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A solution of the notoriously difficult problem of characterization and decomposition of multicompo- 

nent multivariate signals which partially overlap in the joint time-frequency domain is presented. This 

is achieved based on the eigenvectors of the signal autocorrelation matrix. The analysis shows that the 

multivariate signal components can be obtained as linear combinations of the eigenvectors that minimize 

the concentration measure in the time-frequency domain. A gradient-based iterative algorithm is used in 

the minimization process and for rigor, a particular emphasis is given to dealing with local minima as- 

sociated with the gradient descent approach. Simulation results over illustrative case studies validate the 

proposed algorithm in the decomposition of multicomponent multivariate signals which overlap in the 

time-frequency domain. 
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1. Introduction 

Signals with time-varying spectral content are not readily char-

acterized by the conventional Fourier analysis, and are commonly

studied within the time-frequency (TF) analysis [1–8] . Research in

this field has resulted in numerous representations and algorithms

which have been almost invariably introduced for the processing

of univariate signals, with most frequent characterization through

amplitude and frequency-modulated oscillations [6,9] . 

Recently, the progress in sensing technology for multidimen-

sional signals has been followed by a growing interest in time-

frequency analysis of such multichannel (multivariate and/or mul-

tidimensional) data. Namely, developments in sensor technology

have made accessible multivariate data. Indeed, the newly intro-

duced concept of modulated bivariate and trivariate data oscilla-

tions (3D inertial body sensor, 3D anemometers [9] ) and the gen-

eralization of this concept to an arbitrary number of channels have

opened the way to exploit multichannel signal interdependence in

the joint time-frequency analysis [10–12] . 

The concept of multivariate modulated oscillations has been

proposed in [10] , under the restricting assumption that one com-

mon oscillation fits best all individual channel oscillations. In other

words, a joint instantaneous frequency (IF) aims to characterize

multichannel data by capturing the combined frequency of all in-

dividual channels. It is defined as a weighted average of the IFs
∗ Corresponding author. 
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n all individual channels. The deviation of multivariate oscillations

n each channel from the joint IF is characterized by the joint

nstantaneous bandwidth. With the aim to estimate the joint IF

f multichannel signals, the synchrosqueezed transform, a highly

oncentrated time-frequency representation (TFR) belonging to the

lass of reassigned TF techniques, has been recently extended to

he multivariate model [9] . Following the same aim of extracting

he local oscillatory dynamics of a multivariate signal, the wavelet

idge algorithm has also been introduced within the multivariate

ramework [10] . Another very popular concept, empirical mode de-

omposition (EMD), has been studied for multivariate data, [18–

2] . However, successful EMD-based multicomponent signal de-

omposition is possible only for signals which exhibit nonoverlap-

ing components in the TF plane. 

By virtue of high concentration and many other desirable prop-

rties, the Wigner distribution is commonly exploited in numer-

us IF estimators developed within the TF signal analysis [6–8] .

owever, in the case of multicomponent signals, undesirable os-

illatory interferences known as cross-terms appear, sometimes

asking the presence of desirable auto-terms. To this end, other

epresentations have been developed, commonly aiming to pre-

erve Wigner distribution concentration, while suppressing the

ross-terms. One such algorithm is the S-method [6] which was

lso used as a basis for the multi-component signal decomposition

lgorithm, proposed in [1] . This particular type of decomposi-

ion makes it possible to analyze and characterize signal compo-

ents independently, allowing the IF estimation for each separate

omponent [1–4] . 

http://dx.doi.org/10.1016/j.sigpro.2017.08.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.08.001&domain=pdf
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In this paper, multivariate Wigner distribution is studied as

he basis of multicomponent multichannel signal decomposition.

amely, the strong interdependence of modulations of individual

omponents within all the available data channels is exploited in

he joint TF analysis, leading to a reduction of undesirable oscilla-

ions present in cross-terms. The inverse multivariate Wigner dis-

ribution matrix is decomposed into eigenvectors which contain

ignal components in the form of their linear combination. Further,

 steepest-descent algorithm that enables a fast search for a linear

ombination of eigenvectors that produces the best possible com-

onents concentration is applied. Using the advantages of multi-

hannel interdependence, the proposed TF-based decomposition is

hown to be successful in the case of multivariate signals which

verlap in the TF plane, while preserving the integrity of each ex-

racted signal component. 

Notice that the conventional time-frequency decomposition

echniques cannot separate crossing components of arbitrary

orms, which may appear in various signal processing applications.

ne such scenario is in radar signal processing, where reflecting

oints may assume the same velocity along the line-of-sight. These

omponents will cross in the time-frequency (time-Doppler) rep-

esentation. The same effect appears when the target signature

rosses with the clutter or stationary body reflecting component in

he time-frequency representation of radar signal return. The pro-

osed method assumes that multiple phase independent received

ignals are available. They can be obtained using polarization or

ultiple antenna systems [23] . Signals with low frequency varia-

ions, when the amplitude changes are of the same order as the

hase changes, can also be treated as signals with crossing compo-

ents. Such are the ECG signals, for example. Multivariate forms of

hese signals are obtained using multiple sensors at different loca-

ions. The presented approach can be applied to the decomposition

f this class of signals as well. 

