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linear signal is one which cannot be generat

(nonlinearity in the sense of non-Gaussianity

a signal is generated by time-variable dynamics, i
a b s t r a c t

The local mean decomposition (LMD) has been recently developed for the analysis of time series which

have nonlinearity and nonstationarity. The smoothed local mean of the LMD surpasses the cubic spline

method used by the empirical mode decomposition (EMD) to extract amplitude and frequency modulated

components. To process complex-valued data, we propose complex LMD, a natural and generic extension

frequency modulated rotation and envelope components. Simulations on both artificial and real-world

complex-valued signals support the analysis.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Standard signal analysis techniques, such as Fourier analysis, are
based on assumptions of linearity and stationarity of the signal. Since
most real-world signals contain nonlinearity1 and nonstationarity,2

time–frequency analysis techniques such as the short time Fourier
transform (STFT) and the wavelet transform (WT) have attracted
considerable attention. However, their application is often limited
since they are based on a projection onto a predefined set of basis
functions [3]. Recent research on signal decomposition has been
based on fully data-driven techniques, exploratory data analysis
(EDA) [4]. One such technique is empirical mode decomposition
(EMD), which is a fully adaptive approach that decomposes the
signal into a finite set of AM/FM components [5]. EMD makes no
prior assumptions on the data and, as such, it is ideal for the analysis
of nonlinear and nonstationary data. Due to the monocomponent
nature of its decomposition, the Hilbert transform can be applied to
obtain an analytic representation for the signal, from which the
instantaneous frequency (IF) and instantaneous amplitude (IA) can
be determined. EMD has found numerous applications, including
ll rights reserved.

(C. Park),

ed by a linear time-invariant

[1,2]).

t is said to be nonstationary [1].
radar technology [6] and biomedical engineering [7–9]. However,
the use of cubic splines and the Hilbert transform in the EMD process
induces a loss of amplitude and frequency information [10], as
illustrated by an often erratic or negative IF. To this end, the local
mean decomposition (LMD) was recently introduced [10]. LMD uses
smoothed local means to determine a more credible and reliable IF
directly from the oscillations within the signal without the Hilbert
transform. Its application has been originally illustrated on electro-
encephalogram (EEG) [10], and in [11,12] it was shown how LMD
facilitated enhanced analysis compared to EMD in rub-impact fault
diagnosis.

Real-valued data sources, for which both amplitude and phase
information are significant, can be conveniently represented by
complex algebra, for instance, in medical devices (MRI and Ultra-
sonography), telecommunication and sonar. In addition, the exten-
sion to the complex domain makes it straightforward to combine
real-valued data from different sources, which is needed in multi-
channel data processing [13]. The original LMD algorithm was
introduced for real-valued data, and this paper proposes its generic
extension to complex and bivariate signals.
2. Local mean decomposition and complex local mean
decomposition

The real-valued LMD algorithm is described in Table. 1. The
main principle of LMD is decomposing a given signal into pairs of
frequency modulated signals and envelope components known as
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Table 1
Local mean decomposition.

1. From the original signal x(t), determine the mean value, mi,k, by calculating the mean of the successive maximum and minimum nk,c and nk,c + 1, where c is the index of the

extrema. ‘i’ and ‘k’ denote the order of PF and the iteration number in a process of PF. The local magnitude, ai,k is determined by the difference between the successive

extrema:

mi,k,c ¼
nk,cþnk,cþ1

2
, ai,k,c ¼

jnk,c�nk,cþ1j

2
2. Interpolatestraight lines of local mean and local magnitude values between successive extrema, mi,k(t) and ai,k(t).

