ) is to consider all Xp,1 node
imagesin an octave filter bank (e.g. X1,1, X2,1, and X3,1 for P = 3). The decimated
MEMDFBs have additional error-node images of

∑P
l=1(

M
2l × 3N

2l ) for Dij . Hence,
total size of decomposed node images and error-node images is(

M

2P
× N

2P

)
+

P∑
l=1

(
M

2l
× N

2l

)
+

P∑
l=1

(
M

2l
× 3N

2l

)

=
MN
4P

+
MN
3

(
1 − 1

4P

)
+ MN

(
1 − 1

4P

)

=
MN
4P

+
4MN

3

(
1 − 1

4P

)
.

Hence, total data size of decimated MEMDFBs of Figs. 11(a) and 11(c) for an
octave filter banks for P ≥ 3 decomposition level is ≈ 1.33. For a full binary tree,
decimated MEMDFBs of Fig. 11 need a total MN (3

2− 1
2P+1 ) < 3

2MN data, where P

is decomposition level for M ×N image, it means decimated MEMDFBs need max-
imum 1.5 times bigger decomposed data compared with wavelet packets having full
binary tree because wavelet packets have the size of MN by totaling all decomposed
images in fully binary tree nodes [Koh and Rodriguez-Marek (2013c)]. Although
only end-node subimages (not matrices) and error-node subimages are considered
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in Fig. 11, the perfect reconstruction is also preserved using those subimages only.
Perfect reconstruction of decimated MEMDFBs of Fig. 11 is formalized by following
theorem (a detailed proof is given in Appendix B).

Theorem 3. With the same affine invariant interpolation in analysis and synthe-
sis stages, the analysis and synthesis MEMDFBs in Fig. 11 form perfectly recon-
structable filter banks, with aliasing cancelled.

5.3. One-dimensional signals

To apply the same idea of MEMDFBs in Figs. 4 and 6 to one-dimensional cases
(e.g. speech and/or audio signals, etc.), NA-MEMD explained in previous section is
used instead for the “MEMD” block in Fig. 4 because its mode-splitting property
is better than EMD and/or EEMD as shown in Rehman et al. [2013]. These fil-
ter banks are coined NA-MEMDFBs and the results of decimated NA-MEMDFBs
for a speech is shown in Fig. 12. Although two noise channels are used in NA-
MEMD, the NA-MEMD shows negligibly small errors in a reconstructed signal,
because the noise channels are not directly added into a desired signal as explained
in Rehman et al. [2013]. It results in a reconstructed signal having more than 300
[dB] SNR, which satisfies perfect reconstruction as well, as shown in Fig. 12(a).

(a)

Fig. 12. Results of decimated NA-MEMDFBs for univariable applications. (a) Perfect reconstruc-
tion by decimated NA-MEMDFBs of (6, 0), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1), and (1, 1) end-nodes,
(b) each node signal decomposed by decimated NA-MEMDFBs, where the last row through up
to first row are respectively corresponding to (6, 0), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1), and (1,
1) end-nodes and (c) comparison of decimated NA-MEMDFBs with wavelet filter banks for the

same octave tree, where the last row through up to first row are respectively corresponding to (6,
0), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1), and (1, 1) end-nodes.
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(b)

(c)

Fig. 12. (Continued)

Figure 12(b) shows each decomposed node signal for a speech and two noise chan-
nels, where two noise channels are discarded at the end because it only assists to
MEMD for better mode-splitting with enough channels. Again, note that delta sig-
nals explained in Koh and Rodriguez-Marek [2013a, 2013b], which are required for
perfect reconstruction, are not shown in Fig. 12(b). Figure 12(c) shows comparison
between NA-MEMDFBs and wavelet filter banks for a speech, where an octave tree
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Fig. 13. Decomposed node signals of undecimated NA-MEMDFBs for univariable applications,
where the last row through up to first row are respectively corresponding to (9, 0), (9, 1), (8, 1),
(7, 1), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1), and (1, 1) end-nodes.

is applied. Decimated NA-MEMDFBs show clearer node signals at (6, 0), (6, 1), and
(5, 1) than those of wavelet filter banks, where “db4” mother wavelet is used. To
obtain Fig. 12, two noise channels are used in NA-MEMD with SNR of 20 [dB] for
an octave tree of (6, 0), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1) and (1, 1) end-nodes. Since
there are not enough remaining samples after 6th decomposition level (i.e. because
of downsamplings), it shows only up to decomposition level of 6. Figure 13 shows
decomposed node signals for undecimated NA-MEMDFBs. Note that each node
signal in undecimated NA-MEMDFBs has the same length as shown in Fig. 13,
where the last row through up to first row are respectively corresponding to (9, 0),
(9, 1), (8, 1), (7, 1), (6, 1), (5, 1), (4, 1), (3, 1), (2, 1), and (1, 1) end-nodes.

