2\

Journal of VLSI Signal Processing 48, 99-108, 2007

— © 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/511265-006-0025-6

Sequential Data Fusion via Vector Spaces: Fusion of Heterogeneous
Data in the Complex Domain

DANILO P. MANDIC AND SU LEE GOH
Department of Electrical and Electronic Engineering, Imperial College of Science,
Technology and Medicine, London, UK

KAZUYUKI AIHARA
Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Received: 1 May 2006; Revised 10 August 2006, Accepted 10 October 2006

Abstract. A sequential data fusion approach via higher dimensional vector spaces is introduced. This is
achieved by making use of the representation of directional signals within the field of complex numbers C. The
concept of data fusion is next introduced and the place of the proposed approach within that framework is
identified. The benefits of such an approach are illustrated and a range of possible applications is shown. The
concept introduced is supported by a real world case study which focuses on simultaneous forecasting of wind
speed and direction. The architectures and learning algorithms which support this concept are introduced and
their distributed sequential fusion nature is highlighted.
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1. Introduction

The data fusion framework aims at exploiting sy-
nergy between the information fragments, with the
aim to make better use of the available data [1]. In
simple terms, data fusion aims at obtaining informa-
tion of greater quality [4], from the constituent single
information sources. The exact definition of “greater
quality” depends on the application, and may mean a
better spatial coverage, better filtering performance,
or more efficient modelling of higher order spatio-
temporal data dependencies. In practical terms, the
data fusion approach combines data from multiple
sensors (and associated databases if appropriate) to
achieve improved accuracies and more specific
inferences that could not be achieved by the use of
only a single sensor."

data fusion, spatio-temporal, complex-valued, vector spaces, complex nonlinearity

Data fusion principles apply to many domains, and
have been (often implicitly) at the core of modern
applications in the diverse areas spanning engineer-
ing, computing, and biomedicine. The recent interest
in the theory and taxonomy of multisensor data
fusion has been reflected by a number of special
issues of leading international journals and confer-
ences, which have been dedicated to this area [1, 6].

Our aim in this paper is to introduce the concept of
data fusion via vector spaces. This concept belongs
to transform domain fusion, for which no general
theory exists as yet. Based on a case study of wind
forecasting, we illustrate that a fusion of the
heterogeneous wind speed and direction data in the
field of complex numbers C allows for the simulta-
neous modelling and forecasting of these wind field
components. Simulations show that the proposed
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approach comprehensively outperforms the standard
univariate approaches.

2. Data Fusion via Vector Spaces

Before we proceed with our proposed fusion model,
let us introduce some important notions used later in
the paper:

e Vectorial neural network (NN) is a network with
multiple heterogeneous inputs, operating in R. For
more details, please refer to [13]. This is effec-
tively a multivariate model with two inputs, which
may or may not be correlated. In the case of wind
measurements, for instance, these inputs are wind
speed and direction. These can be used to produce
an estimate of the wind speed in a forecasting
configuration. However, no density theorem has as
yet been proven for vectorial NNs, which contrib-
utes to uncertainty when employing this class of
NNs for the function approximation and prediction
applications [13];

o “Complex” or Complex-valued refers to the
situation where the inputs, outputs, and weights
in the network are quantities in the field of
complex numbers C. This interpretation benefits
from the well-defined rules of complex algebra,
such as the addition, subtraction, multiplication
and division operations in C. This also applies to
higher-order complex spaces in which hyper-
complex NNs (tensor) are defined using the same
principle [13, 14];

e Complex nonlinearity, refers to a general function
f: C — C, whereby we differentiate between two
main classes of complex nonlinearities, which
are used as activation functions (AFs) within the
complex valued neurons. In the case of a split-
complex AF, the real and imaginary component
of the complex-valued signal x are separated
and fed independently through a real-valued
activation function. The functional expression of
the split-complex activation function is given
by f(x) = fr(Re(x)) + jfi(Im(x)). A fully-complex
activation function is a general complex activation
function where there is cross-correlation between
the real and imaginary channel;

e Cauchy-Riemann equations® state that the partial
derivatives of a function f(z) = u(x,y) +jv(x,y)

along the real and imaginary axes should be equal:
['(2)=5¢+j5 = 5 — j Therefore, the Cauchy—
ou dv v

. . LOu v v du
Riemann equatlons are as: ox T yrox oy

2.1. Taxonomy of Data Fusion

When approaching a problem from the data fusion
viewpoint, we differentiate between the following
levels of abstraction [6]:

e Observation/measurement space contains vectors
of measurement functions which can be univari-
ate, multivariate, and/or multidimensional. It may
be possible to build a state-space model, or to
assess the data modality [5];

o Transform domain representations, which seek
features from time and/or frequency models (fast
Fourier transform (FFT), (nonlinear) autoregres-
sive (N)ARMA models [8], Wavelet), blind pro-
cessing (independent component analysis (ICA),
blind source separation (BSS)), particle/Kalman
filter [9], kernels and support vector machines
(SVM) [7], kernel ICA [15] );

e Decision space, where the classes within the data
fusion model (and the corresponding basins of at-
traction from the measurement space) are mapped
into the relevant probabilities of the occurrence of
an event.