The paper is organized as follows. Basic theory regarding multi-

ariate TF signal analysis is presented in Section 2 . In Section 3 , the

igner distribution of multivariate multicomponent signals is an-

lyzed. In Section 4 , we present the basic theory leading to the de-

omposition of multivariate multi-component signals, whereas the

ecomposition algorithm is presented in Section 5 . The theory is

erified through several numerical examples in Section 6 . 

. Multivariate time-frequency analysis 

Consider a multivariate signal 

 (t) = 

⎡ 

⎢ ⎢ ⎣ 

a 1 (t) e jφ1 (t) 

a 2 (t) e jφ2 (t) 

. . . 

a N (t) e jφN (t) 

⎤ 

⎥ ⎥ ⎦ 

(1) 

btained by measuring a complex-valued signal x ( t ) with N sen-

ors, where by each sensor the amplitude and phase of the orig-

nal signal are modified to give a i (t) exp ( jφi (t)) = αi x (t) exp ( jϕ i ) .

f the measured signal is real-valued, its analytic extension 

 (t) = x R (t) + j H { x R (t) } 
s commonly used, with x R ( t ) being real-valued measured signal

nd H{ x R ( t )} its Hilbert transform. Analytic signal contains only

onnegative frequencies and the real-valued counterpart can be

econstructed. This form of signal is especially important in the

nstantaneous frequency interpretation within the time-frequency

oments framework. 

Since all time-frequency representations may be considered as

moothed versions of the Wigner distribution, this distribution will

e the starting point for a review of time-frequency based multi-

ariate signal analysis. The Wigner distribution of a multivariate
ignal x ( t ) is defined as 

 D (ω, t) = 

∫ ∞ 

−∞ 

x 

H (t − τ

2 

) x (t + 

τ

2 

) e − jωτ dτ, (2) 

here x H ( t ) is a Hermitian transpose of the vector x ( t ). 

The inverse Wigner distribution is then given by 

 

H (t − τ

2 

) x (t + 

τ

2 

) = 

1 

2 π

∫ ∞ 

−∞ 

W D (ω , t) e jωτ dω . (3) 

The center of mass in the frequency axis of the Wigner distri-

ution of a multivariate signal x ( t ), defined by (1) , is given by 

 

ω(t) 〉 = 

∫ ∞ 

−∞ 

ω W D (ω , t) dω ∫ ∞ 

−∞ 

W D (ω, t) dω 

r, more explicitly 

 

ω(t) 〉 = 

d 
j d τ

[
x 

H (t − τ
2 
) x (t + 

τ
2 
) 
]
| τ=0 

x 

H (t − τ
2 
) x (t + 

τ
2 
) | τ=0 

= 

1 

2 j 

[ x 

H (t) x 

′ (t) − x 

′ H (t) x (t)] 

x 

H (t) x (t) 
, 

here x ′ (t) = d x (t) /d t denotes derivative in time. 

The expression for instantaneous frequency of a multivariate

ignal follows straightforwardly from the previous relation in the

orm: 

 

ω(t) 〉 = 

∑ N 
n =1 φ

′ 
n (t) a 2 n (t) ∑ N 

n =1 a 
2 
n (t) 

. (4) 

If a multivariate signal is obtained by sensing a mono-

omponent signal x ( t ) as a i (t) exp ( jφi (t)) = αi x (t) exp ( jϕ i ) with

 (t) = A (t ) exp ( jψ(t )) and | dA ( t )/ dt | � | d ψ( t )/ dt |, then 〈 ω(t) 〉 =
 ψ(t) /d t, since d φi (t) /d t = d ψ(t) /d t . The condition for ampli-

ude and phase variations of real-valued monocomponent sig-

als a i ( t )cos ( φi ( t )) can be defined by Bedrosian’s product theorem

13] . It states that the complex analytic signal a i (t) exp ( jφi (t)) =
 i (t) cos (φi (t)) + jH { a i (t) cos (φi (t)) } is a valid representation of

he real amplitude-phase signal a i ( t )cos ( φi ( t )) if the spectrum of

 i ( t ) is nonzero only within the frequency range | ω| < B and the

pectrum of cos ( φi ( t )) occupies nonoverlapping higher frequency

ange. A signal is monocomponent if the spectrum of a i ( t ) is of

owpass type. 

This analysis can be generalized to other time-frequency and

ime-scale signal representations. 

A deviation of the signal spectral content from the instanta-

eous frequency is described by the local second order moments

instantaneous bandwidths). The expression for the instantaneous

andwidth is obtained from 

2 
ω (t) = 

1 

2 πx 

H (t) x (t) 

∫ ∞ 

−∞ 

ω 

2 W D (t, ω ) dω − 〈 ω (t) 〉 2 

= 

− d 2 

dτ 2 

[
x 

H 
(
t − τ

2 

)
x 

(
t + 

τ
2 

)]∣∣
τ=0 

x 

H (t) x (t) 
− 〈 ω(t) 〉 2 . 

For the signal in (1) it has the following form: 

2 
ω (t) = 

∑ N 
n =1 (a ′ n (t)) 2 − ∑ N 

n =1 a n (t) a ′′ n (t) 

2 

∑ N 
n =1 a 

2 
n (t) 

. 

In general, for the case of multicomponent signals, the compo-

ents are localized over more than one instantaneous frequency. 

