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Abstract. An overview of data fusion approaches is provided from the
signal processing viewpoint. The general concept of data fusion is in-
troduced, together with the related architectures, algorithms and per-
formance aspects. Benefits of such an approach are highlighted and po-
tential applications are identified. Case studies illustrate the merits of
applying data fusion concepts in real world applications.

1 Introduction

The data fusion approach combines data from multiple sensors (and associated
databases if appropriate) to achieve improved accuracies and more specific in-
ferences that could not be achieved by the use of only a single sensor [1]. This
concept is hardly new:- living organisms have the capability to use multiple
senses to learn about the environment. The brain then fuses all this available
information to perform a decision task.

One of the first definitions of data fusion came form the North American Joint
Directors of Laboratories (JDL) [2,3], who define data fusion as a:- multilevel,
multifaceted process dealing with the automatic detection, association, correla-
tion, estimation and combination of data from single and multiple sources.

Data fusion principles apply to many domains, and have been (often implic-
itly) at the core of modern applications in the diverse areas spanning engineering,
computing, and biomedicine. The recent interest in the theory and taxonomy of
multisensor data fusion has been reflected by a number of special issues of lead-
ing international journals and conferences, which have been dedicated to this
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area (e.g. Proc. of the IEEE in 1997 [1] and 2003 [4], JMLR in 2003 [5], and
IEEE TNN 2002 [6]).

There has been a somewhat conflicting use of terminology within the data–
sensor–information fusion community. People working at the sensor level view
data fusion as basically operating with raw data which have undergone at the
most only some preliminary processing [7]. Others, like JDL, have a more general
view which includes both raw and processed data – in short, all the inputs to
some higher level decision making/classifying stages.

Our aim in this paper is therefore to provide a systematic overview of the
existing data fusion philosophy and methods for engineering applications.

2 Data Fusion Principles

When approaching a problem from the data fusion viewpoint, we differentiate
between the following levels of abstraction:

– Observation/measurement space contains vectors of measurement func-
tions which can be univariate, multivariate, and/or multidimensional, de-
pending on temporal, spatial or other independent variables. It may be pos-
sible to build a state–space model, or to assess the data modality [8,9];

– Transform domain representations, which seek features from time and/
or frequency models

(
fast Fourier transform (FFT), (nonlinear) autoregres-

sive (N)ARMA models [10], wavelet
)
, blind processing

(
independent compo-

nent analysis (ICA), blind source separation (BSS) [11]), particle/Kalman
filter [12], kernels and support vector machines (SVM) [25], kernel ICA

)
;

– Decision space, where the classes within the data fusion model (and the
corresponding basins of attraction from the measurement space) are mapped
into the relevant probabilities of the occurrence of an event.

Similarly, authors distinguish between the Data, Information, and Knowledge se-
mantic levels [14] (Figure 1). This simple taxonomy has been very useful in the
diverse applications of data fusion, such as in:- i) transportation, aviation, intel-
ligent car traffic and motorways management; ii) multimedia communications,
audio–visual fusion for teleconferencing; iii) robotics, 3-D vision; iv) wearable
computing, monitoring the disabled and elderly.

2.1 Models of Data Fusion

Data fusion is based on the manipulation of multiple measurements, where classi-
fiers operate on features extracted from the real world measurements; an overview
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Fig. 1. General data fusion concept
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of the ways for combining classifiers can be found in [15]. Authors distinguish
between the two fusion classes:-

i) Data fusion, where the classifier operates on either the raw data or features
extracted directly from the measurements;

ii) Decision fusion, where the decisions from the individual classifiers for dif-
ferent data channels are combined.

The choice depends on the statistical relationship between the data channels,
mutual entropy, or joint Gaussianity [16], and to this end coupling of mathemat-
ical modelling and information processing is under investigation [17]. The main
issues are signal nonlinearity (with associated non–Gaussianity), nonstationary,
intermittent data natures and noises. This makes it very difficult to perform
estimation by standard methods since no assumption on the data model and
distribution can be ascertained. In some applications, such as functional Mag-
netic Resonance Imaging (fMRI), there is even no “ground truth”, to rely upon.
Multisensor practical systems therefore aim at providing higher accuracy and
improved robustness against uncertainty and sensor malfunction [18], and also
for the information extracted from different sources to be integrated into a single
signal or quantity.