We here illustrate a sequential data fusion in a
complex space, which is supported by an example of
wind forecasting. This is an important issue, and has
recently received much attention due to the interest
in wind as an alternative source of energy, since the
output power P of a wind turbine (WT) is a nonlinear
function of wind speed v (P ~ v3). Neural network
(NN) forecasting methods are attractive for this
purpose, since they are perfectly suitable to deal
with nonstationarity and nonlinearity within the data
and the associated higher order statistics [10]. In
particular, temporal recurrent neural networks
(RNNs) represent dynamical maps, which not only
model adaptively nonlinearity and non-Gaussianity
[8], but also the associated nonlinear dynamics.

2.2. Problem Setting

The information entering a fusion process should be
aligned. This can be applied to both homogeneous



(commensurate) and heterogeneous (non- commen-
surate) information, and may require some sort of
conversion or transformation of observations [11].
The problem of building a data fusion model via the
complex vector space is illustrated in Fig. 1, where
the left diagram represents wind measurements as a
vector of its speed v(k) and direction (k) compo-
nents, in the N + E coordinate system, whereas the
right diagram in Fig. 1 illustrates the distribution of
wind speeds over various directions. There is a clear
inter-dependence between wind signal components, a
fact that is not taken into account in the current
approaches to wind forecasting. Although both the
speed and direction are integral components of the
wind signal, in practical applications, only the speed
component is taken into account, hence introducing a
systematic error in forecasts [12].

For nonlinear modelling of both wind speed and
direction, vectorial temporal NNs seem obvious
candidates. This suggests the use of multidimension-
al networks developed in an associative and division
algebra, in which such density theorems do exist.
This is exactly the case with complex algebra.
Indeed, from Fig. 1, the wind vector v(k) can be
expressed in the complex domain C as

v(k) = [v(k) "™ = ve(k) + vw(k) (1)

=

Wind
speed

Wind
\<?irection

> B
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This interpretation now benefits from the properties
of complex algebra, and also facilitates data fusion
via vector spaces.

To clarify this, observe that the two wind compo-
nents speed v and direction 6 (which are of different
natures, that is, heterogeneous) are modelled as a
single quantity in a complex representation space. If
the East and North wind speed components are
denoted respectively by vg and vy, they are effec-
tively projections of the wind field vector v on the
corresponding axes, that is, v(k) = vg(k) + jvy (k).

2.3. Data Fusion and Sufficient Information

One of the first proposed data fusion models was the
“waterfall model” (Fig. 2), developed for the UK
Defence Evaluation Research Agency (DERA). This
model reflects the different hierarchical levels in a
data fusion setting. We can think of the heteroge-
neous sensors monitoring a certain process as being
“windows” into the phenomenon under observation.
Sensors can either have their own window, or the
windows “overlap” in space or time. This way, the
information obtained can be thought of as
“decomposed” or “fragmented” by the sensors,
which is sometimes called sensor fission [6], and is
related to so-called sufficient information (whether

Figure 1.  Wind recordings: Left: a complex-valued representation, Right: wind lattice.
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Figure 2. The waterfall model.

the character and number of sensors can indeed
describe the phenomenon sufficiently well). This is
analogous to the concept of embeddology, where we
wish to model the nonlinear dynamics of a multidi-
mensional process based on its time delay represen-
tation [5]. The information fragments coming from
sensors are exposed to spectral shaping, saturation,
and noise; data fusion aims at retrieving the
“interesting” characteristics of the phenomenon.

3. Architectures and Performance Aspects

Combining multi-sensor data in the data fusion
framework has the potential of faster and cheaper
processing and allows for new interfaces, together
with reducing overall uncertainty (increase in reli-
ability). Such data can be combined in various ways,
for instance by: (1) linear combiner, (2) combination
of posteriors (weights, model significance), (3)
product of posteriors (independent information).
Based on the different ways of combining informa-
tion and different semantic levels, we differentiate
between the following data fusion architectures,
shown in Fig. 3:

e Centralised: characterised by fairly simple algo-
rithms, but rather inflexible to sensor malfunction
and failures;

e Hierarchical: suitable for so-called collaborative
processing and allows for two way communication;

Centralised
Data Fusion

54 -

Sensor

Sensor

Figure 3. Centralised and hierarchical data fusion.

