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Abstract—The bivariate empiricalmode decomposition (BEMD)
algorithm employs uniform sampling on a circle to perform projec-
tions inmultiple directions, in order to calculate the local mean of a
bivariate signal. However, this approach is adequate only for equal
powers in both the data channels within a bivariate signal, and
results in suboptimal performance for data channels exhibiting
power imbalance, a typical case in practice. To that end, we exploit
second-order bivariate statistical properties to introduce a nonuni-
form sampling scheme for data adaptive selection of the projec-
tion directions. In this way, the resulting nonuniformly sampled
BEMD (NS-BEMD) algorithm provides a more accurate time-fre-
quency representation of bivariate data than standard BEMD, for
the same number of projections. The advantages of the proposed
approach are demonstrated in case studies on BEMD for corre-
lated data channels, selection of optimal noise power in noise-as-
sisted BEMD, and for speed estimation using Doppler radar.

Index Terms—Bivariate empirical mode decomposition,
Hilbert–Huang transform, nonuniform sampling.

I. INTRODUCTION

T HE EMPIRICAL mode decomposition (EMD) is a data
driven method for the analysis of nonstationary data

[1], which operates by decomposing a signal into a number
of oscillatory modes, termed intrinsic mode functions (IMFs).
These IMFs are defined such that the application of the Hilbert
transform yields much more localized time-frequency esti-
mates, than those obtained via standard techniques, such as
short-time Fourier transform and wavelets. The power of
EMD comes from its fully data-driven nature, it makes no a
priori assumptions on input data, making it highly suitable for
applications involving non-stationary signals.
The EMD in its original form operates on univariate signals

and thus cannot handle cross-channel properties in multivariate
data. On the other hand, recent advances in sensor technology
and data acquisition tools have made possible routine recording
from multiple data channels (multivariate signals), for which
EMD based analysis tools are only emerging. For the case of
bivariate (or complex valued) data, several extensions of EMD
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have been recently proposed: 1) Complex EMD by Tanaka and
Mandic [2], 2) Rotation- invariant EMD by Altaf et al. [3], and
3) bivariate EMD by Rilling et al. [4].
Complex EMD (CEMD) applies standard univariate EMD

separately to the real and imaginary data channels, thus not
guaranteeing the same number of IMFs across data channels,
which is a major requirement in real-world applications. The
rotation-invariant EMD (RI-EMD) is a fully bivariate (com-
plex) extension of EMD, which operates by taking projections
of the bivariate input signal along two directions in the com-
plex plane to compute the local mean. The bivariate signal en-
velopes are calculated by interpolating the envelopes of those
univariate (real-valued) projections, and the local mean of a
complex signal is determined by taking the mean of the en-
velopes. Although the RI-EMD gives the same number of IMFs
for both the signal components, it is not well-equipped to deal
with fast signal dynamics due to a low number of signal projec-
tions, which limits its practical usefulness.
To alleviate these problems, Rilling et al. [4] developed the

bivariate EMD (BEMD) algorithm, which takes multiple (uni-
variate) projections of a complex (bivariate) signal to determine
the local mean. Unlike RI-EMD, the multiple projection direc-
tions within BEMD can sample the whole complex (bivariate)
plane, enhancing accuracy and making it much better suited for
signals with fast changing dynamics than RI-EMD. More re-
cently, other algorithms such as 2T-EMD [5] have been pro-
posed, in order to balance between accuracy and computational
complexity.
Owing to its accurate estimation of the local mean, the BEMD

has proven successful in bivariate non-stationary signal anal-
ysis, particularly in data fusion applications [6]. It, however, em-
ploys static (fixed) distribution of direction vectors (along polar
coordinates in 2D) thus not catering for second order proper-
ties of bivariate data, such as power discrepancies between the
data channels. This affects both the accuracy and the compu-
tational complexity of the algorithm. Moreover, noise-assisted
extensions of multivariate EMD (NA-MEMD) [7], [8] are also
emerging as an effective way to calculate univariate EMD, and
critically depend on the ratio of powers in the data channels,
which further highlights the need for a data adaptive sampling
procedure in BEMD.
We here introduce a nonuniform projection scheme for cal-

culating the local mean of bivariate data, whereby the direc-
tion vectors for projections are constructed so as to account for
second-order statistics of data channels within a bivariate signal.
This makes it possible to cater for both inherent correlations
and power variations present in the input data. The nature of
the bivariate or complex signal is first examined by computing
the circularity quotient, from which parameters for nonuniform
data-adaptive projections are selected. The proposed strategy
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is shown to provide, on the average, more localized time-fre-
quency estimates for unbalanced data, and better accuracy for
the same number of projections, when compared to the con-
ventional BEMD algorithm. Simulations on both synthetic and
real-world data support the approach.