. Multicomponent signals 

Consider a multicomponent signal 

 (t) = 

P ∑ 

p=1 

x p (t) 
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the components of which are of the form 

x p (t) = A p (t) e jψ p (t) 

with the component amplitudes A p ( t ) having a slow-varying dy-

namics as compared to the variations of the phases ψ p ( t ), i.e.,

| dA p ( t )/ dt | � | d ψ p ( t )/ dt |. The corresponding multivariate signal is

then given by 

x (t) = 

P ∑ 

p=1 

⎡ 

⎢ ⎢ ⎣ 

αp1 x p (t) e jϕ p1 

αp2 x p (t) e jϕ p2 

. . . 

αpN x p (t) e jϕ pN 

⎤ 

⎥ ⎥ ⎦ 

. (5)

The individual components x 1 (t) , . . . , x P (t) , measured at differ-

ent sensors, differ in their amplitudes and phases but share the in-

stantaneous frequency ω p (t) = d ψ p (t) /d t corresponding to 〈 ω p ( t ) 〉
in (4) , with p being the component index. 

The Wigner distribution of this multivariate multicomponent
signal is 

 D (ω, t) = 

P ∑ 

p=1 

P ∑ 

q =1 

N ∑ 

i =1 

∫ ∞ 

−∞ 

αpi αqi x p (t + 

τ
2 
) x ∗q (t − τ

2 
) e j(ϕ pi −ϕ qi ) e − jωτ dτ, 

with i being the sensor index. It may be written as a sum of auto-
terms and cross-terms 

 D (ω, t) = 

P ∑ 

p=1 

N ∑ 

i =1 

α2 
pi 

∫ ∞ 

−∞ 

x p (t + 

τ
2 
) x ∗p (t − τ

2 
) e − jωτ dτ

+ 

P ∑ 

p=1 

P ∑ 

q =1 
q � = p 

N ∑ 

i =1 

αpi αqi 

∫ ∞ 

−∞ 

x p (t + 

τ
2 
) x ∗q (t − τ

2 
) e j(ϕ pi −ϕ qi ) e − jωτ dτ. 

= W D a (ω, t) + W D c (ω, t) (6)

he phase shifts of the components of the multivariate signal in

(6) cancel out in the auto-terms WD a ( ω, t ). This important prop-

erty implies that the auto-terms, obtained from each variate of a

multivariate signal, are summed in-phase, independently from the

(different) initial phases in the individual signal components. In

the cross-terms, the phase shifts do not cancel-out in the resulting

WD c ( ω, t ), leading to an out-of-phase summation. The cross-terms

in the multivariate case are a sum of N signals with arbitrary (ran-

dom) phases. They are consequently reduced with respect to the

Wigner distribution of an univariate signal. Therefore, for a large N

we would expect the auto-terms only, while the cross-terms will

tend to a small value with respect to the auto-terms. It is ex-

pected that the cross-terms, for a large number of sensors N , be-

have as a time-frequency dependent zero-mean Gaussian random

variable, the variance of which depends on the cross-terms value,

var { W D (ω, t) } = σ 2 (W D c (ω, t)) . The auto-terms are deterministic

for a given signal, since they do not depend on random phases,

as seen in the corresponding Wigner distribution term WD a ( ω, t ).

This means that for a large N 

 D (ω, t) ∼ N (W D a (ω, t) , σ 2 (W D c (ω, t))) . 

4. Inversion and signal decomposition 

The inversion of a Wigner distribution of a multivariate signal

in the analog domain is given by 

x 

H (t 2 ) x (t 1 ) = 

1 

2 π

∫ ∞ 

−∞ 

W D 

(
t 1 + t 2 

2 

, ω 

)
e jω(t 1 −t 2 ) dω. 

By the discretization of angular frequency, ω = k 
ω, and the time,

 1 = n 1 
t, t 2 = n 2 
t, with an appropriate definition of discrete

values, we easily obtain 

x 

H (n 2 ) x (n 1 ) = 

1 
K+1 

K/ 2 ∑ 

k = −K/ 2 

W D 

(
n 1 + n 2 

2 

, k 

)
e j 

π
K+1 k (n 1 −n 2 ) . (7)
pon introducing the notation 

 (n 1 , n 2 ) = 

1 
K+1 

K/ 2 ∑ 

k = −K/ 2 

W D 

(
n 1 + n 2 

2 

, k 

)
e j 

π
K+1 k (n 1 −n 2 ) , (8)

e obtain 

 (n 1 , n 2 ) = x 

H (n 2 ) x (n 1 ) . (9)

Therefore, for multicomponent multivariate signals, the inver-

ion produces a matrix with the elements of the form 

 (n 1 , n 2 ) = 

N ∑ 

i =1 

P ∑ 

p=1 

P ∑ 

q =1 

αpi αqi x p (n 1 ) x 
∗
q (n 2 ) e 

j(ϕ pi −ϕ qi ) . (10)

f we now use the assumption that the cross-terms in the Wigner

istribution of multivariate signals can be neglected with respect

o the auto-terms summed in phase, this yields 

 (n 1 , n 2 ) = 

N ∑ 

i =1 

P ∑ 

p=1 

a 2 pi x p (n 1 ) x 
∗
p (n 2 ) = 

P ∑ 

p=1 

B p x p (n 1 ) x 
∗
p (n 2 ) (11)

here B p = 

∑ N 
i =1 α

2 
pi 

. 

