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Abstract

In blind extraction of independent sources, the normalised Kurtosis is a normally used cost function for the cases

without the initial prewhitening. The applications of this method are, however, limited to noise-free mixtures, which is not

realistic. We therefore address this issue and propose a new cost function based on the normalised Kurtosis, which makes

this class of algorithms suitable for noisy environments, a typical situation in practice. The proposed method is justified by

a theoretical analysis and the performance of the derived algorithm is demonstrated by simulations.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In blind source separation (BSS), solutions based
on measurements of non-Gaussianity are well
established and understood [1,2]. One important
class of these methods is the kurtosis-based sequen-
tial blind source extraction (BSE) [3–5], which has
been derived for independent sources. Two types of
cost functions exist in this setting. The first one rests
on a direct minimisation/maximisation of the
kurtosis, which is meaningful only if the variance
of the extracted source signal is bounded. This is
usually achieved by first preprocessing the data by
means of prewhitening and then normalising the
demixing vector. The other type of cost function is
e front matter r 2005 Elsevier B.V. All rights reserved
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based on the normalised kurtosis [4], the advantage
of which is that we do not need to perform the
otherwise required prewhitening and weight nor-
malisation operations. This has an advantage that
an online application of this algorithm is easier to
implement and exhibits more reliable performance.

Despite of being theoretically well justified, a
major problem with the existing approaches is that,
a vast majority of the previous research in the area
of BSS has been conducted with the assumption of
no additive noise. However, noisy measurements are
common in practice and this needs to be taken into
account when designing BSS algorithms.

As for the kurtosis-related BSE methods, the case
with noisy measurements has been discussed when
using kurtosis as a cost function [1], where the effect
of Gaussian noise can be removed in the prewhiten-
ing stage. However, solutions for cases with
noise have not been proposed for the normalised
.
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kurtosis-based algorithms, where, since there is no
preprocessing stage, we need to consider the effect
of noise directly within the cost function. In this
paper, we propose a new cost function with a
rigorous proof, which is different from that given in
[4] for the noise-free case. An adaptive algorithm is
derived correspondingly and its successful perfor-
mance is demonstrated by simulations.

2. The proposed cost function

In the BSS/BSE setting, the vector of observed
mixtures x½n� is generally given by

x½n� ¼ As½n� þ v½n�, (1)

where v½n� is an M � 1 noise vector, A is the M � L

mixing matrix and s½n� is the L� 1 zero-mean
source signal vector given by

s½n� ¼ ½s0½n� s1½n� � � � sL�1½n��
T,

x½n� ¼ ½x0½n� x1½n� � � � xM�1½n��
T,

½A�m;l ¼ am;l ; m ¼ 0; . . . ;M � 1; l ¼ 0; . . . ;L� 1.

ð2Þ

In this scenario, we have M sensors and L sources.
We assume that the noise is i.i.d. white Gaussian
and independent of the source signals.

To extract one of the independent sources, we
apply a demixing operation given by vector w to the
mixtures x½n�, which yields the extracted source y½n�,
given by

y½n� ¼ wTx½n� ¼ gTs½n� þ wTv½n�, (3)

where

gT ¼ wTA ¼ ½g0 g1 � � � gL�1� (4)

denotes the global demixing vector, which is related
to the quality of the performance of the BSE
algorithm.

2.1. The normalised kurtosis-based cost function for

noisy mixtures

By definition, the kurtosis of y½n� is given by [1]

ktðyÞ ¼ Efy4g � 3ðEfy2gÞ
2. (5)

Since the kurtosis of a Gaussian random variable is
zero, from (3), the kurtosis ktðyÞ has the same value
as in the case with zero noise and can be expressed as

ktðyÞ ¼
XL�1
l¼0

g4
l ktðslÞ ¼ ~gTKs ~g, (6)
where

~gT ¼ ½g2
0 g2

1 � � � g2
L�1�,

Ks ¼ diagfktðs0Þ ktðs1Þ � � � ktðsL�1Þg. ð7Þ

The normalised kurtosis is obtained when the
kurtosis ktðyÞ is divided by the square of the variance
Efy2g

ðEfy2gÞ
2
¼ ðgTRsgþ wTRvwÞ

2, (8)

where Rs is the diagonal correlation matrix of the
sources and Rv is the correlation matrix of the noise.
As the differences in the diagonal elements of Rs can
be absorbed into the mixing matrix A, we can always
assume Rs ¼ I [2]. Thus, Eq. (8) becomes

ðEfy2gÞ
2
¼ ðgTgþ wTRvwÞ

2. (9)

Note that, due to the noise term wTRvw in ðEfy2gÞ
2,

we cannot use the normalised kurtosis as the cost
function in the same way as in [4]. Instead, we need
to somehow remove the noise term before normal-
ising the kurtosis. To achieve this, we propose a new
cost function.