Sensor

e Decentralised: designed to be robust to sensor
malfunction and failures, but requires mathemat-
ically rather demanding algorithms.

3.1. Practical Considerations

We have seen that we can use complex-valued
algebra in order to perform fusion of the heteroge-
neous wind speed and direction data, however, it is
natural to ask whether this will help to obtain
information of “greater quality” from the data, as
required in the data fusion framework. The answer to
this question depends on the relationship between the
components of a multivariate measurement process.
Some tests for the variable dependence within a
signal model (bivariate vs. complex-valued) can be
found in [16].

We next illustrate the importance of testing for
component dependencies within the proposed frame-
work, by comparing the one-step ahead forecasting
performances using three NN based approaches:

(1) The standard univariate approach, where the
wind signal components (speed and direction)
are predicted separately and then put back
together to form a complex vector;

(2) The split-complex approach, where the wind
speed and direction are modelled in the complex
algebra, with the split-complex nonlinear activa-
tion of neurons;

Global Fusion

Local
Fusion

Sensor
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Figure 4.  Fully-complex approach.

(3) The fully-complex representation in the complex
algebra, with a general complex-valued nonlin-
ear activation function of neurons.

For the univariate approach, an RNN architecture
trained by the Real Time Recurrent Learning
(RTRL) [2] algorithm was used, whereas for the
split- and fully-complex approach we used a com-
plex RNN trained by the complex-valued RTRL
(CRTRL) [17]. The simulation results on the predic-
tion of complex-valued real-world wind measure-
ments, for the univariate, split- and fully-complex
case are shown respectively in Figs. 4, 5 and 6.
Observe that the fully CRTRL algorithm exhibited
better and more consistent performance than the
split-complex and univariate approaches as indicated
by the solid line (predicted signal) being much more
in accordance with the dotted line (actual signal).

3.2. Distributed Data Fusion via Vector Spaces

After having established the concept of data fusion
via vector spaces, we next address the issue of data
locality, and identify some architectures for distrib-
uted signal processing within this framework. Block
diagrams of the two main topologies in distributed
data/sensor processing are shown in Fig. 7, these
configurations are:

e Parallel: Sensors (blocks, modules) do not com-
municate with each other and there is no feedback
from the fusion centre to any sensor;
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e Serial: The (m — 1)th sensor passes its informa-
tion to the mth sensor. The first sensor in the
network uses only its observation to make a local
decision. The last sensor makes a final decision.

Notice that the topology depicted in Fig. 7a
represents a “mixture of experts” and can, for
instance, be implemented as an RBF, whereas the
topology in Fig. 7b has its direct implementation as
the Pipelined Recurrent Neural Network (PRNN)
[18]. In this paper, we only consider the latter case.

4. RNN Topologies and Learning Algorithms

We shall now introduce the architectures and
algorithms for the training of complex RNNs and
the architecture of the proposed sequential data
fusion model realised as a complex PRNN.

4.1. The Basic Algorithm

Figure 8 shows a Fully Connected Recurrent Neural
Network (FCRNN), which consist of N neurons with
p external inputs. The network has two distinct
layers consisting of the external input-feedback layer
and a layer of processing elements. Let y;(k) denote
the complex-valued output of each neuron, /=
1,...,N at time index k and s(k) the (1 x p) external
complex-valued input wind signal vector. The
overall input to the network Z(k) represents a
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Figure 5. Dual univariate approach.
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Figure 6.  Split-complex approach.
concatenation of vectors y(k), s(k) and the bias input
(1 +), and is given by
Z(k)=[s(k—=1),...,s5(k—p), 1 +],
yilk=1),... vk = 1)
= Z,,(k) +jZ,(K),
P+N+1

(2)
n=1,...

where j =+/—1 and the superscripts (-)" and (-)'
denote respectively the real and imaginary part of a
complex number. A complex-valued weight matrix
for the network is denoted by W, where for the nth
neuron, its weights form a (p +N + 1) x | dimen-
sional weight vector W[T = [w“, ey wl7,,+N+1]. The
output of each neuron can be expressed as
yvi(k) = ®(net;(k)), 1=1,...,N, where

p+N+1

net;(k) = Z win(k)Z, (k) (3)

n=1

is the net input to /th node at time index k. For
simplicity, we state that

yi(k) = @ (net;(k)) + j® (net;(k))
= u(k) + jvi(k) (4)

where @ is a complex nonlinear activation function
of a neuron.