As for any square matrix, the eigenvalue decomposition of a

 × K dimensional matrix R gives 

 = Q �Q 

T = 

K ∑ 

p=1 

λp q p (n ) q 

∗
p (n ) , (12)

here λp are the eigenvalues and q p ( n ) are the corresponding

igenvectors of R . Note that the eigenvectors q p ( n ) are orthonor-

al. 

For a P -component signal, in a noiseless case, the elements of

his matrix are 

 (n 1 , n 2 ) = 

P ∑ 

p=1 

λp q p (n 1 ) q 
∗
p (n 2 ) . (13)

Let us consider several special cases: 

1) For a univariate signal and the Wigner distribution, the signal

itself is equal to the eigenvector q 1 ( n ), up to a scaling by a

complex-valued constant [1] , with the corresponding eigenval-

ues λ1 = E x , λ2 = 0 , . . . , λK = 0 . The fact that the Wigner distri-

bution based inversion produces only one nonzero eigenvalue

is also used to check if a given two-dimensional function is a

valid Wigner distribution. 

2) If the components of a multicomponent univariate signal do not

overlap in the time-frequency plane, then it is possible to calcu-

late the distribution which will be equal to a sum of the Wigner

distributions of the individual signal components. This calcula-

tion is performed using the S-method and the property [1] : 

SM(n, k ) = 

P ∑ 

p=1 

W D p (n, k ) . (14)

Since the non-overlapping components are orthogonal, the

eigenvalue decomposition will produce 

B p x p (n ) = λp q p (n ) , p = 1 , 2 , . . . , P. 

where B p is a constant. Note that, by definition, the energy of

the corresponding eigenvector is equal to 1, 

‖ 

q p (n ) ‖ 

2 = 1 . (15)

We can conclude that 

B p x p (n ) x 

∗
p (n ) = 

(√ 

λp q p (n ) 
)(√ 

λp q p (n ) 
)∗
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n  
and 

λp = 

∥∥∥√ 

λp q p (n ) 

∥∥∥2 

= ‖ 

B p x p (n ) ‖ 

2 = 

K/ 2 ∑ 

n = −K/ 2 

B p x 
2 
p (n ) = B p E x p . 

where E xp is the energy of the signal p th component. The eigen-

vector q p ( n ) is equal to the signal vector x p ( n ), up to the con-

stant amplitude and phase ambiguity. 

3) If the signal components x p ( n ) overlap in the frequency plane,

then the decomposition on the individual components is not

possible using the state-of-art methods, except in cases of quite

specific signal forms (such as linear frequency modulated sig-

nals, using chirplet transform, Radon transform or similar tech-

niques [14,15] , or for sinusoidally modulated signals using in-

verse Radon transform, [16,17] ). In general, these kinds of sig-

nals cannot be separated into individual components in the uni-

variate case. However, the multivariate form of signals reduces

(changes) the cross-terms in the Wigner distribution, thus of-

fering a possibility to decompose the components which over-

lap in the time-frequency plane. 

. Decomposition algorithm 

Consider a multicomponent signal of the form (5) , with sig-

al components x p , p = 1 , 2 , . . . , P whose supports D p may par-

ially overlap in the time-frequency domain. We also make a re-

listic assumption that there is no signal component whose time-

requency support completely overlaps with other component, and

 1 ≤ D 2 ≤ · · · ≤ D P , where D p is the area of the support D p . 

The first signal component can be expressed as linear combina-

ion of vectors q p with coefficients η1 p to give 

 1 = η11 q 1 + η21 q 2 + · · · + ηP1 q P. (16)

Since we have assumed that the signal components are well

oncentrated in the time-frequency domain, we can use a concen-

ration measure in order to find the coefficients ηp 1 . To this end,

e form a linear combination of the basis vectors q p , with weight-

ng coefficients βp , p = 1 , 2 , . . . , P, to arrive at 

 = β1 q 1 + β2 q 2 + · · · + βP q P, (17)

nd calculate the concentration measure M { TFR (n, k ) } of the time-

requency representation TFR (n, k ) of the normalized signal y / ‖ y ‖ 2 .
he choice of the TFR is not crucial here. We can use the spectro-

ram as the simplest TFR. By solving the concentration measure

inimization problem we then obtain the global minimum corre-

ponding to the best concentrated signal component. 

The most straightforward way to solve this problem would be

o use the zero-norm as the concentration measure of TFR (n, k )

nd perform a direct search over the coefficients βp , p = 1 , 2 , . . . , P .

hen, the coefficients ηp 1 are the solution of the minimization

roblem 

 η11 , η21 , . . . , ηP1 ] = arg min 

β1 , ... ,βP 

‖ TFR (n, k ) ‖ 0 . 

or these values of coefficients ‖ TFR (n, k ) ‖ 0 is equal to the area of

he best concentrated component support D 1 . If any two the small-

st areas are equal we still find one of them. 

Note that this minimisation problem has several local minima

s the coefficients βp in y = β1 q 1 + β2 q 2 + · · · + βP q P which corre-

pond to any signal component x p will also produce a local min-

mum of the concentration measure, equal to the area of corre-

ponding component support. In addition, any linear combination

f K < P signal components x p will also produce a local minimum

qual to the area of the union of the supports of included signal

omponents. 
After the best concentrated component is detected, the corre-

ponding vector q 1 is replaced with the extracted signal compo-

ent. The extracted component is then removed from the remain-

ng vectors q k by subtracting the projection of the extracted com-

onent to the vectors q p , p = 2 , 3 , . . . , P (signal deflation procedure

31] ). The procedure is repeated with the new set of vectors q p 

y forming the signal y = β2 q 2 + · · · + βP q P , and then by varying

he coefficients βp a new global minimum of the concentration

s found, which corresponds to the second signal component. The

rocedure is iterated P times. 

