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Abstract—Sleep monitoring with wearable electroencephalog-
raphy (EEG) has recently been validated and reported in the
research community. One such device is our ultra-wearable,
unobtrusive, and inconspicuous in-ear EEG system, which has
already been demonstrated to be next-generation solution for
out-of-clinic sleep monitoring. We here provide a further proof
of concept of the utility of ear-EEG in day time drowsiness mon-
itoring in the real-world. For rigour, hypnograms are obtained
from manually scored daytime nap recordings from twenty-
three subjects, while a complexity science feature – structural
complexity extracted from scalp- and ear-EEG recordings – is
used in the classification stage, in conjunction with a binary-
class support vector machine (SVM). The achieved drowsiness
classification accuracies range from 80.0 % to 82.9 % for ear-
EEG, with the corresponding accuracies for scalp-EEG ranging
from 86.8 % to 88.8 %. Given the notoriously difficult to classify
drowsiness related changes in EEG (similar to the issues with the
NREM Stage 1), this conclusively confirms the feasibility of in-ear
EEG for automatic light sleep classification. This also promises a
key stepping stone towards continuous, discreet, and user-friendly
wearable out-of-clinic drowsiness monitoring in the real-world,
with numerous applications in the monitoring the state of body
and mind of pilots, train drivers, and tele-operators.

I. INTRODUCTION

Although the function of sleep is not yet fully understood,
sleep is strongly linked to quality of life. For example, the lack
of sleep during the night contributes to the feeling of tiredness,
and poor memory and work performance. The concept of
‘sleepiness’ can be interpreted as a tendency towards sleep;
the inability to concentrate or to keep eyes open may indicate
a higher level of sleepiness. For several decades, multiple
researchers have investigated sleepiness and performance ca-
pacities related to physiological patterns, especially electroen-
cephalography (EEG) and electrooculography (EOG) for shift
workers [1, 2], and for healthy subjects [3, 4]. These studies
have shown that the alpha and theta activity, in particular,
exhibit significant correlations between both subjective and
objective measures of sleepiness. Physiological patterns have
been investigated and linked to mental workload using a
driving simulator for healthy subjects [5, 6], while a recent
study of obstructive sleep apnea (OSA) patients elucidated
that auditory event related potentials, appear to be a significant
parameter to predict poor driving performance [7].

In order to uncover physiological characteristics of certain
states of body and mind, such as sleepiness, a multitude
of physiological electrodes are required. In terms of sleep

monitoring, polysomnography (PSG) recordings have been
traditionally used in clinic to diagnose various sleep disorders.
Typically, PSG recordings require at least two EEG channels,
two electrooculography (EOG) channels to observe eye move-
ments, and at least one chin electromyography (EMG) channel.
However, this conventional setup is both a cumbersome and
expensive procedure as it requires a trained clinician; this is
therefore prohibitive to the physiological states in the real-
world.

Automatic sleep staging systems have been proposed based
on PSG recordings; this was originally motivated to replace the
time-consuming sleep stage scoring process by clinicians. The
state-of-the-art approaches include single-channel scalp-EEG
based classification, and are validated using various benchmark
datasets [8, 9]. For wearable sensing, ear-EEG technology
[10] has been recently proposed in sleep monitoring, using
an in-ear system [11, 12], and an around-ear system [13];
these can vastly improve the technically cumbersome setup.
Our latest in-ear EEG sensor is readily wearable by users,
and does not disturb their daily activities. The quality of the
signal from in-ear sensors has been extensively investigated in
different scenarios, such as comparing steady-state responses
to conventional scalp-EEG [10] and cardiac activity [14]. As
well as scalp-EEG based sleep monitoring systems, the in-ear
EEG has been recently used for automatic sleep staging by
machine learning algorithms [15, 16]. Hence, the unobtrusive
and wearable in-ear sensors have been validated in sleep
monitoring applications and are capable of monitoring physio-
logical responses out-of-clinic. We here further investigate the
in-ear sensing capability in the area of day time sleepiness.

Sleepiness is a symptom and a subjective parameter, which
depends on how an individual perceives the degree of urge
to fall a sleep. The exact cause of sleepiness is still under
investigation, but one cause could be a lack of sleep during
the night. The state of being sleepy appears to be linked
to ‘drowsiness’, which is the transition from wakefulness to
light sleep. For the ‘drowsiness’ classification, Patrick et al.
conducted automatic sleep staging using a publicly available
dataset [17], and only extracted wake and Non-REM Stage
1 [18]. Their selected features from a single EEG channel
and computationally inexpensive classification algorithm can
detect sleep onset effectively, and in the real-world scenarios.