4.2. Complex-Valued Real Time Recurrent
Learning (CRTRL) Algorithm

The system configuration in Fig. 8 is employed for
the task of adaptive prediction. The output error

which consists of its real and imaginary parts can be
expressed as

e(k) = (k) — i (k) = & (K) + (k) (5)

k) =d (k) =i (k), (k) =d'(k) —wi(k) (6)
where d(k) is the teaching signal. For real-time
applications and gradient descent algorithms the cost
function of the network is given by E(k) =1 x
ek = Le®)e* (k) =3[ +(&)"] 161, where
(-)* denotes the complex conjugaté. The CRTRL
aims at minimising the error by recursively altering
the weight coefficients based on the gradient search
technique, given by

Win (k+1) = Win (k) — nvw'z.nE(k)|w,,,,:w,y,,(k) (7)

Notice that E(k) is a real-valued function and to
calculate the gradient, the partial derivates of E(k)
with respect to the real and imaginary part of the
weight coefficients separately have to be derived, as

OE(k) . OE(k)
Vi, Ek) = ———+]——= 8
W) = G i (8)
Phenomenon H
Yy Yo YN N
Si Sz oo SN-1 Sn
u v Un-| Uy

Fusion
Centre

1o,
(a)

(b)

Figure 7. Topologies for collaborative signal processing (a)
Parallel, (b) Serial.
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Calculating the gradient of the cost function with
respect to the real part of the complex weight gives®
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Similarly, the derivative of the cost function with
respect to the imaginary part of the complex weight
yields

oE) o ((um® ) OE omte)
8w}',n(k) T o Bwin(k) vy 8w}"n(k) ’
(10)
The factors 2ulb) o) = onl) onq E)  Hpe

owy (k)° ow; (k) ow) (k) ow; (k)
measures of sensitivity of the output of ‘the Ith
neuron at time k to a small variation in the value
of w;,(k). For convenience, denote the correspond-
ing sensitivities by 77 (k) = m,m, 7 (k) = 51‘/'%,
(k) = 5wqy and 7'(k) = 2% For a complex
function to be analytic at a point in C, it needs to
satisfy the Cauchy—Riemann equations [5]. To arrive
at the Cauchy—Riemann equations, the partial deriv-
atives (sensitivities) along the real and imaginary
axes should be equal, that is w(k) =#"(k)+
jr" (k) = 7'(k) — j="'(k). Equating the real and
imaginary parts of the sensitivities leads to

(11)

By using the Cauchy-Riemann equations, a more
compact representation of VyE(k) is obtained as

s(k-M) s(k-M+1) s(k-M+2) s(k-1) s(k)
z! | zt 1 - z11
p

p p p
- module M ) - module (M-1) Vo). ®) ymaﬁ module 1 Yout®)
- - e — e
» weight matrix W » weight matrix W » weight matrix W

7zl | (= 2zl ]| 2zl ]|

(N-1) (N-1) (N-1)
WD)
zl |-

Figure 9. The pipelined recurrent neural network.
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Table 1.  Statistical properties of the wind data sets.

Set W1 (1 m) W2 (17 m)
Cumulative samples 199,744 187,648
Minimum speed [m/s] 0 0.0182
Maximum speed [m/s] 3.0746 21.6548
Mean speed [m/s] 0.0917 5.5228
Standard deviation [m/s] 0.7306 3.1786

VwE(k) = e(k)7™ (k). The total weight matrix up-
date is then

W(k + 1) = W(k) 4 ne(k)7™ (k) (12)

with the initial condition 7(0) = 0. Following the
approach from [7], the update for the sensitivities
7% (k) = 7" (k) + jm" (k) can be derived as

(k) = {@* (k) [amz:‘(k) () (k- 1)

where
1, I=n
6111 - {0, l?é n (]4)
is the Kronecker delta.