Since the proposed decimated NA-MEMDFBs and MEMDFBs are applicable
to any arbitrary nodes, they can be extended to NA-MEMD packets and MEMD
packets, coined by the similar terminology as in wavelet theory. The undecimated
NA-MEMDFBs and MEMDFBs have no signals in many nodes except for end-nodes
in an octave tree as explained in previous section. Hence, when it is applied into
any arbitrary nodes, it does not have meaningful MEMD packets, unlike wavelet
packets. However, decimated NA-MEMD packets and MEMD packets lead to mean-
ingful node signals because any node signal is usually available. As an example, each
node signal decomposed by NA-MEMD packets is shown in Fig. 14(a) up to decom-
position level of 3 for a speech signal. For comparison with wavelet packets, each
node signal decomposed by wavelet packets with “db4” is shown in Fig. 14(b). Such
MEMD packets can be applied to images and multivariate signals as well, because
decimated MEMDFBs are applicable to arbitrary tree structures.
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(a)

(b)

Fig. 14. Comparison of NA-MEMD Packets with wavelet packets for decomposition level 3 with
“db4” for a speech signal. (a) Each node signal for NA-MEMD packets and (b) each node signal
for wavelet packet.

6. Conclusion

Undecimated/decimated MEMDFBs and NA-MEMDFBs which can be applied to
any arbitrary tree are developed in this paper for multivariate, speech/audio, and
image applications. Decimated MEMDFBs and NA-MEMDFBs lead to perfect
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reconstruction with aliasing cancelled even without any traditional filters. For
undecimated EMDFBs having an octave tree, it shows exactly the same results
as those of original MEMD, because MEMD has good mode-splitting property.
NA-MEMDFBs — which are developed for univariate applications — also lead
to perfect reconstruction although noise channels are used. The new filter banks
developed in this paper can handle nonlinear and nonstationary signals because
they do not need any assumptions of linearity and/or stationary, which are manda-
tory assumptions in traditional filtering and filter banks. Furthermore, since the
developed filter banks can be applied to any arbitrary trees, they are extended to
undecimated/decimated NA-MEMD and MEMD packets. However, undecimated
NA-MEMDFBs and MEMDFBs do not need any further decompositions from a
given octave tree, unless there is any remaining mode in a node signal because of
good mode-splitting property in MEMD and NA-MEMD. In addition, any node
signals in decimated EMDFBs and NA-MEMD result in various options for flexible
frequency bands, depending on the application.

Appendix A. Proof for Theorem 2

In Figs. 9(a) and 9(c), DSB and USB is applied identically for each column of
R = [rc, rr, rd] and I = [ic, ir, id] to recover one column input of Xi,j = [xc, xr, xd].
Hence, let us consider only one general column vector denoted by xs, where the
subscript s ∈ {c, r, d} and note xs = rs + is by the nature of MEMD. The equation
in column vectors are equivalent to Xs = Rs+Is with each corresponding subimage
changed by V /I block. If a same 2D-interpolation is used in DSB and USB of
Figs. 9(b) and 9(d) respectively, then the estimated residual images denoted by
R̂eo

s , R̂oe
s , and R̂oo

s are same at DSB and USB in Figs. 9(b) and 9(d), respectively.
Hence, Ŝeo

s = Seo
s , Ŝoe

s = Soe
s , and Ŝoo

s = Soo
s are obtained at the USB. Let us

denote Ree
s (zr, zc) implies two-dimensional Z transform of Ree

s [m, n], which is a
pixel at (m, n) location, then the theorem is proved as follows:

Since internal signals of DSB in Fig. 9(b) are the case of rectangular decimation
matrix of M =