We previously conducted daytime nap recordings with

978-1-5090-6014-6/18/$31.00 ©2018 IEEE5569



Fig. 1. Flowchart for the classification framework in this study.

conventional scalp-EEG headsets and our in-ear EEG sensor
simultaneously, and found substantial agreement between the
two, which indicates the feasibility of in-ear EEG for measur-
ing sleep latency [19] in healthy volunteers [20]. In this paper,
we use the same day time nap EEG data, and validate whether
in-ear EEG patterns can distinguish between wakefulness and
light sleep. The results provide a conclusive evidence that, due
to the unobtrusive and wearable nature of our in-ear sensor,
the light sleep classification application with in-ear sensing
is capable of achieving ‘drowsiness’ monitoring in the real-
world.

II. METHODS

Figure 1 summarises the analysis framework for this study.
The recorded scalp- and ear-EEG data were manually scored
by a clinician. The data were also pre-processed and super-
vised classification was performed.

A. Data acquisition

The EEG data were recorded at Imperial College London
between December 2015 and April 2016 under the ethics
approval, ICREC 12_1_1, Joint Research Office at Imperial
College London. Twenty three healthy subjects (28.5±5.3
years) participated in the recordings. Subjects were instructed
to participate in two recording sessions; each session was
executed between 9 am to approximately 5 pm. The subjects
attended the recordings after either their normal sleep (average
≥ 7 hours) or sleep deprivation (≤ 5 hours) in the night
before, and refrained from consuming caffeine. The subjects
performed four naps (trial) with the length of 20 minutes
on each recording day, and the interval between trials were
approximately 2 hours. If needed, participants were allowed to
leave the lab in between naps (e.g. for toilet break or bringing

TABLE I
THE CONFIGURATION OF EEG RECORDINGS

No. of subjects 23
No. of sessions 2 days (Normal sleep, Sleep deprivation)

No. of trials per session 4 trials
Length of trial 20 mintutes

Channels Scalp-EEG (C3, C4)
Ear-EEG (Ch1, Ch2)

Fig. 2. Left: Recording setup. The electrodes were placed on scalp and in
the ear canal. The subject seated and reclined in a comfortable chair. Right:
The wearable viscoelastic in-ear sensor with two flexible electrodes [22].

in the lunch). The sensors were kept in place throughout
the trials, unless requested by participants, or to reapply the
electrodes due to poor electrode impedance. Overall, 21 out
of 23 subjects participated in both recording sessions. Table I
summarises the recording details.

Scalp- and ear-EEG were recorded simultaneously using the
g.tec g.USBamp amplifier with 24-bit resolution, at a sampling
frequency fs = 1200 Hz. For scalp-EEG, standard gold-cup
electrodes located at the C3 and C4 position (according to the
international 10-20 system) were used for the recordings, a
montage extensively used in sleep medicine for visual sleep
scoring, and the ground electrode for scalp-EEG recordings
was attached to the forehead.

The in-ear sensor was made based on a ‘one-fits-all’ vis-
coelastic earplug with two flexible electrodes, the details
can be found in [21, 22]. The size of in-ear sensors was
the same for all subjects. The in-ear sensor was inserted
into either subject’s left or right of ear, according to their
preference. After the insertion, the sensor expanded to conform
firmly to the shape of the ear canal. The standard gold-cup
electrodes were attached behind the ipsilateral helix and the
ipsilateral earlobe for reference and ground, respectively. After
the electrodes were attached, the subjects were instructed to
seat and recline in a comfortable chair in a dark and quiet
room. Figure 2 illustrates the recording setup (left) and our
in-ear sensor based on ‘generic earpiece’ (right).

B. Manual scoring

The recorded signal was first downsampled to 200Hz,
and a fourth-order Butterworth bandpass filter with passband
1 − 20Hz was applied to both scalp- and ear-EEG. The
processed scalp- and ear-EEG data were blinded and separately
scored based on the American Academy of Sleep Medicine
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Fig. 3. Averaged power spectral density for the scalp C3 channel (top) and
in-ear EEG Ch1 (bottom).

(AASM) criteria [23]. The epoch size was set to 30 s, therefore
40 epochs were scored in each recording trial (30 s×40 epochs
= 1200 s). Some recording trials were too noisy to score;
one typical issue was when a subject put the side of their
head on the pillow, the earpiece and cables could become
trapped underneath of their heads. Overall, 161 trials were
used for further analyses. Note that some subjects did not
sleep at all during the 20 minutes trials, so in this scenario,
the hypnograms from such trials were all scored as Wake.