However, since in practical applications neither the direct

earch nor the norm-zero concentration can be used, several meth-

ds have been developed in literature based on the optimization

f problems with several local minima. In general, all these meth-

ds can be divided into three large classes: deterministic [27] ,

tochastic [25,26] , and heuristic (ant colony optimization [28] , ge-

etic algorithm, hill climbing [30] , simulated annealing [29] , parti-

le swarm optimization...). In this paper we will adapt a gradient-

ased approach to solve the minimization problem. The zero-norm

s replaced by its closest convex counterpart, the one-norm. The

roposed algorithm is presented next. 

- In the first step, we calculate the matrix R of the multivariate

ignal x ( n ) according to (8) or (9) . The number of signal compo-

ents P is equal to the number of non-zero eigenvalues of matrix

 . In the noisy signal cases two approaches for determining the

umber of components can be utilized: (a) The number of compo-

ents is assumed. As long as it is larger than or equal to the true

umber of components P , the algorithm works properly, producing

oise only as the extra components. (b) A threshold is set to sep-

rate eigenvalues corresponding to signal components from those

orresponding to the noise. This threshold determines the number

f components in the decomposition. 

- For the time-frequency representation of the signal we can

se the spectrogram, the S-method with narrow frequency win-

ow (for example L s = 1 ), or any other appropriate representation.

ince these time-frequency representations are quadratic, a con-

entration measure equivalent to the one-norm should be defined

s [24] 

 { TFR (n, k ) } = 

∑ 

n 

∑ 

k 

| TFR (n, k ) | 1 / 2 (18)

here the summation is performed over all available time and fre-

uency indices n and k . 

The decomposition procedure is outlined in Algorithm 1 . 

- The measure minimization is implemented by using a steepest

escent approach presented in Algorithm 2 . Here, we fix the coeffi-

ient βp = 1 and vary the real and imaginary parts of the remain-

ng coefficients by ±
. The gradient of the normalized measure,

p , is then calculated and is used for coefficient update. The ini-

ial value of the parameter 
 is 0.1 and it is reduced whenever a

urther coefficients update does not yield a smaller measure. 

- When the p th component is extracted, the corresponding vec-

or q p is replaced with the extracted signal component. The ex-

racted component is then removed from the remaining vectors q k 

y subtracting the projection of the extracted component to vec-

ors q k , k = p + 1 , p + 2 , . . . , P . In this manner, we ensure that the

 th signal component will not be detected again. 

- This procedure is repeated until there is no more updates of

ectors q k . 

For a two-component signal, the considered minimization prob-

em is now convex, with a single, global, minimum. For a three-

omponent signal, the local minima exists for signals obtained as

 sum of any two components. This is the reason why the decom-

osition procedure is repeated after minimum of the concentra-

ion measure is found. In the next iteration, the pair of compo-

ents corresponding to the local minimum are separated as in the
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Algorithm 1 Multivariate signal decomposition. 

Input: 
• Multivariate signal x (n ) 

1: Calculate S-Method SM(n, k ) of the multivariate signal x (n ) and 

matrix R with elements 

R (n 1 , n 2 ) = 

1 

K + 1 

K/ 2 ∑ 

k = −K/ 2 

SM 

(
n 1 + n 2 

2 

, k 

)
e j 

2 π
K+1 k (n 1 −n 2 ) , 

as in [1]. If the Wigner distribution is used then the SM(n, k ) 

should be replaced with W D (n, k ) , or we can calculate ele- 

ments of matrix R as R (n 1 , n 2 ) = x H (n 2 ) x (n 1 ) . 

2: Find eigenvectors q i and eigenvalues λi of matrix R . 

3: P ← number of non-zero eigenvalues 

4: repeat 

5: N updates ← 0 

6: for i = 1 , 2 , . . . , P do 

7: Solve minimization problem 

min 

β1 , ... ,βP 

M 

{ 

TFR 

{ 

1 

C 

P ∑ 

p=1 

βp q p 

} } 

subject to βi = 1 

where M{·} is concentration measure, TFR {·} is time- 

frequency representation of a provided signal, and 

C = 

√ ∥∥∑ P 
p=1 βp q p 

∥∥
2 

is used to normalize energy of the combined signal to 1. 

Coefficients β1 , β2 , . . . , βP are obtained as a result of the 

minimization. 

8: if any βp � = 0 , p � = i then 

9: q i ← 

1 

C 

P ∑ 

p=1 

βp q p 

10: for k = i + 1 , i + 2 , . . . , P do 

11: s ← q 

H 
i 

q k 

12: q k ← 

1 √ 

1 −| s | 2 (q k − s q i ) 

13: end for 

14: N updates ← N updates + 1 

15: end if 

16: end for 

17: until N updates = 0 

Output: 
• Number of signal components P 
• Reconstructed signal components q 1 , q 2 , . . . , q P 

 

 

 

 

 

 

 

 

 

Algorithm 2 Minimization procedure. 