[
2 0
0 2

i
[Vaidyanathan (1993)], all internal signals can be expressed as

Ree
s (zr, zc) =

1
4
{Rs(z

1
2
r , z

1
2
c ) + Rs(−z

1
2
r , z

1
2
c ) + Rs(z

1
2
r ,−z

1
2
c ) + Rs(−z

1
2
r ,−z

1
2
c )},

Reo
s (zr, zc) =

1
4
{z−1

2
c Rs(z

1
2
r , z

1
2
c ) + z

−1
2

c Rs(−z
1
2
r , z

1
2
c ) − z

−1
2

c Rs(z
1
2
r ,−z

1
2
c )

− z
−1

2
c Rs(−z

1
2
r ,−z

1
2
c )},

Roe
s (zr, zc) =

1
4
{z−1

2
r Rs(z

1
2
r , z

1
2
c ) − z

−1
2

r Rs(−z
1
2
r , z

1
2
c ) + z

−1
2

r Rs(z
1
2
r ,−z

1
2
c )

− z
−1

2
r Rs(−z

1
2
r ,−z

1
2
c )},
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Roo
s (zr, zc) =

1
4
{z−1

2
r z

−1
2

c Rs(z
1
2
r , z

1
2
c ) − z

−1
2

r z
−1

2
c Rs(−z

1
2
r , z

1
2
c )

− z
−1

2
r z

−1
2

c Rs(z
1
2
r ,−z

1
2
c ) + z

−1
2

r z
−1

2
c Rs(−z

1
2
r ,−z

1
2
c )},

Iee
s (zr, zc) =

1
4
{Is(z

1
2
r , z

1
2
c ) + Is(−z

1
2
r , z

1
2
c ) + Is(z

1
2
r ,−z

1
2
c ) + Is(−z

1
2
r ,−z

1
2
c )},

Ieo
s (zr, zc) =

1
4
{z−1

2
c Is(z

1
2
r , z

1
2
c ) + z

−1
2

c Is(−z
1
2
r , z

1
2
c ) − z

−1
2

c Is(z
1
2
r ,−z

1
2
c )

− z
−1

2
c Is(−z

1
2
r ,−z

1
2
c )},

Ioe
s (zr, zc) =

1
4
{z−1

2
r Is(z

1
2
r , z

1
2
c ) − z

−1
2

r Is(−z
1
2
r , z

1
2
c ) + z

−1
2

r Is(z
1
2
r ,−z

1
2
c )

− z
−1

2
r Is(−z

1
2
r ,−z

1
2
c )},

Ioo
s (zr, zc) =

1
4
{z−1

2
r z

−1
2

c Is(z
1
2
r , z

1
2
c ) − z

−1
2

r z
−1

2
c Is(−z

1
2
r , z

1
2
c )

− z
−1

2
r z

−1
2

c Is(z
1
2
r ,−z

1
2
c ) + z

−1
2

r z
−1

2
c Is(−z

1
2
r ,−z

1
2
c )}.

Then, the recovered signal, X̂s, in USB is expressed as

X̂s(zr, zc) = Ŝee
s (z2

r , z2
c ) + zcŜ

eo
s (z2

r , z2
c ) + zrŜ

oe
s (z2

r , z2
c ) + zrzcŜ

oo
s (z2

r , z2
c )

=
1
4
{Rs(zr, zc) + Is(zr, zc) + Rs(−zr, zc) + Is(−zr, zc)

+ Rs(zr,−zc) + Is(zr,−zc) + Rs(−zr,−zc) + Is(−zr,−zc)}

+
1
4
{Rs(zr, zc) + Is(zr, zc) + Rs(−zr, zc) + Is(−zr, zc)

−Rs(zr,−zc) − Is(zr,−zc) − Rs(−zr,−zc) − Is(−zr,−zc)}

+
1
4
{Rs(zr, zc) + Is(zr, zc) − Rs(−zr, zc) − Is(−zr, zc)

+ Rs(zr,−zc) + Is(zr,−zc) − Rs(−zr,−zc) − Is(−zr,−zc)}

+
1
4
{Rs(zr, zc) + Is(zr, zc) − Rs(−zr, zc) − Is(−zr, zc)

−Rs(zr,−zc) − Is(zr,−zc) + Rs(−zr,−zc) + Is(−zr,−zc)}

=
1
4
{4Rs(zr, zc) + 4Is(zr, zc)} = Rs(zr, zc) + Is(zr, zc)

= Xs(zr, zc), ∀ s ∈ {c, r, d},
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where each subimages of Ŝeo
s = Seo

s , Ŝoe
s = Soe

s , and Ŝoo
s = Soo

s are expressed as

Ŝee
s (z2

r , z2
c ) = Ree

s (z2
r , z2

c ) + Iee
s (z2

r , z2
c )

