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Abstract—This study aims at providing signal processing
solutions for the conditioning of multimodal information in
audio-aided smart camera environments. A novel approach is
introduced for processing audio and video within a unified ‘data
fusion via fission’ framework. This is achieved using empirical
mode decomposition (EMD), a fully data-driven algorithm which
facilitates analysis at multiple time-frequency scales. Its adaptive
nature makes it suitable for processing real-world data and
allows, for example, signal conditioning (denoising, illumination
invariant video) and robust feature extraction. Furthermore,
complex extension of the EMD algorithm are used to quantify
shared dynamics between the conditioned modalities facilitating
multimodal fusion. The proposed collaborative approach is used
to model human-human interaction.

Index Terms—communication atmosphere, multimodal analy-
sis, empirical mode decomposition (EMD), data fusion via fission

I. INTRODUCTION

The growing interest in human computer interfaces (inter-

active virtual environments, surveillance) has highlighted the

need for smart environments capable of accurately detecting

and modeling human activity. A key application is the analysis

of human communication in which the goal is to estimate

parameters within the framework of the so-called communica-

tion atmosphere. In this way, any conversation episode can be

defined based on the quality of human interaction and common

understanding between the communicators. The applications

of such technology can be used to monitor real or distance

lectures, and group discussion meetings.

The evaluation of the communication atmosphere is primar-

ily dependent on robust feature extraction from data modalities

(detection of facial expressions and body language in video

or speech in audio). Feature extraction, however, is often

critically sensitive to external “ambient” phenomena such as

noise. Data conditioning is prerequisite in achieving accurate

information segregation and low error rates. This is made

difficult in practice as standard signal processing algorithms,

such as the discrete Fourier transform (DFT) or discrete

cosine transform (DCT), make assumptions of linearity and

stationarity which do not hold for modalities such as video

and audio. A robust framework should therefore use feature

extraction algorithms suitable for real world data.

As illustrated by the multimodal approaches in [1], [2], [3],

fusion of features from both video and audio enables a signif-

icantly more accurate evaluation of the communication atmo-

sphere than can be achieved by the features of one modality

alone. Although a multimodal approach facilitates enhanced

analysis, it introduces new challenges. Features are typically

obtained through the use of carefully selected algorithms that

are suitable only for a specific modality (non-negative matrix

factorization for video and mel-frequency cepstral coefficients

for audio) so that they are not directly compatible. The esti-

mation of synchronised activity between the modality features

is crucial to the evaluation of the communication atmosphere.

In practice, this is achieved using linear approximations of

entropy by calculating feature co-variance matrices [4] so

as to estimate mutual information within the framework of

information theory [5]. Often, however, crucial information is

contained in higher order (nonlinear) signal statistics and linear

approaches used in previous studies are thus not adequate to

fully establish shared feature dynamics [6].

To address these concerns, a unified framework to perform

conditioning, feature extraction and information fusion for

multimodal data in communication events using empirical

mode decomposition (EMD) [7] is proposed. EMD is a fully

data driven algorithm which decomposes data into a set of

oscillations, known as intrinsic mode functions (IMFs). Unlike

Fourier or wavelet methods, EMD makes no prior assumptions

of the data [7] facilitating the analysis of nonstationary and

nonlinear signals [8], [9]. The IMFs are narrow band by design

facilitating highly localised analysis in time and frequency.

Thus the algorithm is suitable for the considered modalities

as features (speech, noise, texture, incident illumination) cor-

respond to specific variations in temporal/spatial frequencies.

Furthermore it is shown how recent complex extensions of

the algorithm [10], [11], which enables an IMF by IMF

comparison for a pair of sources, can be used to assess shared

dynamics between the modalities in time and frequency to

establish the quality of communication. Simulations on audio

and video for a communication event support the analysis.



II. COMMUNICATION ATMOSPHERE

The communication atmosphere refers to a recently devel-

oped framework that interprets multimodal features to model

communication situations [1], [2], [3], [12]. Specifically, this

paper considers face-to-face conversation scenarios between

two participants. Two sensory modalities, video and audio,

are obtained for a given communication episode and condi-

tioning/feature extraction is used to obtain communication-

related features. In the case of video, features are extracted in

regions of interest (ROIs) such as the face from the smoothed

difference between consecutive frames (visual flow) and, in

the case of audio, speech features are obtained.