3. Smooth the interpolated local mean and local magnitude using moving average filter, ~mi,kðtÞ and ~ai,kðtÞ.

4. Subtract the smoothed mean signal from the original signal, x(t):

hi,kðtÞ ¼ xðtÞ� ~mi,kðtÞ

5. Get the frequency modulated signal, si,k(t), by dividing hi,k(t) by ~ai,kðtÞ:

si,kðtÞ ¼
hi,kðtÞ
~ai,kðtÞ

6. Check whether si,k(t) is a normalised frequency-modulated signal ( ~ai,kðtÞ is close to 1), then go to step 9.

7. If not, multiply ~ai,kðtÞ by ~ai,k�1ðtÞ and go back to the first step to repeat the same procedure for si,k.

8. Envelope function, ~aiðtÞ, can be derived by multiplying all ~ai,kðtÞ until ~ai,kðtÞ equals one:

~aiðtÞ ¼ ~ai,1ðtÞ � ~ai,2ðtÞ � ~ai,3ðtÞ � � � � � ~ai,lðtÞ ¼
Yl

q ¼ 1

~ai,qðtÞ

(l: maximum iteration number)

9. Using the envelope function, ~aiðtÞ, and the final frequency modulated signal, si,l(t), derive PF by their multiplication PF i ¼ ~aiðtÞ � si,lðtÞ

10. Subtract PFi(t) from x(t)

uiðtÞ ¼ xðtÞ�PF i

Then the smoothed data, ui, is treated as new input, xðtÞ, and the procedure is repeated from steps 1 to 9, until ui(t) becomes a monotonic function

11. From the frequency modulated signal, an instantaneous phase can be calculated:

fiðtÞ ¼ arccosðsi,lðtÞÞ

12. The phase data unwrapped and its differentiation defines the IF:

wiðtÞ ¼
dfi

dt
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Fig. 1. Neuronal spike stream. The spike signal is generated with 10 kHz sampling

frequency for a duration of 1 s. This neuronal spike signal has nonlinearity, and has

substantial and abrupt changes of frequency at the locations of spikes.
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local magnitude functions. Firstly, the local mean of the signal is
obtained by interpolating mean values of successive extrema using
piecewise constant interpolation and applying a moving average
filter. It is this process of determining the local mean function that
makes LMD different from EMD [10]. In a similar fashion, the local
magnitude function is determined by interpolating the absolute
value of differences between successive extrema and smoothing
using a moving average filter. The local mean is subtracted from the
original signal and then the result is divided by the local magnitude
function in order to obtain the frequency modulated signal. This
process is repeated on the frequency modulated signal until its
envelope is uniform. Multiplying all envelope estimates during this
process gives the local magnitude function. The product of this local
magnitude signal and the frequency modulated signal determines
the first product function (PF). The PF is subtracted from the
original data, and the same process is repeated so as to decompose
the rest of the signal into a set of PFs and a monotonic trend.

The local magnitude function represents the IA, and the IF can be
directly derived from the frequency modulated signal without the
need for applying the Hilbert transform and deriving an analytic
representation. The IA and IF calculated using LMD are more stable
and precise than those obtained by EMD because LMD uses
smoothed local means and local magnitudes which facilitate a
more natural decomposition than that using the cubic spline
approach of EMD [10]. In this way, it has been previously illustrated
[10] how LMD gives a more localised time–frequency estimate
for EEG.

To illustrate the advantages of standard real-valued LMD it was
applied to a neuronal spike stream used in neuronal spike modeling
for brain computer interface (BCI), shown in Fig. 1. This time series
was generated by the tool described in [14]. Fig. 2(a) shows the
time–frequency representation (TFR) composed of the LMD PFs,
whereas Fig. 2(b) shows the TFR generated by EMD. As seen in the
figures, both decomposition algorithms detect the considerable
change in frequency surrounding the spikes. However, the LMD
spectrum is much sharper and concentrated in time compared to
the EMD spectrum. The cubic spline approach of EMD as well as an
IF that is derived from a time-varying envelope can result in the loss
of frequency and amplitude information of the spikes.