If the signal we want to extract has a positive
kurtosis, this new cost function we need to maximise
can be expressed as

JðwÞ ¼
ktðyÞ

ðEfy2g � wTRvwÞ
2
¼
~gTKs ~g

ðgTgÞ2
¼ ĝ

T
Ksĝ, (10)

where

ĝ
T
¼

1

g2
0 þ g2

1 þ � � � þ g2
L�1

½g2
0 g2

1 � � � g2
L�1�. (11)

Otherwise, if the kurtosis of the signal we want to
extract is negative, we can simply change the sign of
JðwÞ, which will be absorbed eventually into the
kurtosis matrix Ks. In this case, the new cost
function JðwÞ becomes ĝ

T
ð�KsÞĝ. In the modified

kurtosis matrix K̂s ¼ �Ks, the diagonal element
corresponding to the interesting signal remains
positive. Therefore, without loss of generality, in
the sequel we shall only consider the case with the
positive kurtosis.

2.2. The optimisation problem for BSE of noisy

mixtures

Suppose the source signal with the largest
kurtosis is the k-th source signal sk½n�. Observe that
from (11), we have

kĝk22 ¼ ĝ
T
ĝp1, (12)
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where kĝk22 ¼ 1 only if precisely one of the gl , l ¼

0; . . . ;L� 1 is nonzero and the remaining ones are
zero.

Before we consider the optimisation problem of
our BSE, we first consider the following general
maximisation problem with respect to a vector ḡ for
a fixed positive value of cp1

max
ḡ

ĴðwÞ subject to ḡTḡ ¼ c2, (13)

where the cost function ĴðwÞ is defined as

ĴðwÞ ¼ ḡTKsḡ. (14)

It is not difficult to prove that, in general, the
solution for (13) is a vector ḡopt with only one
nonzero element strictly equal to �c at the position
corresponding to the largest diagonal element
(kurtosis) ktðskÞ of the matrix Ks [2]. When
ḡ ¼ ḡopt, we have

ĴðwÞ ¼ ḡTKsḡ ¼ c2ktðskÞ. (15)

As c increases, ĴðwÞ will increase correspondingly,
and when c ¼ 1, we have the maximum value of
ĴðwÞ ¼ ktðskÞ.

With these results in mind, now consider the
following maximisation problem:

max
ĝ

ĝ
T
Ksĝ subject to ĝ given in (11). (16)

Clearly, this is equivalent to searching for the
maximum value of ĴðwÞ in a subspace of the ḡ for
cp1 defined in (11). Therefore, the maximum value
of JðwÞ cannot be larger than that of ĴðwÞ for cp1.
Furthermore, the maximum value of JðwÞ is equal
to that of ĴðwÞ for cp1 only if there exists such a ĝ

so that both the requirements ĝ
T
ĝ ¼ 1 and ĝ ¼

ḡoptjc¼1 can be satisfied simultaneously. In fact,
from (11), it can be seen that, when g2

k ¼ a2 ða40Þ
and gl ¼ 0, for all lak, the norm of ĝ is equal to
unity and the condition ĝ ¼ ḡoptjc¼1 is also satisfied.
In addition, this is the only choice which satisfies
both of the above requirements.

When ĝ ¼ ḡoptjc¼1, the corresponding global
demixing vector g will be a vector gopt with only
one nonzero element gk ¼ �a. In this case,
y½n� ¼ �ask½n�, that is, the desired signal has been
extracted.

Since we are maximising JðwÞ with respect to w,
instead of ĝ, we next need to prove that there exists
a wopt which results in gopt.

From g ¼ ATw, when A is of full rank and the
number of mixtures M is larger or equal to the
number of sources L, wopt can be obtained using the
pseudo-inverse of AT, given by

wopt ¼ AðATAÞ�1gopt. (17)

Since the possible maximum value of JðwÞ is reached
only when g ¼ gopt, as long as there exists such a
w ¼ wopt so that we have g ¼ gopt, we can state that
when JðwÞ is maximised with respect to w, this will
result in a successful extraction of the source signal
with the maximum kurtosis.