Synchronised activity between the modality features can

be evaluated to identify the roles of the communication

members as either a primary information sender (speaker) or

as a receiver (listener). Furthermore, shared modality activ-

ity can also be used to evaluate the quality of information

flow between the communicators, known as communication

efficiency [13], [14]. Communication is defined as efficient

when the intended message sent by the sender is transmitted

and received by the receiver. It reflects the ability of the

participants to interact and is a crucial qualitative measure

of a communication episode. The framework is illustrated in

Fig. 1.

III. EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition [7] is a technique which

adaptively decomposes a given signal into a finite set of

AM/FM modulated components. These components, called

“intrinsic mode functions” (IMFs), represent the oscillation

modes embedded in the data. The IMFs act as a naturally

derived set of basis functions for the signal; EMD can thus

be seen as an exploratory data analysis technique. In fact,

EMD and the Hilbert-Huang transform comprise the so-called

“Hilbert spectral analysis” [7]; a unique spectral analysis

technique employing the concept of instantaneous frequency.

In general, the EMD aims at representing an arbitrary signal

via a number of IMFs and the residual. More precisely, for a

real-valued signal x(t), the EMD performs the mapping

x(t) =
M∑
i=1

ci(t) + r(t) (1)

where the ci(t), i = 1, . . . , M denote the set of IMFs and

r(t) is the trend within the data (also referred to as the last

IMF or residual). By design, an IMF is a function which

is characterized by the following two properties: the upper

and lower envelope are symmetric; and the number of zero-

crossings and the number of extrema are exactly equal or they

differ at most by one.

The first IMF is obtained as follows [7].

1) Let x̃(t) = x(t);
2) Identify all local maxima and minima of x̃(t);
3) Find an “envelope,” emin(t) (resp. emax(t)) that inter-

polates all local minima (resp. maxima);

4) Extract the “detail,” d(t) = x̃(t) − (1/2)(emin(t) +
emax(t));

5) Let x̃(t) = d(t) and go to step 2); repeat until d(t)
becomes an IMF.

Once the first IMF is obtained, the procedure is applied

iteratively to the residual r(t) = x(t) − d(t) to obtain all the

IMFs. Following the sifting process, the Hilbert transform can

be applied to each IMF separately. This way, it is possible to

generate analytic signals, having an IMF as the real part and

its Hilbert transform as the imaginary part, that is x + jH(x)
where H is the Hilbert transform operator. Equation (1) can

therefore be augmented to its analytic form given by

X(t) =
M∑
i=1

ai(t) · ejθi(t) (2)

where the trend r(t) is purposely omitted, due to its over-

whelming power and lack of oscillatory behavior. Observe

from (2), that now the time dependent amplitude ai(t) can

be extracted directly and that we can also make use of the

phase function θi(t). Furthermore, the quantity fi(t) = dθi

dt
represents the instantaneous frequency [15]; this way by plot-

ting the amplitude ai(t) versus time t and frequency fi(t), we
obtain a time-frequency-amplitude representation of the entire

signal called the Hilbert spectrum. It is this combination of

the concept of instantaneous frequency and EMD that makes

the framework so powerful as a signal decomposition tool.

For convenience, we refer to a matrix which represents the

time-frequency-amplitude activity of a set of IMFs in matrix

form as a Hilbert matrix, H[NF×NT ](i, j), where the matrix

dimension is NF × NT where NF and NT represent the

resolution of the matrix in frequency and time respectively.

In other words, matrix entry H[NF×NT ](i, j) denotes the

summation of all IMF amplitudes of frequency i at time j.

A. Complex Extensions of EMD

Several extensions of EMD to the field of complex num-

bers have been recently developed. These include “Complex

Empirical Mode Decomposition” [16], “Rotation Invariant

Empirical Mode Decomposition (RIEMD)” [10] and “Bivari-

ate Empirical Mode Decomposition (BEMD)” [11]. How-

ever, only RIEMD and BEMD operate directly in C making

them suitable in practical applications [17]. In particular,

BEMD facilitates enhanced local mean estimation compared

to RIEMD [17] and was used in analysis.