Input: 
• Vectors q 1 , q 2 , . . . , q P 

• Index i where corresponding vector q i should be kept with 

unity coefficient βi = 1 
• Required precision ε 

1: βp = 

{
1 for p = i 

0 for p � = i 
, for p = 1 , 2 , . . . , P 

2: M old ← ∞ 

3: 
 = 0 . 1 

4: repeat 

5: y ← 

P ∑ 

p=1 

βp q p 

6: M new 

← M 

{ 

TFR 

{ 

y 

‖ y ‖ 2 
} } 

7: if M new 

> M old then 

8: 
 ← 
/ 2 

9: βp ← βp + γp , for p = 1 , 2 , . . . , P � Cancel the last 

coefficients update 

10: y ← 

P ∑ 

p=1 

βp q p 

11: else 

12: M old ← M new 

13: end if 

14: for p = 1 , 2 , . . . , P do 

15: if p � = i then 

16: M 

+ 
r ← M 

{
TFR 

{
y + 
q p 

‖ y + 
q p ‖ 2 

}}

17: M 

−
r ← M 

{
TFR 

{
y − 
q p 

‖ y − 
q p ‖ 2 

}}

18: M 

+ 
i 

← M 

{
TFR 

{
y + j
q p 

‖ y + j
q p ‖ 2 

}}

19: M 

−
i 

← M 

{
TFR 

{
y − j
q p 

‖ y − j
q p ‖ 2 

}}

20: γp ← 8

M 

+ 
r − M 

−
r 

M new 

+ j8

M 

+ 
i 

− M 

−
i 

M new 

21: else 

22: γp ← 0 

23: end if 

24: end for 

25: βp ← βp − γp , for p = 1 , 2 , . . . , P � Coefficients update 

26: until 
∑ P 

p=1 | γp | 2 is below required precision ε 

Output: 
• Coefficients β1 , β2 , . . . , βP 

x

 

f  

T  

t  

v  

F  
two-component signal case. For a higher number of signal compo-

nents, the number of local minima increases. Then several repeti-

tions of the procedure are needed in order to separate the com-

ponents in an iterative way. Recall that a gradient-based algorithm

can find any local minimum, each corresponding to a combinations

of K < P signal components. This means that each local minimum

reduces the complexity of decomposition vectors q p , leading to the

full signal decomposition in an iterative way. For more details, see

Algorithm 2 . 

6. Numerical examples 

Example 1. Consider a real bivariate signal x (t) = [ x 1 (t) , x 2 (t)] T ,

where the signal from channel i has the form 
 i (t) = e −(t/ 128) 2 cos 
(
(t/ 16) 4 / 128 − 8 π(t/ 16) 2 / 64 + ϕ i 

)
= 0 . 5 e −(t/ 128) 2 [ e j((t/ 16) 4 / 128 −8 π(t/ 16) 2 / 64+ ϕ i ) 

+ e − j((t/ 16) 4 / 128 −8 π(t/ 16) 2 / 64+ ϕ i ) ] 

= x 1 i (t) + x 2 i (t) , i = 1 , 2 , (19)

or −128 ≤ t ≤ 128 , as shown in Fig. 1 (a) (for the first channel).

he phases ϕ 1 � = ϕ 2 are random numbers with a uniform dis-

ribution drawn from the interval [0, 2 π ]. As this signal is real-

alued, two symmetric components x 1 i ( t ) and x 2 i ( t ) exist in the

ourier transform and the time-frequency domains. However, these
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Fig. 1. Bivariate real signal analyzed in Example 1 . (a) signal shown in time domain. (b) estimation of the IF: black - true IF, red - IF estimation using the analytic signal, 

green and blue - IF estimation based on components extracted using the proposed approach. (c) PWD of the analytic signal. (d) PWD of the original signal. (e) and (f) PWD 

of the eigenvectors. (g) and (h) PWD of components extracted using the proposed approach. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

c  

t

 

(  

l  

s  

(  

I  

l  

I  

n  
omponents partially overlap, and thus they are inseparable using

hese representations. 

A common problem is to estimate the instantaneous frequency

IF) of the signal. To this end, for real signals it is usual to calcu-

ate its analytic form based on the Hilbert transform. The true IF is
hown in Fig. 1 (b), black line. The time-frequency representation

TFR) of this analytic signal is shown in Fig. 1 (c). However, the

F estimate based on the analytic signal, shown in Fig. 1 (b), red

ine, obviously significantly differs from the true IF. Namely, the

F estimation based on the standard TFR maxima approach does

ot appropriately track the IF variations, as they are lost in the
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Fig. 2. Bivariate two-component signal shown in: (a) time domain, (b) frequency domain, (c) time-frequency domain (spectrogram). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

W  

t  

o  

v  

b  

c  

p  

t  

t  

i  

m  

t  

t  

o  

t  

p  

i  

W  

i  

t  

c  

r

E  

f

x  

t  

1

x  

a  

b  

T  

m

 

(  

p  

F  

e  

t  

e  

s  

t  

t  

c  

c  

n  

(

corresponding TFR due to significant overlapping of the compo-

nents and the fact that amplitude and phase variations are of the

same order. Notice that Bedrosian’s product theorem condition for

amplitude and phase is not satisfied in this case. 

On the other hand, if one calculates the TFR of the original sig-

nal (19) , the two components x 1 i ( t ) and x 2 i ( t ) overlap in the TF

plane, as shown in Fig. 1 (d). These components are also nonlinear

and thus, none of the known techniques can be applied for their

separation in order to estimate the IF of such overlapping highly

nonlinear components. As these components highly overlap, they

are not orthogonal, and consequently the S-method based decom-

position [1] cannot be applied in a straightforward manner. 