=
1
4
{Rs(zr, zc) + Rs(−zr, zc) + Rs(zr,−zc) + Rs(−zr,−zc)}

+
1
4
{Is(zr, zc) + Is(−zr, zc) + Is(zr,−zc) + Is(−zr,−zc)},

Ŝeo
s (z2

r , z2
c ) = Reo

s (z2
r , z2

c ) + Ieo
s (z2

r , z2
c )

=
1
4
{z−1

c Rs(zr, zc) + z−1
c Rs(−zr, zc)

− z−1
c Rs(zr,−zc) − z−1

c Rs(−zr,−zc)}

+
1
4
{z−1

c Is(zr, zc) + z−1
c Is(−zr, zc)

− z−1
c Is(zr,−zc) − z−1

c Is(−zr,−zc)},

Ŝoe
s (z2

r , z2
c ) = Roe

s (z2
r , z2

c ) + Ioe
s (z2

r , z2
c )

=
1
4
{z−1

r Rs(zr, zc) − z−1
r Rs(−zr, zc)

+ z−1
r Rs(zr,−zc) − z−1

r Rs(−zr,−zc)}

+
1
4
{z−1

r Is(zr, zc) − z−1
r Is(−zr, zc)

+ z−1
r Is(zr,−zc) − z−1

r Is(−zr,−zc)},

Ŝoo
s (z2

r , z2
c ) = Roo

s (z2
r , z2

c ) + Ioo
s (z2

r , z2
c )

=
1
4
{z−1

r z−1
c Rs(zr, zc) − z−1

r z−1
c Rs(−zr, zc)

− z−1
r z−1

c Rs(zr,−zc) + z−1
r z−1

c Rs(−zr,−zc)}

+
1
4
{z−1

r z−1
c Is(zr, zc) − z−1

r z−1
c Is(−zr, zc)

− z−1
r z−1

c Is(zr,−zc) + z−1
r z−1

c Is(−zr,−zc)}.
Note that the reconstructed X̂s[m, n] node image corresponding to X̂s(zr, zc) is
changed into a column vector of xc, xr or xd depending on subscript s ∈ {c, r, d}
by the “I/V ” block without any data loss because each block denoted by “I/V ”
and “V/I” does simple format change from vector to image or vice versa. Since
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there is no data loss in the blocks of “I/V ” and “V/I”, perfect reconstruction of
overall systems of Figs. 9(a) and 9(c) is achieved if the pair of DSB and USB leads
to perfect reconstruction. This was shown in Koh and Rodriguez-Marek [2013c] for
a single channel case by intuition without rigorous proof.

Appendix B. Proof for Theorem 3

In this Appendix, Theorem 3, which guarantees the perfect reconstruction of image
applications of MEMDFBs, is proved. To begin with, an affine invariant interpola-
tion is defined as follows, where it uses the same concept of the affine invariance in
Farin [2002].

Definition: (Affine invariant interpolation): For an interpolation of an image S

denoted by Ip(S), an affine invariant interpolation is defined as

Ip

(
P∑

k=1

akSk

)
=

P∑
k=1

akIp(Sk), where
P∑

k=1

ak = 1.

To prove Theorem 3, note in Figs. 11(a) and 11(b) that, as Eq. (1), X Img
ij =

(X Img
ij,c + X Img

ij,r + X Img
ij,d )/3 is an averaged image corresponding to Xij ∈ RL×3,

where X img
ij,c , X img

ij,r , and X img
ij,d are images changed respectively from xc, xr, and xd

column vectors in node matrix, Xi,j . Since an image can be equivalently expressed
by four subimages depending on pixel locations, each image is expressed with four
subimages of See

s , Soe
s , Seo

s , and Soo
s respectively depending on (even, even), (odd,

even), (even, odd), and (odd, odd) row and column pixel indices for any subscript
s ∈ {c, r, d}. In other words

X Img
ij,c =

[
See

c Soe
c

Seo
c Soo

c

]
, X Img

ij,r =

[
See

r Soe
r

Seo
r Soo

r

]
, X Img

ij,d =

[
See

d Soe
d

Seo
d Soo

d

]
, (B.1)

where See
s = Ree

s + Iee
s , Soe

s = Roe
s + Ioe

s , Seo
s = Reo

s + Ieo
s , and Soo

s = Roo
s +

Ioo
s because of MEMD nature for any subscript s ∈ {c, r, d}. Hence, averaged

image corresponding to Xi,j = [xc, xr, xd] node matrix in Figs. 11(a) and 11(b) is
expressed by