In order to extend the original LMD to the complex domain, the
basic steps of LMD should operate directly in C. However, a
significant obstacle is that there is no ordering of numbers in C,
which makes it difficult to define local extrema. In the case of EMD,
it has been extended to the C domain in three different ways,
‘rotation invariant empirical mode decomposition (RIEMD)’ [15],
‘complex empirical mode decomposition (CEMD)’ [16] and ‘bivari-
ate empirical mode decomposition (BEMD)’ [17]. Among these, the
framework of RIEMD and BEMD was exploited to develop the
complex version of LMD. In the three dimensional (3D) plane of
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Fig. 2. Comparison of LMD and EMD in the analysis of the neuronal spike signals

shown in Fig. 1. LMD result contains sharper and more concentrated frequency

components around the spikes compared to EMD. (a) Time–frequency representa-

tion using LMD. (b) Time–frequency representation using EMD.
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Fig. 3. Complex signal composed of sine and cosine signals. The frequencies of the

first two complex signals are 1 kHz and the frequencies of the other two tubes are

3 kHz. In addition, all of the complex signals include a 7 Hz low frequency

component. The grey line illustrates the local mean of the complex signal.
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Fig. 3, the extrema of the complex data are found based on the
intersect of the 3D tube in the top, bottom, left and right directions.
The local mean and local magnitude of the complex signal can be
extracted from the extrema on the four sides. To achieve this, the
complex signal is projected into two directions, 0 and p=2, so that
the projected result becomes a two-dimensional signal.3 Projec-
tions of a complex signal z¼x+ jy in the directions 0 and p=2 are
given by

Reðejð�0Þðxþ jyÞÞ ¼ Reððcos0þ jsin0Þðxþ jyÞÞ ¼ Reðxþ jyÞ ¼ x

Reðejð�p=2Þðxþ jyÞÞ ¼ Re cos �
p
2

� �
þ jsin �

p
2

� �� �
ðxþ jyÞ

� �

¼ Reð�jðxþ jyÞÞ ¼ y
3 Since calculating the local mean and the local magnitude for complex LMD is

based on projections in a 3D plane, increasing the number of projection directions,

for example p=4 and 3p=4, would provide a more accurate estimate.
For each projection of the complex signal, the smoothed local mean
and local magnitude of x and y are then calculated in the same way
as the original LMD. The smoothed local means for each projection
are multiplied by ej0 and ejp=2 according to the direction in which
they are obtained and averaged, to construct a single complex local
mean value. With the so-obtained complex-valued mean in C, the
rest of the procedure is the same as the original LMD. The complex
LMD algorithm is summarized in Table 2.
3. Simulations and discussion

In order to illustrate the operation of the complex LMD, several
simple rotational signals were used, which were made by con-
catenating sinusoids with different frequencies. Fig. 3 shows four
different complex signals created using

f1 ¼ 1 kHz, f2 ¼ 3 kHz, f3 ¼ 7 Hz

T1ðtÞ ¼ 3� ðcosð2pf1tÞþ jsinð2pf1tÞþcosð2pf3tÞÞ

T2ðtÞ ¼ cosð2pf1tÞþ jsinð2pf1tÞþcosð2pf3tÞ

T3ðtÞ ¼ 5� ðcosð2pf2tÞþ jsinð2pf2tÞþcosð2pf3tÞÞ

T4ðtÞ ¼ cosð2pf2tÞþ jsinð2pf2tÞþcosð2pf3tÞ

The thick gray line in the middle of the complex signals represents
the smoothed mean value calculated during the process of envel-
ope estimation, and follows closely the actual mean. Fig. 4 shows
the result of applying the complex LMD to the signal shown in
Fig. 3. Fig. 4(a) shows the frequency modulated rotation of the first
PF and Fig. 4(b) shows its local magnitude function. It can be seen
that the amplitude of the envelope in the frequency modulated
signal is approximately unity and it contains slow rotations and fast
rotations reflecting the rotations of the original data. The envelope
signal in Fig. 4(b) contains the same amplitude as Fig. 3. All PFs
derived by complex LMD are shown in Fig. 5. Before this simulation,
only two or three PFs were anticipated because the original signal
was made by simple sinusoidal signals. However, due to the
discontinuities in the complex data, high frequency components
were introduced, and LMD produced nine PFs and a redundant
function. The first PF represented the two high frequency
rotations, 1 and 3 kHz, whereas the last PF, PF9, contained the
low frequency component, that was the 7 Hz sine signal. This
problem could be alleviated by increasing the number of projection
directions used to estimate the local mean.



Table 2
Complex local mean decomposition.