In order to obtain a set of M complex/bivariate IMFs, γi(t),
i = 1, . . . , M , from a complex signal z(t) using bivariate

EMD, the following procedure is adopted [11]:

1) Let z̃(t) = z(t);
2) To obtain K signal projections, given by {pθk

}K
k=1,

project the complex signal z̃(t), by using a unit complex

number e−θk , in the direction of θk, as

pθk
= ℜ(

e−θk z̃(t)
)
, k = 1, . . . , K (3)

where ℜ(·) denotes the real part of a complex number,

and θk = 2kπ/K;
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Fig. 1. Framework for evaluation of the communication atmosphere.

3) Find the locations {tkj }K
k=1 corresponding to the maxima

of {pθk
}K

k=1;

4) Interpolate (using spline interpolation) between the max-

ima points [tkj , z̃(tkj )], to obtain the envelope curves

{eθk
}K

k=1;

5) Obtain the mean of all the envelope curves, m(t), and
subtract from the input signal, that is, d(t) = z̃(t)−m(t).
Let z̃(t) = d(t) and go to step 2); repeat until d(t)
becomes an IMF.

Similarly to real-valued EMD, once the first IMF is obtained,

γ1(t), the procedure is applied iteratively to the residual r(t) =
z(t)−d(t) to obtain all the IMFs. For more detail, refer to [11].

B. Trivariate EMD

The recently introduced Trivariate EMD (TEMD) [18] fur-

ther extends the theory of EMD to consider trivariate and

three dimensional (3D) signals. As with bivariate EMD [11],

a major challenge is local mean estimation of the input data.

In the case of TEMD, local mean estimation is achieved

by projecting the data in 3D space using suitable direction

vectors governed by a unit sphere. The extrema of these signal

projections can then be interpolated using a component-wise

spline interpolation, yielding 3D envelope curves which can

be conveniently represented by quaternion algebra. Quaternion

algebra is a well established mathematical framework for

modeling 3D rotations and is used extensively in adaptive

filtering and robotics. For more detail, refer to [18].

IV. EMD AND INFORMATION FUSION

Data and information fusion is the approach whereby data

from multiple sensors or components is combined to achieve

improved accuracies and more specific inferences that could

not be achieved by the use of only a single sensor [19].

Its principles have been employed in a number of research

fields including information theory, signal processing and

computing [20], [19], [21], [22]; an overview can be found

in [23].

Recent work [6] demonstrates that the decomposition nature

of EMD provides a unifying framework for “information

fusion via fission,” where fission is the phenomenon by which

observed information is decomposed into a set its components

(see Fig. 2). More specifically, the stages of Signal Process-

ing, Feature Extraction and Situation Assessment from the

waterfall model, the well established fusion model, can all

be achieved by EMD.

Restoration

M

w 1

OutputInput

Decomposition

w

Fig. 2. Spatio-temporal fusion

To illustrate the decomposition and fusion properties of

EMD, consider the original noisy video frame given in Fig. 3

(a). Decomposition of the video frame is achieved by applying

the algorithm to an image vector constructed by concatenating

either the frame rows or its columns. The IMFs for the vector

can be converted into the 2D form of the original frame,

producing a set of M scale images. The summation of the first

5 IMFs is given in Fig. 3 (b) and the remaining IMFs is given

in Fig. 3 (c). Note how each of the scales represents different

properties of the image. The higher index scales contain high

frequency detail such as noise and the image edges, while

slowly oscillating effects such as illumination are contained

within the low index scales.

V. ILLUMINATION INVARIANCE USING EMD

Before introducing the general feature extraction EMD

framework for audio and video, a conditioning procedure

unique to video is described, that of illumination invariance.

Light on a surface produces complex artifacts which cause

local variations in illumination intensity and colour, thus

making it difficult to determine the original ‘surface image’



(a) Original video frame

(b) High frequency detail contained in
∑5

i=1 ci

(c) Low frequency detail contained in
∑19

i=6 ci

Fig. 3. Illustration of the sifting process via EMD for a frame of video (a).
Note how each of the IMFs c1 - c19 represents the frequency scales within
the image. The higher index IMFs contain high frequency detail such as noise
and the image edges while slowly oscillating effects such as illumination are
contained within the low index IMFs.

and reducing the performance accuracy for a number of rudi-

mentary vision operations that can accurately estimate image

features. Once the regions of interest (the faces of the subjects)

have been detected, it is proposed to use a novel EMD-based

methodology to remove the effects of illumination. EMD is

a natural choice as illumination is likely to be captured in

one or more low frequency scales. Indeed, it was illustrated

in [24] that the algorithm can be used as a preprocessing step

to achieve significant normalization of facial images subject to

illumination variation. Although effective, the approach only

considers grayscale images.