X Img
ij =

1
3
(X Img

ij,c + X Img
ij,r + X Img

ij,d )

=
1
3

[
See

c + See
r + See

d Soe
c + Soe

r + Soe
d

Seo
c + Seo

r + Seo
d Soo

c + Soo
r + Soo

d

]
. (B.2)

Consider a same affine invariant interpolation for 2D-interplation blocks in
Fig. 11(c) and in DSB of analysis MEMDFB of Figs. 11(a) and 11(b), then The-
orem 3 is proved by starting from X̂ Img

i,j in synthesis MEMDFB of Fig. 11(c) and
getting to X Img

ij in analysis MEMDFB of Fig. 11(b). In this proof, note that the

1450001-28

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

O
N

G
JI

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

1/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

January 23, 2014 15:53 WSPC/1793-5369 244-AADA 1450001

Theory of Digital Filter Banks Realized via MEMD

blocks of ↑ 2 × 2 and ↓ 2 × 2 with shift operator of zr and zc are skipped because
those blocks only related to weaving pixels into correct locations internally as shown
in Appendix A

X̂ Img
ij =

[
Ŝee Ŝoe

Ŝeo Ŝoo

]
with four subimages in Fig. 11(c).

X̂ Img
ij =

[
Xi+1,2j + Xi+1,2j+1 Doe

i+1,j + Ioe
p (Xi+1,2j)

Deo
i+1,j + Ieo

p (Xi+1,2j) Doo
i+1,j + Ioo

p (Xi+1,2j)

]
from Fig. 11(c),

where Ioe
p (Xi+1,2j) implies (odd, even) indexed samples from the 2D-interpolated

image of Xi+1,2j . Also, note that each node signal in Fig. 11(c) is an image by
average operation, the superscript “Img” is dropped. Using Eq. (2), the following
equation is obtained:

X̂ Img
ij =




(Ree
c + Ree

r + Ree
d )/3 + (Iee

c + Iee
r + Iee

d )/3

Doe
i+1,j + Ioe

p ({Ree
c + Ree

r + Ree
d }/3)

Deo
i+1,j + Ieo

p ({Ree
c + Ree

r + Ree
d }/3)

Doo
i+1,j + Ioo

p ({Ree
c + Ree

r + Ree
d }/3)




.

Considering any affine invariant interpolation (e.g. linear interpolation, etc.),
the following equation is obtained

X̂ Img
ij =




(Ree
c + Ree

r + Ree
d )/3 + (Iee

c + Iee
r + Iee

d )/3

Doe
i+1,j +

1
3
{Ioe

p (Ree
c ) + Ioe

p (Ree
r ) + Ioe

p (Ree
d )}

Deo
i+1,j +

1
3
{Ieo

p (Ree
c ) + Ieo

p (Ree
r ) + Ieo

p (Ree
d )}

Doo
i+1,j +

1
3
{Ioo

p (Ree
c ) + Ioo

p (Ree
r ) + Ioo

p (Ree
d )}




.

Using Eq. (3), the following equation is obtained:

X̂ Img
ij =




(Ree
c + Ree

r + Ree
d )/3 + (Iee

c + Iee
r + Iee

d )/3

(∆oe
c + ∆oe

d + ∆oe
r )/3 + {Ioe

p (Ree
c ) + Ioe

p (Ree
r ) + Ioe

p (Ree
d )}/3

(∆eo
c + ∆eo

d + ∆eo
r )/3 + {Ieo

p (Ree
c ) + Ieo

p (Ree
r ) + Ieo

p (Ree
d )}/3

(∆oo
c + ∆oo

d + ∆oo
r )/3 + {Ioo

p (Ree
c ) + Ioo

p (Ree
r ) + Ioo

p (Ree
d )}/3




.