II. BIVARIATE EMPIRICAL MODE DECOMPOSITION

The BEMD algorithm operates by first projecting an input
bivariate signal in uniformly spaced directions along a unit
circle, as shown in Fig. 1 (left). The extrema points of such mul-
tiple real univariate projections are calculated separately, while
the interpolation of such extrema results in bivariate envelopes,
one for for each direction. The sifting process is thus carried out
according to conventional EMD. Algorithm 1 shows the steps
required for calculating the local mean of a bivariate signal in
BEMD [4].

Algorithm 1: Bivariate Empirical Mode Decomposition

1) Given a set of directions , where
project the complex valued signal

along the directions :

(1)

2) Extract the locations of the extrema points of .
3) Interpolate the set to obtain the envelope curve

in the direction .
4) Compute the mean of all envelope curves:

(2)

5) Subtract from the input signal in order to obtain the
oscillatory component .

III. NONUNIFORMLY SAMPLED BEMD

The proposed algorithm performs nonuniform sampling by
taking signal projections along the directions determined by
the statistical nature of the input: inter-channel correlation and
power discrepancy between data channels. For convenience,
consider a complex-valued signal . Motivated by re-
cent advances in complex valued signal processing, we employ
the circularity quotient as a metric to determine the correlation
pattern of a signal, yielding the direction of principal importance
in the scatter plot of the data. Subsequently, concepts from ellip-
tical geometry are adopted to map the uniform projection vector
direction set to a nonuniform direction set tilted along the prin-
cipal direction (shown in Fig. 1 (right)), thus performing the
local mean estimation that adapts to the second order statistics
of the signal in hand.
The starting point of the proposed nonuniformly sampled

BEMD is to determine the ‘principal’ direction vector (angle)
in a 2D space, corresponding to significant channel correlation
and/or dominant channel power. This is achieved by first
estimating the circularity quotient [9], given by:

(3)

where is the pseudo-covariance, and
is the covariance, and is the statis-

tical expectation operator. By definition, is a complex number
where gives the degree of correlation (or power imbalance)
between two data channels and the direction in 2D
along which such correlations exist. The proposed algorithm
finds a set of projection vectors distributed according to the
principal (importance) direction , as opposed to uniform sam-
pling performed by standard BEMD. The direction of principal
importance represents the tilt of the major axis of an ellipse.
For correlated data, the degree of correlation is then related
to the eccentricity of the ellipse. The modulated elliptical
representation used in this work is given by [10]

(4)

where and are respectively the major and minor axis, and
denotes the angle between the -axis and the major axis of an
ellipse. The relationship between the major and minor axis is
defined as the eccentricity1,

(5)

which governs the spread of correlation. For a given bivariate
signal, the parameters and can be estimated, via the circu-
larity quotient , in (3) as

(6)

In this way, uniformly distributed projection vectors in BEMD
are converted to elliptically distributed points ; see Algorithm
2 for details of the proposed nonuniformly sampled BEMD (NS-
BEMD) algorithm.

Algorithm 2: Nonuniformly Sampled BEMD (NS-BEMD)

1) Estimate the channel powers within a bivariate signal and
their correlation, to give the eccentricity and angle
using the circularity quotient in (3) and (6).

2) Given a set of uniformly distributed angles
, , calculate the

set of elliptically distributed points 2, using (4), where
, .

3) Perform projections of the bivariate signal along the
directions where is given in (4), and
continue as in BEMD.

Fig. 2 shows 16 elliptically distributed directions generated
by NS-BEMD for bivariate signals of equal channel powers but
with varying inter-channel correlations (for convenience the
samples have been projected across a unit circle). As desired,
the projection directions are denser around the direction of prin-
cipal importance, , as the channel correlation increases. Fig. 3
shows the 16 points corresponding to the projection directions

1The eccentricity parameter used in this work corresponds to the eccentricity
from [9]. There are, however, other definitions of eccentricity available which
can be used within the proposed framework, including the more widely used
definition of eccentricity found in [10].
2The major and minor axis of the ellipse have been selected such that (5)

and the condition hold [11].
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Fig. 1. Scatter plot for a bivariate signal, . (Left) A uniformly sam-
pled unit circle (standard BEMD). (Right) A uniformly sampled ellipse, with
higher density of samples along the major axis (the proposed NS-BEMD).

Fig. 2. The scatter plots (blue) and the 16 elliptically distributed projections
(red) for a bivariate signal with equal channel powers and varying channel cor-
relations . (a) , , . (b) , , .
(c) , , . (d) , , .

Fig. 3. The scatter plots (blue) and the 16 elliptically distributed projections
(red) for an uncorrelated bivariate signal of varying channel power ratio .
(a) , , . (b) , , .
(c) , , . (d) , , .

obtained from NS-BEMD for uncorrelated data channels within
bivariate signals, with a varying channel power ratio , where

, with denoting the standard de-
viation. Notice that, as expected the density of sample points,
along the direction of higher power data channels, increases
with the discrepancy between channel powers.