4.3. Complex Pipelined Recurrent Neural
Network (PRNN)

The PRNN is shown in Fig. 9 and it consists of M
modules, each of which represents an RNN with N
neurons. The first module in the PRNN is an RNN,
whereas all other modules receive an input from the
preceding module. Therefore, the whole concept
mimics precisely the serial topology in distributed
data/sensor fusion. The (p x 1) dimensional external
complex-valued signal vector s’(k)= [s(k —
1),...,s(k —p)] is delayed by m time steps (z~"I)
before feeding the module m, where z7", m =
1,...,M denotes the m-step time delay operator,
and I is a (p x p) dimensional identity matrix. The
complex-valued weight vectors w; are embodied in
an (p+N+1)x N dimensional weight matrix
W = [wy,...,wy]. All the modules operate using

the same weight matrix W. The following equations
provide a mathematical description of the CPRNN,

yiu(k) = ®(net, (k)), t=1,2,....M (15)

+N-+1
P I=1,...,N

net, (k) = Z Win (k)P a(k),

n=1

Pl(k)=[s(k—1),....,s(k—t—p+1),1+],

Xy (k= 1), y2(k = 1),y (k= 1)]

Pl (k) = [s(k—M),....s(k—M—p+1),1+},
XyM’](k — 1),yM72(k— 1)7‘--7yM,N(k_ 1)}
for t=M
(18)

For simplicity we state that

Vei(k) = ®(net, (k) = D (net,;(k))
+j@ (net, (k)) (19)
= ut,l(k) "‘v‘j\/;’](k)

The overall output of the CPRNN is y; ;(k), that is
the output of the first neuron of the first module, and
@ is a nonlinear complex-valued activation function
of a neuron.

5. Simulations

To illustrate the benefits of data fusion via vector
spaces, together with those associated with the use of
serial topology in distributed signal processing, we
perform simultaneous forecasting of wind signal
components using a complex-valued PRNN. The
wind measurements used in simulations comes from
an AM ultrasonic anemometer and were sampled at
50 Hz for an hour long interval. The measurements

Table 2.  Parameter selection details.

Wind measurements M N p
W1 8 2 10
w2 15 2 18
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Figure 10. Prediction of wind using CPRNN. Solid curve: actual series. Dashed curve: predicted series.

were recorded at one meter and 17 m high above
ground level. The difference in height during mea-
surements gave different wind dynamics. Table 1
shows the statistical properties of the wind data sets
considered. The initial weight values of the network
were chosen randomly. A temporal modular com-
plex-valued PRNN predictor was trained using a
version of complex CRTRL [19] with 1,000 data
points of the complex wind measurements. For the
experiments, the nonlinearity at the neuron was
chosen to be the complex fanh function, given by

et — o

®(x) = eBX + oD

(20)

where x € C. The value of the slope of ®(x) was
([ = 1. The value of the learning rate for the CPRNN
architecture was 77 = 0.01. The forgetting factor for
the CPRNN architecture was A\ = 0.995. Table 2*
shows the complex PRNN parameters selected for
each wind measurements. The measurement used to
assess the performance was the prediction gain [18]

2
(o
UC
Table 3.  Prediction gain R, [dB].
Wind measurements (in dB) RNN CPRNN
Wi 12.9512 19.5635
W2 7.8491 14.2488

where o2 denotes the variance of the input signal
s(k), and o? denotes the estimated variance of the
forward prediction error e(k). The simulation results
for complex wind data are shown in Fig. 10. The
prediction performance of the CPRNN applied to the
real-world (velocity and angle components) wind
signal showed the ability of the CPRNN to adapt to
the changes in the dynamics of the complex wind
input. The prediction gain obtained for each mea-
surement using a single module RNN and the
CPRNN is shown in Table 3. In both measurements,
there was a significant improvement in the prediction
gain when the CPRNN architecture was employed
over the performance of a single module RNN. This
also justifies the use of serial PRNN topology, which
is capable of modelling efficiently higher order
dependencies between the data.

6. Conclusions

A vector space based approach for the fusion of
heterogeneous data has been presented. This has been
achieved in the field of complex numbers C, and can
be straightforwardly extended to the case of hyper-
complex spaces. Next, we have addressed the, recur-
rent neural network (RNN) based data fusion in such
spaces, and identified the pipelined recurrent neural
network (PRNN) as a convenient collaborative signal
processing topology for this application. This com-
bination of modular neural networks and data fusion
via vector spaces has shown excellent performance
on forecasting of real world wind measurements.
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Notes

1. This concept is hardly new: living organisms have the
capability to use multiple senses to learn about the environ-
ment. The brain then fuses all this available information to
perform a decision task.

2. The Cauchy—Riemann equations helped to relax the require-
ments on the desired properties of nonlinerities within fully
complex neurons which are to be analytic and bounded almost
everywhere in C.

3. We derive the CRTRL for prediction applications (only one
output y1), however the derivation is general enough to be

straightforwardly extended to a RNN with more than one

output.
4. Please refer to [3] for these choices of parameters.
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