Since ∆oe
s + Ioe

p (Ree
s ) = ∆oe

s + R̂oe
s = Soe

s at DSB of Fig. 11(b) as shown in
Fig. 9(b) and Ree

s + Iee
s = See

s for any subscript s ∈ {c, r, d}, the following equation
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is obtained:

X̂ Img
ij =




1
3
{See

c + See
r + See

d } 1
3
{Soe

c + Soe
r + Soe

d }
1
3
{Seo

c + Seo
r + Seo

d } 1
3
{Soo

c + Soo
r + Soo

d }




=
1
3
(X Img

ij,c + X Img
ij,r + X Img

ij,d ) = X Img
ij from Eq. (B.2).

In other words, keeping only end-node images and error-node images also makes
perfect reconstruction. Hence, decimated MEMDFBs in Fig. 11 also satisfy per-
fect reconstruction as long as the same affine invariant interpolation (e.g. linear
interpolation, etc.) is used in analysis and synthesis of MEMDFBs.

References

Chatlani, N. and Soraghan, J. J. (2012). EMD-based filtering (EMDF) of low-frequency
noise for speech enhancement. IEEE Trans. Audio, Speech Lang. Process., 20: 1158–
1166, doi: 10.1109/TASL.2011.2172428.

Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide., 5th edn. (Morgan
Kaufmann Publishers, San Francisco, CA).

Huang, N. E., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C. and
Liu, H. (1998). The empirical mode decomposition and Hilbert spectrum for non-
linear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 454: 903–995,
doi:10.1098/rspa.1998.0193.

Koh, M. S. and Rodriguez-Marek, E. (2013a). Perfect reconstructable decimated one-
dimensional empirical mode decomposition filter banks. In The 3rd International
Conference on Signal, Image Processing and Applications (ICSIA). Barcelona, Spain,
August, 2013.

Koh, M. S. and Rodriguez-Marek, E. (2013b). Undecimated and decimated EMD non-
uniform filterbanks approximating critical bands. In IASTED Signal Processing, Pat-
tern Recognition and Applications (SPPRA). Innsbruck, Austria, February, 2013.

Koh, M. S. and Rodriguez-Marek, E. (2013c). Perfect reconstructable decimated two-
dimensional empirical mode decomposition filter banks. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada,
May, 2013.

Mandic, D. P., Rehman, N. U., Wu, Z. and Huang, N. E. (2013). Empirical mode decom-
position based time-frequency analysis of multivariate signals. IEEE Signal. Process.
Mag., 30: 74–86.

Omitaoumu, O. A., Protopopescu, V. A. and Ganguly, A. R. (2011). Empirical mode
decomposition technique with conditional mutual information for denoising opera-
tional sensor data. IEEE Sens. J., 11: 2565–2575, doi: 10.1109/JSEN.2011.2142302.

Park, C., Looney, D., Kidmose, P., Ungstrup, M. and Mandic, D. P. (2011). Time-frequency
analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE
Trans. Neural Syst. Rehabil. Eng., 19: 366–373, doi: 10.1109/TNSRE.2011.2116805.

Rehman, N. U. and Mandic, D. P. (2010). Multivariate empirical mode decomposition.
Proc. R. Soc. A, 466: 1291–1302.

Rehman, N. U. and Mandic, D. P. (2011). Filterbank property of multivariate EMD. IEEE
Trans. Signal Process., 59: 2421–2426, doi: 10.1109/TSP.2011.2106779.

1450001-30

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

O
N

G
JI

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

1/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

January 23, 2014 15:53 WSPC/1793-5369 244-AADA 1450001

Theory of Digital Filter Banks Realized via MEMD

Rehman, N. U., Park, C., Huang, N. E. and Mandic, D. P. (2013). EMD via MEMD:
Multivariate noise-aided computation of standard EMD. Adv. Adapt. Data Anal., 5:
1–25, doi: 10.1142/S1793536913500076.

Vaidyanathan, P. P. (1993). Multirate Systems and Filter Banks (Prentice Hall Inc., Upper
Saddle River, NJ).

Vetterli, M. and Kovacevic, J. (1995). Wavelets and Subband Coding (Prentice Hall PTR,
Englewood Cliffs, NJ).

Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted
data analysis method. Adv. Adapt. Data Anal., 1: 1–41, doi: 10.1142/S179353690
9000047.

Zhang, R. R., Ma, S., Safak, E. and Hartzell, S. (2003). Hilbert-Huang transform analysis
of dynamic and earthquake motion recordings. J. Eng. Mech., 129: 861–875, doi:
10.1061/(ASCE)0733-9399(2003)129:8(861).

1450001-31

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

O
N

G
JI

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

1/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.