Signal processing algorithms for “sensor” or “data fusion” can be based
on [19]:-

– Probabilistic models: Bayesian reasoning, evidence theory, robust statistics;
– Least squares: Kalman filtering, regularization, set membership;
– Intelligent fusion: Fuzzy logic, neural networks, genetic algorithms.

One of the first proposed data fusion models was the “waterfall model” (Figure
2), developed for the UK Defence Evaluation Research Agency (DERA) [3].

Sensing
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Decision
Assessment

SituationPattern
Extraction

Feature
Processing

Signal

Fig. 2. The Waterfall model

2.2 Data Fusion and Sufficient Information

We can think of the heterogeneous sensors monitoring a certain process as being
“windows” into the phenomenon under observation. Sensors can either have
their own window, or the windows “overlap” in space or time. This way, the
information obtained can be thought of as “decomposed” or “fragmented” by
the sensors, which is sometimes called sensor fission [7], and is related to so–
called sufficient information (whether the character and number of sensors can
indeed describe the phenomenon). This is analogous to the notion of embedology,
where we wish to model the nonlinear dynamics of a multidimensional process
based on its time delay representation [8]. The information fragments coming
from sensors are exposed to spectral shaping, saturation, and noise; data fusion
aims at retrieving the “interesting” characteristics of the phenomenon.
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3 Architectures and Performance Aspects

Combining multi–sensor data in the data fusion framework has the potential of
faster and cheaper processing and new interfaces, together with reducing over-
all uncertainty (increase in reliability). Such data can be combined in various
ways, for instance by:- i) linear combiner, ii) combination of posteriors (weights,
model significance), iii) product of posteriors (independent information). Based
on the different ways of combining information and different semantic levels, we
differentiate between the following data fusion architectures, shown in Figure 3:-

– Centralised: simple algorithms, but inflexible to sensor changes;
– Hierarchical: collaborative processing, two way communication;
– Decentralised: robust to sensor changes and failures, complex algorithms.

...
SensorSensorSensor

FusionData
Centralised

...

FusionGlobal

Fusion
Local

Sensors

...

Fig. 3. Centralised and hierarchical data fusion

This synergy [20] of information fragments offers some advantages over standard
algorithms, such as:-

– Improved confidence due to complementary and redundant information;
– Robustness and reliability in adverse conditions (smoke, noise, occlusion);
– Increased coverage in space and time; dimensionality of the data space;
– Better discrimination between hypotheses due to more complete information;
– System being operational even if one or several sensors are malfunctioning;
– Possible solution to the vast amount available information.

The paradigm of optimal fusion in this sense is to minimise the probability of
unacceptable error.

Based on the taxonomy presented in Section 2, depending on the stage at
which fusion takes place, data fusion is often categorized as the low– (LLF),
intermediate– (ILF) or high–level (HLF) fusion, where:-

– LLF (data fusion) combines raw data sources to provide better information;
– ILF (feature fusion) combines features that come from heterogeneous or ho-

mogeneous raw data. The aim is to find relevant features amongst vari-
ous features coming from different methods

(
FFT, discrete cosine transform

(DCT), wavelet, delay vector variance (DVV) [9]
)
;

– HLF (decision fusion), combines decisions or confidence levels coming from
several experts (hard and soft fusion).
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In practice, any combination of these three levels can be employed, for instance
[7]: Data in – Data out, Data in – Feature out, Feature in – Feature out, Feature
in – Decision out, Decision in - Decision out.

4 Data Alignment and Fusion of Attributes

Depending on where the fusion process occurs, open literature differentiates
between the temporal, spatial, and transform domain fusion. Notice, however,
that the latter two can be considered as examples of the low– or intermediate–
level fusion. Temporal fusion is different in the sense that it may occur at any
level:- inputs from one sensor taken at different instants are combined.

The information entering a fusion process should be aligned, a difficult prob-
lem for which there is no general supporting theory. Alignment should be applied
to both homogeneous (commensurate) and heterogeneous (non–commensurate)
information, which may require conversion or transformation of observations [13].