TABLE II
PROPORTION OF SLEEP STAGES OVER 23 SUBJECTS

Dataset Wake NREM1 Total

Ear-EEG
No. of epochs 3997 2002 5999

Ratio (%) 66.6 33.4 100.0

Scalp-EEG
No. of epochs 3728 2071 5799

Ratio (%) 64.3 35.7 100.0

C. Pre-processing

For classification analyses, the downsampled EEG signals
were bandpassed with a fourth-order Butterworth filter with
passband from 0.5 − 30Hz. Since this study focus on a
detection of drowsiness, which is the boundary between wake-

fulness and Non-REM Stage 1 (NREM1), we only analysed
the epochs labeled as Wake and NREM1. In order to remove
noisy epochs from further analyses, for each scalp- and ear-
EEG, the epochs (i.e. 30 s segment of recordings) which
contained amplitudes of more than ±400µV were removed.
Therefore, the total number of scalp- and ear-EEG epochs for
further analyses was different, with their proportion given in
Table II.

Figure 3 illustrates the averaged power spectral density
(PSD) over 23 subjects for scalp-EEG channel (C3) and in-ear
EEG channel (Ch1, upper electrode), corresponding to Wake
and NREM1 conditions. Even though the amplitude of scalp-
EEG was different to that of ear-EEG, the trends of PSD were
similar. For example, for both scalp- and ear-EEG channels,
there is a close match between the peaks in the alpha band
(8− 13Hz) for Wake, and the alpha power attenuation in the
NREM1.

D. Feature extraction

After the pre-processing, the multi-scale entropy (MSE)
metrics [24–26] were calculated for each epoch of both scalp-
and ear-EEG data. In particular, the multi-scale fuzzy entropy
(MSFE) [27] were used for our previous automatic sleep
staging work [9] using publicly available overnight Sleep-EDF
[expanded] dataset [28].

The MSE is a non-parametric method for estimating dy-
namical complexity over multiple scales of a time series. The
fuzzy entropy (FE) algorithm [29] was used in this study as
it is robust to noise and relatively consistent, independent of
data length; this consistency makes it well suited to relatively
short physiological signals, which in turn makes it appropriate
for use with small embedding dimensions.

The maximum scale for the MSFE was τ = 30. Since
there are two channels of EEGs for both scalp- and ear-EEG,
30× 2 = 60 features were extracted from each epoch for the
classification. Figure 4 depicts MSFE analysis for scalp- and
ear-EEG channels (C3 and in-ear Ch1) of the 161 trials over
23 subjects with different sleep stages. Observe that for both
scalp- and ear-EEG, the Wake and NREM1 were visually well
separated. The parameters used to calculate the MSFE were
the same as in our previous work, and can be found in [9].

E. Classification

The binary-class support vector machine (SVM) was em-
ployed as a classifier [30]. The radial basis function (RBF)
kernel was used for the SVM, which given by

κ(x,x′) = exp(−γ|x− x
′|2). (1)

The regularisation parameter was set to C = 10, and the
hyper-parameters for classification were set to γ = 1; the same
hyper-parameters were used throughout the analysis.

III. RESULTS

A. Evaluation

The pre-processing and feature extraction analyses were
undertaken using Matlab 2016b, and the classification was
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Fig. 4. The averaged multi-scale fuzzy entropy for scalp- and ear-EEG. The
error bars represent the standard error.

implemented in Python 2.7.12, Anaconda 4.2.0 (x86_64)
operated on an iMac with 2.8GHz Intel Core i5, 16GB of
RAM. The class-specific performance metrics used were the
sensitivity (SE = TP/(TP + FN)) and precision (PR =
TP/(TP + FP )), where TP (true positive) represents the
number of positive (target) epochs correctly predicted, FN
(false negative) represents the number of positive epochs
incorrectly predicted as negative class, and FP (false positive)
is the number of negative epochs incorrectly predicted as
positive class. The overall performance was evaluated by the
accuracy (AC) and Kappa coefficient (κ) metrics [31], defined
as:

AC =

∑M=2
i=1 TPi

Nepoch
, κ =

AC − πe

1− πe
,

where πe =

∑M=2
i=1 {(TPi + FPi)(TPi + FNi)}

Nepoch
2

.

The parameter M = 2 is the number of classes (i.e. Wake or
NREM1), and Nepoch is the total number of epochs.

Fig. 5. Cross validation approaches used in this study.

B. Validation setup

Figure 5 illustrates the two different validation methods
employed in this study. First, we applied the Leave-‘One
Trial’-Out Cross-Validation (LOTOCV) approach; a single nap
trial was assigned as test data and the rest of 160 trials was
used as training data (as mentioned in Section II-B, the number
of epochs was 161). The validation trials were therefore
repeated 161 times. Although this approach is computationally
expensive, the test and training data do not come from the
same recording trial, therefore, this approach is applicable
for real world setups. Second, a 10-fold CV approach was
utilised, whereby EEG recordings from all the 161 trials with
scored hypnogram were concatenated into one large matrix,
and then randomly split into the training data (90 %) and test
data (10 %).