However, it is crucial to note that the cross-terms in Wigner

distribution (WD) are changed and two eigenvalues different from

zero do appear. Therefore, the two corresponding eigenvectors,

whose pseudo Wigner distributions (PWD) are shown in Fig. 1 (e)

and (f), contain both components, appearing as a linear combi-

nation. Using the proposed multi-component decomposition al-

gorithm, we were able to calculate the coefficients β1 and β2 ,

forming the linear combination (17) of eigenvectors. The minimum

concentration (sparsity) measure of this linear combination corre-

sponds to two separate signal components, as shown in Fig. 1 (g)

and (h). It can be observed that the IF estimation based on these

two TFRs maxima (using positive IF parts), shown in Fig. 1 (b),

green and blue dots, is accurate up to the theoretically expected

bias caused by the IF non-linearity, which can be further reduced

using some well-known IF estimation techniques [6] . 

Example 2. In this example we consider a bivariate two-

component signal x ( t ) assuming that each sensor measures 

x i (t) = x 1 i (t) + x 2 i (t) , i = 1 , 2 (20)

whose components are given by 

x 1 i (t) = 1 . 2 e −(t/ 96) 2 e − j 12 π(t/ 16) 2 / 25+ j t 3 / 256 2 + ϕ 1 i , (21)

x 2 i = 0 . 9 e −(t/ 128) 2 e − j πt/ 8+ j (t/ 16) 4 / 100 + ϕ 2 i , (22)

with phases ϕ 1 i , ϕ 2 i , i = 1 , 2 simulated as random numbers with

a uniform distribution drawn from the interval [0, 2 π ]. The real

part of the signal from the first channel, and the corresponding

Fourier transform are shown in Fig. 2 (a) and (b), whereas the mul-

tivariate spectrogram is shown in Fig. 2 (c). It can be observed that

the signal components cannot be separated using the spectrogram,

without significant auto-term degradation. Note that the two signal

components have non-linear frequency modulation, and are thus

inseparable using common component decomposition algorithms. 

When the proposed algorithm for decomposition of multicom-

ponent signals is applied, aiming to extract each component of the
nalyzed signal, then in accordance with the presented theory, the

igner distribution is used as the initial time-frequency represen-

ation for the eigenvalue decomposition. The Wigner distribution

f the analyzed signal is shown in Fig. 3 (a) whereas the eigen-

alues of autocorrelation matrix R are shown in Fig. 3 (b). It can

e seen that there are two non-zero eigenvalues containing linear

ombinations of the signal component. Further steps of the pro-

osed decomposition method assume that a TFR is calculated and

he proposed minimization procedure is applied in order to find

he coefficients producing the eigenvectors combination (17) , lead-

ng to the best component concentration. Our numerical experi-

ents have shown that a similar performance of the minimiza-

ion using Algorithm 2 is obtained when the Wigner distribution,

he spectrogram and the S-method are applied as underlying TFRs

n the observed eigenvectors. In Fig. 3 , we present the results ob-

ained in the case of the Wigner distribution. For visual clarity,

seudo Wigner distribution with Hanning window of length 256

s shown for each eigenvector in Fig. 3 (c) and (e), although the

igner distribution was used in the minimization procedure. Sim-

lar results would be obtained for any other TFR in the minimiza-

ion step. The pseudo Wigner distribution for each separated signal

omponent is shown in Fig. 3 (d) and (f), for signals x 1 i ( t ) and x 2 i ( t ),

espectively. 

xample 3. Consider a multivariate three-component signal x ( t )

or N = 4 , for which the i th channel signal is defined as 

 i (t) = x 1 i (t) + x 2 i (t) + x 3 i (t) , i = 1 , . . . , 4 , (23)

he components x 1 i ( t ) and x 2 i ( t ) are given by (21) and (22) , for i =
 , . . . , 4 whereas the third component has the following form 

 3 i = 0 . 9 e −(t/ 128) 2 e − j πt/ 8+ j (t/ 16) 4 / 100 + ϕ 3 i , (24)

lso having the phase ϕ 3 i , i = 1 , . . . , 4 simulated as a random num-

er with a uniform distribution drawn from the interval [0, 2 π ].

he signal from the first channel, its Fourier transform and the

ultivariate spectrogram are shown in Fig. 4 (a)–(c) respectively. 

The Wigner distribution of the analyzed signal is shown in Fig. 5

a), whose inverse matrix R is the subject of eigenvalue decom-

osition. The obtained eigenvalues are shown in Fig. 5 (b) while

ig. 5 (c), (e) and (g) show the pseudo Wigner distributions of the

igenvectors with largest eigenvalues in subplot (b), and illustrate

hat the components are not separated. Namely, as in the previous

xample, the intersected components are not orthogonal and con-

equently, each considered eigenvector contains a linear combina-

ion of signal components. For the obtained eigenvectors, we apply

he proposed minimization procedure, in order to find the coeffi-

ients that combine these eigenvectors to produce the best con-

entration, corresponding to the signal components. All three sig-

al components were successfully extracted, as shown in Fig. 5 (d),

f) and (h). 
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Fig. 3. Decomposition of the bivariate two-component signal from Example 2 . (a) WD of the analyzed signal. (b) Eigenvalues of the autocorrelation matrix R . (c) and (e): 

PWD of the first and second eigenvector. (d) and (f) PWDs of extracted signal components. 