The concept of alignment assumes “common language” between the inputs,
for instance:- i) standardisation of measurement units; ii) sensor calibration; or
iii) corrections for different illuminants and shading [21]. Alignment may oper-
ate at any of the three semantic levels: measurements, attributes, and rules, with
possible crossings between levels [21]. For instance, for aligned and associated
sources of information, fusion of attributes concatenates attributes of the same
object, derived from different representations of the object. Fusion of representa-
tions performs meta–operations, it is applicable to any representation, and can
be combined with other types of fusion.

Data fusion also applies to cyberspace, where intrusion detection (ID) sys-
tems fuse data from heterogeneous distributed network sensors to create “sit-
uational awareness” [14], such as the detection of network anomalies and virus
attack. Information of interest are the identity, threat, rate of attack, and target
of intruders [22].

Performance aspects of a fusion system [20] are domain–specific:-

– Detection performance and characteristics (false alarm rate);
– Spatial/temporal resolution and ability to distinguish between signals;
– Spatial and temporal coverage (span or viewfield of a sensor);
– Detection/tracking mode (scanning, tracking, multiple target tracking);
– Measurement accuracy and dimensionality.

5 Case Studies

We next provide three case studies to illustrate the data fusion concept:- the
examples in car navigation, sleep science and multimedia.

Car navigation systems perform three main tasks: positioning, routing
and navigation (guidance). The car position is calculated from several informa-
tion sources including on–board odometers and gyroscopes, the global position-
ing system (GPS) and digital maps. On–board sensors measure acceleration and
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angular rates, for which the short–term precision is high, but the accumulated
errors grow with time, producing a poor long–term position estimate.
On the other hand, the GPS exhibits excellent overall performance, but its accu-
racy is highly sensitive to factors such as “blind” areas (tunnels, garages) and the
number of “visible” satellites. One way to circumvent these sensor limitations
would be to exploit the potential a combination of the short–term accuracy of
on–board sensors and long–term accuracy of the GPS system.
This has been achieved in the Siemens car navigation system [23], where the
fusion of the information from vehicles’ internal sensors and the GPS position
reading provides 80% improved navigation accuracy within the given time inter-
val as compared to the estimate based on the on–board sensors only.

Awareness/fatigue modelling is important in the detection of sleep stages
and also for the detection of microsleep for drowsy drivers. The observed signals
are the electroencephalogram (EEG), electro-oculogram (EOG), and respiratory
signal. There are also several sources of artifacts, such as the eye blink artifact
in EEG. Although it is possible to detect sleep stages or microsleep events us-
ing only one sensor modality (typically EEG), the classification accuracy is not
sufficient to warant real world applications, and the data fusion approach is
one viable solutions which combines the EEG and EOG features. In addition,
in order to achieve high detection and classification rates, the temporal fusion
over the observation windows is even more important than feature selection. For
sleep stage detection, feature fusion can be performed using the DVV method
[9], which gives features related to the signal nonlinearity [24]. Such a fusion
of EEG and EOG features provides ≈ 99% accuracy in training and ≈ 90 %
accuracy on test data. Similarly, the feature fusion of EEG and EOG channels
significantly improves the detection of microsleep [26].

Video assisted speech separation, where the task is to integrate comple-
mentary audio and visual modalities to enhance speech separation. Rather than
using independence criteria suggested in most BSS systems, visual features from
a video signal are used as additional information to optimise separation. The
Bayesian framework can be applied for feature fusion, where the mel–frequency
cepstrum and “active apperance model” provide audio and video features. This
way a performance improvement of several dB can be achieved [27].

6 Conclusions

Data fusion provides a theoretical, computational, and implementational frame-
work for combining data and knowledge from different sources with the aim of
maximising the useful information content. In this way, reliability and discrimi-
nation capability are improved while the amount of required data is minimised.
Through the three overlapping stages: preprocessing, data alignment, and deci-
sion making, the performance of a system is improved. Data fusion spans disci-
plines such as signal detection, pattern recognition, and tracking, with applica-
tions in domains such as military, robotics, medicine, and space research. This
paper sumarises some of the recent developments in data fusion, and gives an
overview of concepts, architectures and potential benefits of using this approach.
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