C. Setup1: LOTOCV

Tables III and IV show the classification results using
Leave-‘One Trial’-Out CV (LOTOCV) methods for ear-EEG
and scalp-EEG recordings, respectively. For ear-EEG, the
classification accuracy of two stages (i.e. Wake or NREM1)
was 80.0 % with the kappa coefficient of κ = 0.53. The
classification and corresponding kappa for scalp-EEG were
86.8 % and κ = 0.72 (substantial agreement), respectively.

TABLE III
CONFUSION MATRIX FOR THE 2-CLASS WAKE VS. NREM1

CLASSIFICATION (EAR-EEG, LEAVE-‘ONE TRIAL’-OUT CV)

Algorithm based on ear-EEG
Wake NREM1 SE(%) / PR(%)

Hypnogram based
on ear-EEG

Wake 3546 451 88.7 / 82.5
NREM1 750 1252 62.5 / 73.5

Accuracy: 80.0 %, Kappa = 0.53

D. Setup2: 10-fold CV

Tables V and VI show the confusion matrices for 10-
fold CV methods using ear-EEG and scalp-EEG, respectively.
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TABLE IV
CONFUSION MATRIX FOR THE 2-CLASS WAKE VS. NREM1

CLASSIFICATION (SCALP-EEG, LEAVE-‘ONE TRIAL’-OUT CV)

Algorithm based on scalp-EEG
Wake NREM1 SE(%) / PR(%)

Hypnogram based
on scalp-EEG

Wake 3316 412 88.9 / 90.4
NREM1 353 1718 83.0 / 80.7

Accuracy: 86.8 %, Kappa = 0.72

The classification accuracy for ear-EEG was 82.9 % and the
corresponding kappa was κ = 0.60. For scalp-EEG, the
classification accuracy and kappa were 88.8 % and κ = 0.76
(substantial agreement), respectively.

TABLE V
CONFUSION MATRIX FOR THE 2-CLASS WAKE VS. NREM1

CLASSIFICATION (EAR-EEG, 10-FOLD CV)

Algorithm based on ear-EEG
Wake NREM1 SE(%) / PR(%)

Hypnogram based
on ear-EEG

Wake 3645 352 91.2 / 84.4
NREM1 673 1329 66.4 / 79.1

Accuracy: 82.9 %, Kappa = 0.60

TABLE VI
CONFUSION MATRIX FOR THE 2-CLASS WAKE VS. NREM1

CLASSIFICATION (SCALP-EEG, 10-FOLD CV)

Algorithm based on scalp-EEG
Wake NREM1 SE(%) / PR(%)

Hypnogram based
on scalp-EEG

Wake 3374 354 90.5 / 92.0
NREM1 295 1776 85.8 / 83.4

Accuracy: 88.8 %, Kappa = 0.76

IV. DISCUSSION AND CONCLUSION

This study aims to classify ‘drowsiness’, which is an impor-
tant condition on the boundary between wakefulness and light
sleep. We conducted day time nap recordings from twenty
three healthy subjects, and automatically classified their sleep
stages based on EEG signals obtained from both on-scalp and
in-ear sensors. Our previous study scored and compared the
sleep onset based on both scalp- and ear-EEG [20], where the
results achieved in this study have confirmed the feasibility of
in-ear EEG for automatic light sleep classification, which is
applicable for wearable out-of-clinic drowsiness monitoring.

The classification accuracies of scalp-EEG were better
than those of ear-EEG in both LOTOCV and 10-fold CV
approaches. The feature used for classification was the MSFE,
see Figure 4. The separation of ear-EEG in different sleep
stages has not been visually significant compared to that
of scalp-EEG, therefore the classification based on scalp-
EEG was slightly better than that by ear-EEG. Regarding
the classification algorithm, the same regularisation parameter
C, the type of kernel, and hyper-parameter γ were used
in both LOTOCV and 10-fold CV for both scalp- and ear-
EEG, therefore further parameter tuning can improve the
classification performance.

In this pilot study, we have only used one earpiece to
monitor in-ear EEG, which is wearable and readily collectable
system. Recently, we have proposed in-ear electrocardiogram
(ECG) monitoring [32] using two earpieces, which can be
incorporated into a for further study, giving a different in-ear
physiological measurement, which enhances the feasibility of
out-of-clinic drowsiness monitoring.
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