1. Project the complex signal z(t) on direction 0. (t:time)

p0ðtÞ ¼ Reðe�j0 � zðtÞÞ

2. Find the extrema of p0(t). With the extrema, calculate the smoothed mean, ~m0ði,kÞðtÞ, and local magnitude, ~a0ði,kÞðtÞ, like original LMD (Table 1).

(i: number of PF, k: iteration number)

3. Go back to the first process and project the complex signal z(t) on direction p=2.

pp=2ðtÞ ¼ Reðe�jp=2 � zðtÞÞ

4. Calculate the smoothed mean, ~m ðp=2Þði,kÞðtÞ, and local magnitude, ~a ðp=2Þði,kÞðtÞ.

5. Multiply the smoothed means by ej0 and ejp=2 according to their direction:

mc0ði,kÞðtÞ ¼ ej0 � ~m0ði,kÞðtÞ, mcðp=2Þði,kÞðtÞ ¼ ejp=2 � ~m ðp=2Þði,kÞðtÞ

6. Compute the complex-valued mean using the smoothed means, mc0(i,k) and mcðp=2Þði,kÞ .

Mi,kðtÞ ¼mc0ði,kÞðtÞþmcðp=2Þði,kÞðtÞ

7. Subtract the mean, Mi,k, from z(t):

Hi,kðtÞ ¼ zðtÞ�Mi,kðtÞ

8. Calculate the frequency modulated rotation, s0(i,k)(t) and sðp=2Þði,kÞðtÞ, using the local magnitudes:

s0ði,kÞðtÞ ¼
Reðe�j0 � Hi,kðtÞÞ

~a0ði,kÞðtÞ
, sðp=2Þði,kÞðtÞ ¼

Reðe�jp=2 � Hi,kðtÞÞ
~a ðp=2Þði,kÞðtÞ

9. Check whether ~a0ði,kÞðtÞ and ~a ðp=2Þði,kÞðtÞ are equal to 1

10. If one of them is not, multiply ~a0ði,kÞðtÞ and ~a ðp=2Þði,kÞðtÞ by ~a0ði,k�1ÞðtÞ and ~ap=2ði,k�1ÞðtÞ and go to the first step:

a0ðiÞðtÞ ¼ ~a0ði,1ÞðtÞ � � � ~a0ði,2ÞðtÞ � ~a0ði,3ÞðtÞ � � � � � ~a0ði,lÞðtÞ ¼
Yl

q ¼ 1

~a0ði,qÞðtÞ

ap=2ðiÞðtÞ ¼ ~a ðp=2Þði,1ÞðtÞ � ~a ðp=2Þði,2ÞðtÞ � ~a ðp=2Þði,3ÞðtÞ � � � � � ~a ðp=2Þði,lÞðtÞ ¼
Yl

q ¼ 1

~a ðp=2Þði,qÞðtÞ

(l: maximum iteration number until ~a0ði,kÞðtÞ and ~a ðp=2Þði,kÞðtÞ become equal to 1)

11. Derive the complex PF:

cPF iðtÞ ¼ a0ðiÞðtÞ � s0ði,lÞðtÞ � e
j0þaðp=2ÞðiÞðtÞ � sðp=2Þði,lÞðtÞ � e

jp=2

12. Subtract cPFi(t) from z(t), and then go to step 1 with the remain.
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Fig. 4. A PF by complex LMD consists of a frequency modulated rotation and local magnitude function. (a) The frequency modulated rotation produced by complex LMD. (b)

The envelope signal for the complex signal.
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The performance of complex LMD and BEMD are compared in
the next simulation, following observations made by [12] for the
real-valued LMD. A complex signal was generated by combining
two different Duffing wave signals with additional trend compo-
nents, s1(t) and s2(t), given by

s1ðtÞ ¼ e�t=256cos
p

64

t2

512
þ32

� ��
þ0:3sin

p
32

t2

512
þ32

� �� ��
þ0:06e2t=1024

s2ðtÞ ¼ e�t=512cos
p

64

t2

512
þ32

� ��
þ0:3sin

p
32

t2

512
þ32

� �� �
þ
p
8

�
þ0:03e2t=1024
Note that a phase difference ofp=8 exists between the Duffing wave
signals contained in s1(t) and s2(t) each has an IF given by