Fig. 4. Multi-variate signal having 3 components, with N = 4 shown in: (a) time domain, (b) frequency domain, (c) time-frequency domain (spectrogram). 
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Fig. 5. Decomposition of a multivariate signal from Example 3 with N = 4 , having three components (auto-terms). (a) Wigner distribution of the signal. (b) Eigenvalues of 

the autocorrelation matrix R . (c), (e) and (g): PWD of the first, second and third eigenvector; (d), (f) and (h) PWDs of extracted signal components. 
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Example 4. A multivariate signal x ( t ) consisted of three intersected

components and two non-overlapping components in the TF plane,

given by 

x (t) = x (t) + x (t) + x (t) + x (t) + x (t) . (25)
i 1 i 2 i 3 i 4 i 5 i 
he signals from each of N = 3 channels are defined as follows 

 1 i (t) = e −(t/ 96) 2 e j(−π(t/ 16) 2 / 5+ ϕ 1 i ) (26)

 2 i (t) = 1 . 2 e −(t/ 96) 2 e j(π(t/ 16) 3 / 32+3 π(t/ 16) 2 / 10+ ϕ 2 i ) (27)
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Fig. 6. Decomposition of multivariate five-component signal from Example 4 with N = 3 , based on S-method as underlying TFR. (a) S-method of the analyzed signal. (b) 

eigenvalues of the autocorrelation matrix R . (c), (e), (g), (i), (k) PWDs of eigenvectors corresponding to the largest five eigenvalues. (d), (f), (h), (j) and (l) PWDs of extracted 

signal components. 
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Fig. 7. Decomposition of the noisy multivariate five-component signal from Example 4 with N = 3 , based on S-method as underlying TFR. (a) S-method of the analyzed 

signal. (b) eigenvalues of the autocorrelation matrix R . (c), (e), (g), (i), (k) PWDs of eigenvectors corresponding to the largest five eigenvalues. (d), (f), (h), (j) and (l) PWDs of 

extracted signal components. 
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 3 i (t) = 0 . 9 e −(t/ 128) 2 e j(π(t / 16) 4 / 200+ πt / 8+ ϕ 3 i ) (28) 

 4 i (t) = e −(t/ 16) 2 e j(3 πt/ 4+ ϕ 4 i ) (29) 

 5 i (t) = e −(t/ 96) 2 e j(−6 π(t / 16) 2 / 25+ πt / 4+ ϕ 5 i ) (30) 

here i = 1 , 2 , 3 denotes the channel index. In this example the

-method is used as the initial TFR, as shown in Fig. 6 (a). Applica-

ion of the S-method is crucial here since we have five components

nd a trivariate signal only. The S-method would be able to sepa-

ate (decompose) all non-overlapping components from one real-

zation. Then, the available realizations are used for the overlapped

omponents only. The eigenvalue decomposition of the S-method

nverse autocorrelation matrix R produced five eigenvectors, corre-

ponding to the five largest eigenvalues shown in Fig. 6 (b). 

As the two non-overlapping signal components are mutually

rthogonal and with the rest of intersected components, accord-

ng to the theory presented in [1] , there are exactly two eigenvec-

ors corresponding to these two components (one eigenvector for

ach component). The pseudo Wigner distribution for these two

igenvectors are shown in Fig. 6 (c) and (i). Therefore, these two

omponents are easily extracted, as shown in Fig. 6 (d) and (j).

he three remaining components are obtained based on the proper

inear combination of the three corresponding eigenvectors using

oefficients β i obtained by the proposed minimization procedure.

he pseudo Wigner distributions of these three remaining eigen-

ectors are shown in Fig. 6 (e), (g) and (k), whereas the separated

omponents obtained based on their proper linear combination are

hown in Fig. 6 (f), (h) and (l). 

The same experiment was repeated for the noisy signal ˆ x (t) =
 (t) + ε(t) . The signal from each channel corrupted by additive,

hite zero-mean complex-valued i.i.d. Gaussian noise ε i ( t ) with

he variance of real and imaginary parts σ 2 = 0 . 15 2 . The SNR level

or one (linear FM) component was 7.13 dB, that is, quite low. The

esults of the proposed decomposition approach are presented in

ig. 7 , illustrating that the proposed algorithm is robust against the

dditive Gaussian noise influence. 

. Conclusion 

Decomposition of non-stationary signals overlapping in the

ime-frequency plane is still an open problem. Exploiting the fact

hat the Wigner distribution of multivariate signals exhibits sig-

ificant cross-term change due to their arbitrary phases whereas

he auto-terms are added up in phase, we have revisited the time-

requency based signal components decomposition. In this paper,

e have shown that even with a small number of signal chan-

els, relative to the number of components, an accurate decom-

osition can be performed with an appropriate linear combination

f the signal autocorrelation matrix eigenvectors. Next, the decom-

osition and eigenvector combination algorithms have been pro-

osed. Their efficiency has been illustrated over several examples,

hich conclusively validate the capability of the proposed algo-

ithm to perform a complete and accurate extraction of overlapped

nd non-overlapped components. The robustness of the proposed

pproach has been illustrated over an example on a noisy signal. 
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