IV. SIMULATION RESULTS

The performance of the proposed NS-BEMD algorithm was
evaluated over comprehensive simulations on bivariate signals
with varying degrees of correlation between data channels,
varying channel powers, and for a noise-assisted operation of
the BEMD for speed estimation from Doppler radar.

Fig. 4. The difference in reconstruction errors of the IMFs corresponding to
tone in (7), for NS-BEMD and BEMD , evaluated against the degree
of correlation and the number of projections .

A. Correlated Bivariate Data of Equal Channel Powers

A single 10 Hz tone, s, corrupted by white Gaussian noise
(WGN), was generated according to:

(7)

where and are independent WGN realizations of unit
variance. The correlation between and was governed by
the scaling factor . The BEMD and NS-BEMD were applied
to the resulting bivariate data and the recon-
struction errors, obtained as the mean square error between
the relevant IMF (containing the tone) and the original tone
in (7), were calculated for both BEMD and NS-BEMD. The
direction vectors for NS-BEMD were generated as in Fig. 2.
Fig. 4 shows the difference between the reconstruction errors
(in dB) of NS-BEMD and BEMD plotted against the degree
of correlation and the number of projections . Notice from
Fig. 4 that for high channel correlations (greater than 0.8) and
for fewer than 20 projections, NS-BEMD greatly outperformed
BEMD, whereas it was on par with BEMDwhen computational
complexity was not an issue. For more than 20 projections in
Fig. 4 there was no significant difference between NS-BEMD
and BEMD even for highly correlated (above 0.8) bivariate
signals. This highlights the usefulness of the proposed method
for lower numbers of direction vectors (samples), a typical case
in real-world applications due to computational constraints.

B. Bivariate Data With Varying Channel Powers

We next examined the effect of power discrepancy in data
channels on the accuracy of NS-BEMD. For one data channel
being WGN, we effectively have a noise-assisted decomposi-
tion (bivariate way to calculate the standard univariate EMD)
[8]. We considered a two tone signal3

(8)

while the second channel was WGN. By varying the power of
the WGN channel relative to that of the signal channel, our aim
was to show that the proposed nonuniform sampling scheme
caters for the power imbalance. Fig. 5 shows the resulting
reconstructed SNRs for both the noise-assisted NSBEMD
(NA-NSBEMD) and noise-assisted BEMD (NA-BEMD) algo-
rithms. The best reconstruction of the sinusoids for NA-NS-
BEMD occurred in the 7 dB to 9 dB regions of power imbalance

3The two tones were selected so that each was in a separate IMF [12].
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Fig. 5. Reconstruction error (in SNR) in the IMFs for a two-tone signal in (8)
with varying channel power ratio, given by . (Top) Reconstruction
using of the proposed NA-NSBEMD. (Bottom) Results of NA-BEMD.

Fig. 6. The time-frequency representation of the Doppler radar signal obtained
via NA-NSBEMD (top) and NA-BEMD (bottom) using projections. The
noise channel power was 8 dB relative to the signal .

, whereas NA-BEMD was not able to account for power im-
balance, or to match the performance of NA-NSBEMD.

C. Speed Estimation Using Doppler Radar

Fig. 6 shows the time-frequency plot of the IMFs, obtained
from decomposing a real-world Doppler radar signature of an
object that was moving towards the radar, at a constant speed
of 8.3 cm/s. The corresponding Doppler frequency shift in the
radar signal was of 5.5 Hz, and its amplitude linearly increased
as the object was traveling towards the radar antenna. To deal
with the nonstationarity, the radar signal was segmented into 10
nonoverlapping windows. The time-frequency plots in Fig. 6,
show that the noise-assisted NS-BEMD algorithm was able es-
timate the object speed (evident by a strong frequency signa-
ture at around 5.5 Hz), together with a better motion localization
(increasing spectrogram amplitude as the object approaches the
radar).

V. CONCLUSION

We have proposed a non-uniform sampling scheme for local
mean estimation in bivariate empirical mode decomposition
(BEMD), in order to perform projections that adapt to the
statistics of the bivariate signals. The proposed algorithm has
been shown to be more effective than the original BEMD
for correlated channels, and for bivariate data channels with
different powers. We have also introduced a way to optimally
choose noise levels in noise-assisted versions of BEMD. The
proposed algorithm in the noise-assisted framework has been
shown to produce a more localized time-frequency representa-
tion than the conventional BEMD algorithm, as illustrated by
simulations on synthetic and real world data.

APPENDIX

To show that for a bivariate signal with high noncircularity,
the projection samples are concentrated along the direction
, from (4), the projection directions

(9)

When , then where , and the term
. The small angle approximation

results in , illustrating that the non-uni-
formly sampled are concentrated around the direction of
principal importance . When , , the term

, while (9) becomes ,
resulting in uniform samples.
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