f ðtÞ ¼
juðtÞfs

2p ¼
t

32768
1þ0:6cos

p
32

t2

512
þ32

� �� �� �

When the complex-valued signal, s1(t)+js2(t) (shown in Fig. 6(a)), is
decomposed using complex LMD and BEMD, the pure Duffing waves
without trend components are extracted in the real and imaginary
parts of the first PF and the first IMF, which are shown in Fig. 6(b) and
(c). The IF estimations calculated from the first PF and the first IMF
are compared with the true IF for the real and imaginary parts in
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Fig. 5. PFs of the complex data in Fig. 3. Note that PF1 has 1 and 3 kHz rotations contained in the original data and PF9 contains the 7 Hz low frequency component.
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Figs. 7(a) and (c) respectively. Note the IFs of complex LMD are closer
to the true IF and the errors are smaller than those of BEMD for both
the real and imaginary parts.

For the last experiment, Fig. 8(a) shows two spiking neuron time
series—the first spike is the same signal as that shown in Fig. 1 and
the other is also generated by the tool described in [14]. The
sampling frequency was 10 kHz and the duration was 1 s. With the
two real-valued time series (x1(t) and x2(t)), a complex signal was
constructed as z(t)¼x1(t)+ jx2(t) (see Fig. 8(b)). The complex signal
z(t) was decomposed into complex PFs by complex LMD, and the
real and imaginary parts of the PFs were separated from the results,
as shown in Fig. 9. Figs. 9(a) and (b) show respectively the real and
imaginary parts of the PFs. Note that the real parts of PFs
corresponded to x1(t), the real part of z(t), and the imaginary parts
of PFs were related to x2(t), the imaginary part of z(t).

The component-wise TFRs were calculated for z(t) in order to
illustrate the advantages of complex LMD over BEMD. Figs. 10 and
11 show the TFR comparison between the complex LMD and the
BEMD for the real and imaginary parts. The time–frequency
characteristics of the BEMD approach (Figs. 10(b) and 11(b)) were
less concentrated around the spikes than those of the complex LMD
approach (Figs. 10(a) and 11(a)). In BEMD, the cubic splines were
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used, which caused a loss of amplitude and frequency information.
The complex LMD provided a more robust estimate of IF owing to
the smoothed local mean functions.

Future extension will include the development of a multivariate
version of LMD following recent multivariate extensions of empiri-
cal mode decomposition [18], recently developed by extending
bivariate and trivariate EMD [19].
4. Conclusions

We have introduced the complex local mean decomposition
(LMD) by extending the original real-valued LMD algorithm to the
complex domain. The proposed complex LMD approach is a natural
and generic extension of the real-valued LMD. This way, the data
are analyzed based on smoothed local means and local magnitudes
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Fig. 8. 1D and 2D representations of an artificial complex signal composed of two neuronal spike signals. (a) Two neuronal spike signals. (b) Complex-valued representation.

(c) PF1 and IMF1 in imaginary part.
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Fig. 9. The complex PFs of spikes, z(t)¼x1(t)+ jx2(t), by complex LMD. (a) PFs corresponding to the real part of z(t). (b) PFs corresponding to the imaginary part of z(t).
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rather than the cubic spline approach of bivariate EMD. Another
advantage of complex LMD is that the IF from the frequency
modulated rotation can be extracted directly without a Hilbert
transformation, which can make the IF erratic [10]. Thus, the LMD
has the potential to extract more accurate information about
amplitude and frequency from data than the EMD approach.
Simulations on neuronal spike trains illustrate how the proposed
LMD extension retains the advantages of the original real-valued
algorithm in the complex domain, facilitating highly localised
time–frequency analysis.
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Fig. 10. Comparison of the time–frequency representations obtained using the real part of complex LMD and BEMD. The frequency components of the complex LMD provide

more localised results than those using BEMD. (a) Time–frequency representation of the real part of complex LMD. (b) Time–frequency representation of the real part of BEMD.
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provide more localised results than those using BEMD. (a) Time–frequency representation of the imaginary part of complex LMD. (b) Time–frequency representation of the
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