In the computer vision community, a significant challenge is

shadow removal of colour images which requires simultaneous

analysis across all colour channels. However, as a consequence

of its data driven nature, standard EMD is not directly suitable

for the task as it suffers from the problem of uniqueness.

That is, there is no guarantee that decompositions of different

sources are matched either in number or their properties

(frequency). This makes it difficult to compare decompositions

from multiple sources or in the case of shadow removal -

multiple colour channels. It is thus proposed to use trivariate

EMD (TEMD) [18], a recently developed extension of EMD

for trivariate data.

Trivariate EMD facilitates the simultaneous decomposition

of three dimensional signals into a single set of three dimen-

sional IMFs (κi, for i = 1 . . .M ) using quaternion algebra.

Thus it is proposed to perform the following operation

κ = TEMD(r, g, b) (4)

and obtain a set of M trivariate IMFs for a trivariate signal

constructed from the red (r), green (g) and blue (b) components

of an image. Separating the IMF components gives three sets

of real valued IMFs which are matched in frequency and

number [18], thus facilitating a robust comparison and analysis

between the colour channels [18].

Incident shadow will dominate one or more of the low

frequency IMF components, the effects of which can be

reduced by replacing the IMF (or residue) with a uniform

function. The analysis was performed on the original images

shown in Fig. 4.

VI. FEATURE EXTRACTION

It is proposed to use EMD to extract features from both

video and audio. The differences in dimensionality can be

addressed by applying Hilbert analysis, so that a 1×T feature

vector is obtained for each modality where t = 1, . . . , T is the

total number of video frames.

In the case of video, the ROI for each differential frame

d[h×w](t) (see Appendix) for the #k communication member

and frame #t is decomposed using EMD and a Hilbert matrix,

Hv[NF×NT ](i, j, t, k), is obtained. The feature vector is thus

given by

Vk(t) =
α2∑

i=α1

∑
j

Hv[NF×NT ](i, j, t, k) (5)
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Fig. 4. Shadow removal for colour images using trivariate EMD.

where α1 and α2 are empirically determined parameters which

define the instantaneous frequency range used to construct the

feature vector. For example, high frequency components can

contain noise while very low frequency components contain

little information relevant to facial features.

For the case of audio, the raw audio streams for each

communication member are decomposed using EMD and

the Hilbert matrices, Ha[NF×NT ](i, j, k), are determined. The

audio feature vector for communication member #k is thus

given by

Ak(t) =
ǫ2∑

i=ǫ1

ρt∑
j=ρ(t−1)+1

Ha[NF×NT ](i, j, k) (6)

where, as before, ǫ1 and ǫ2 are spectrum parameters (in this

instance determined by the spectrum range of speech) and

ρ = fs

fps
, that is the ratio between the sampling frequency of

the audio, fs, and the frames per second of the video, fps.

The feature vectors for the different modalities are shown in

Fig. 5. Note the alignment of features for relevant modalities.

VII. EVALUATION OF THE COMMUNICATION

ATMOSPHERE

Once the video and audio features have been determined,

it is proposed to use EMD to evaluate the level of shared

information between each modality so as to evaluate the com-

munication atmosphere. Mutual information can be defined as

shared dynamics across frequency and time, information which

is defined locally by the instantaneous amplitudes of the IMF

components.

However, as discussed previously, standard EMD is not

appropriate in scenarios where it is desirable to compare IMFs

from multiple sources. Decompositions, even for signals of

similar statistics, are often different in number and proper-

ties [17]. Instead it is proposed to use complex extensions of

EMD, for example bivariate EMD, which decompose pairs of
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Fig. 5. The feature vectors for the different modalities.

signals simultaneously as a single complex entity. This guar-

antees that the IMFs are matched in number and properties,

thus finding a set of common scales which are unique to the

sources being analysed and facilitating fusion [17].

Shared dynamics between modalities V1 and A1 are eval-

uated as follows. Firstly, a complex entity is constructed

from the feature modalities and decomposed using bivariate

EMD [11]
M∑
i

γi = (V1 + jA1) (7)

The instantaneous amplitudes for the i = 1, . . . , M IMFs

are denoted by ℜ{ai} and ℑ{ai} for the real and imaginary

components respectively. Synchronised activity between each

IMF component can be evaluated as

ρi(t) = ℜ{ai(t)}′ ×ℑ{ai(t)}′ (8)

where ℜ{ai(t)}′ and ℑ{ai(t)}′ denote, respectively, ℜ{ai(t)}
and ℑ{ai(t)} normalised between 0 and 1. Similar to the

manner in which the Hilbert transform matrix is constructed,

the ‘time-frequency-synchronised activity’ information can be

represented by a NF ×NT matrix IV1A1[NF×NT ](i, t) where,

as before, NF and NT represent the resolution of the matrix

in frequency and time respectively. 1

The level of synchronised activity can thus be evaluated as

IV1A1(t) =
δ2∑

i=δ1

IV1A1[NF×NT ](i, t) (9)

where δ1 and δ2 are frequency range parameters. In a similar

fashion, the level of synchronised activity for communicator

#2 can be evaluated as

IV2A2(t) =
δ2∑

i=δ1

IV2A2[NF×NT ](i, t) (10)

1For accuracy, low levels of white Gaussian noise was introduced into
each component of the complex vector (V1 + jA1) and the methodology
was averaged over several simulations. A noise assisted decomposition can
facilitate a more natural separation of the scale components. For more detail
we refer to [25].



The level of simultaneous activity in video only can be

estimated as:

IV1V2(t) =
δ2∑

i=δ1

IV1V2[NF×NT ](i, t) (11)

where V1, V2 are the video feature vectors extracted respec-

tively from ROIs of communicator #1 and communicator #2.
Similarly audio activities are evaluated as

IA1A2(t) =
δ2∑

i=δ1

IA1A2[NF×NT ](i, t) (12)

Quantities IA1V1 and IA2V2 evaluate the local synchronicity

between the audio (speech) and video (mostly facial move-

ments) flows. It is expected that the sender should exhibit

higher synchronicity due to the associated higher activity.

Quantity IV1V2 is related to possible crosstalks in the video

modalities. It is useful in detecting possible overlapping in the

activity of communicators that can impair the quality of the

evaluation of communicators’ role. The level of synchronised

activity between the modalities (video and audio) as estimated

by bivariate EMD is plotted for 620 frames in Fig. 6.

Combining these estimates of the dynamics shared between

the respective modalities can give a temporal measure of the

communication efficiency [2], [3]:

C(t) =
(

1− IV1V2(t)IA1A2(t)
2

)
|IA1V1(t)− IA2V2(t)| ,

(13)

The estimated information sender and the communication

efficiency for the first 620 frames are plotted in Fig. 7. Note

that the sender has been estimated accurately (see Fig. 7(a)).

For example, communicator #2 is initially the sender while

communicator #1 becomes the sender at approximately frame

#100. There is no clear information sender after approxi-

mately frame #400. This is caused by both communicators

attempting to communicate at once for a duration of approx-

imately 200 frames. This ineffective communication is also

reflected by the low communication efficiency for the same

time period (see Fig. 7(b)).

VIII. CONCLUSION

A novel unified framework for the evaluation of the com-

munication atmosphere using empirical mode decomposition

(EMD) has been presented. EMD determines the natural

oscillations inherent to the data, making it ideal for estab-

lishing temporal and spatial frequency scales in both audio

and video. Its data driven nature is suitable for nonlinear

and nonstationaty signals and facilitates robust conditioning,

feature extraction and illumination invariance (video). Within

the proposed framework, complex extensions of the algorithm

are used to establish the level of shared dynamics between

the modality features and establish the communication effi-

ciency, which reflects the quality of interaction between the

communicators for a communication episode.

APPENDIX

A. Differential Flow

The visual flow of video is established as follows. Consider

two conditioned consecutive video frames f[h×w](t − 1) and

f[h×w](t), where h×w denotes pixel dimension. The temporal

gradient G, that is, a smoothed difference between the images

convolved with a two-dimensional Gaussian filter g with

adjusted standard deviation σ, can be evaluated at pixel (n, m)
for time t as:

G[h×w](t, n, m) =∣∣∣∑x
i=1

∑y
j=1 d[h×w](t, n− i, m− j)g[x×y](σ, i, j)

∣∣∣ (14)

Variable d[h×w](t) represents the difference between the two

consecutive frames, and is given by

d[h×w](t) = f[h×w](t)− f[h×w](t− 1). (15)
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