3. The adaptive algorithm for BSE in the presence of

noise

To derive the adaptive algorithm based on (10),
we need to know the correlation matrix Rv, which is
normally unavailable. However, in most of the
cases, we can assume Rv ¼ s2I. When M4L, the
parameter s2 represents the smallest eigenvalue of
the correlation matrix Rx of the mixed signals.
Hence, we can use a subspace method or an
adaptive principal component analysis algorithm
to estimate it [1,6]. For M ¼ L, it is difficult to
estimate s, unless we have some additional knowl-
edge about the system, for example, the period when
there are no source signals present, so that we can
calculate the correlation matrix of the noise using
those measurements. In the following analysis, we
will assume Rv ¼ s2I.

First, to simplify the derived algorithm, after each
update, we perform a normalisation of the demixing
vector w, given by

w½n�  w½n�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT½n�w½n�

p
. (18)

Thus, the cost function (10) changes into

JðwÞ ¼
Efy4g � 3ðEfy2gÞ

2

ðEfy2g � s2Þ2
. (19)

To derive the updates of the demixing vector w, we
apply the standard gradient descent method to JðwÞ

and obtain

rwJ ¼ 4
ðEfy2g � s2ÞðEfy3xg þ 3s2EfyxgÞ � ðEfy4g � 3s4ÞEfyxg

ðEfy2g � s2Þ3
.

(20)

After some standard statistical approximations, we
arrive at the following update equation:

w½nþ 1� ¼ w½n� þ mfðy½n�Þx½n�, (21)
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where m is the stepsize and

fðy½n�Þ ¼
by½n�

ðm2ðyÞ � s2Þ3
½ðm2ðyÞ � s2Þy2½n�

þ 3s2m2ðyÞ �m4ðyÞ�. ð22Þ

The moments mqðyÞ, q ¼ 2; 4 are estimated by

mqðyÞ½n� ¼ ð1� lÞmqðyÞ½n� 1� þ ljy½n�jq, (23)

where l denotes the forgetting factor and b ¼ 1 for
source extraction with positive kurtosis and b ¼ �1
for negative kurtosis.

Note that in the noise-free case (s2 ¼ 0), the
expression (22) becomes

fðy½n�Þ ¼
by½n�

m3
2ðyÞ
ðm2ðyÞy

2½n� �m4ðyÞÞ, (24)

which is exactly the algorithm proposed in [4],
except for the constant 1=m2

2ðyÞ, which can be
absorbed into the stepsize.

4. Simulations and results

The simulations were based on three source
signals with binary, uniform and Gaussian distribu-
tions, respectively, as shown in Fig. 1. Their
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Fig. 1. The three source signals with binary, unifo
corresponding kurtosis values were ½�2:000,
�1:2246, 0:0742�. As the two non-Gaussian signals
have negative kurtosis values, we have b ¼ �1. In
theory, by minimisation of the normalised kurtosis
of the extracted signal, we will recover the first
source, since it has the smallest kurtosis value.

A 4� 3 mixing matrix was randomly generated
and is given by

A ¼

0:9575 0:5207 0:9248

�0:9356 �0:4131 0:6338

�0:4264 �0:9840 0:6787

0:5103 0:3774 �0:1707

2
6664

3
7775. (25)

To measure the quality of extraction of the
presented algorithm, we employ the performance
index (PI) defined as [2]

PI ¼ 10 log10
1

L� 1

XL�1
l¼0

g2l
maxfg2

0; g
2
1; . . . ; g

2
L�1g
� 1

 ! !
.

(26)

The smaller the value of PI, the better the quality of
extraction.

The additive noise was white Gaussian with a
variance of s2 ¼ 0:04. Since we have one more
mixture than the number of sources, we can use this
degree of freedom to estimate the noise variance s2.
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rm and Gaussian distributions, respectively.
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Fig. 3. The extracted source signal using the proposed algorithm.
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Fig. 4. The performance index using the existing noise-free algorithm.
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Fig. 2. The performance index using the proposed algorithm.
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During the adaptation, the forgetting factor was
l ¼ 0:02 and the stepsize m ¼ 0:006. As shown in
Fig. 2, the PI reached a level of about �35 dB,
indicating a successful extraction. The waveform of
the extracted signal is given in Fig. 3, and it matches
the first source signal except for the effect of noise.

To further illustrate the performance of the
proposed algorithm, for comparison, the PI of the
algorithm shown in (24) designed for the noise-free
case [4], with the same noise level, same mixing
matrix, same initial demixing vector w, same
forgetting factor and same stepsize, is given in
Fig. 4. We see that for the steady state, the PI of this
algorithm is about 5 dB worse than that of the
proposed one.

In the next experiment, the steady-state PI value
of the proposed algorithm is compared to that
of the existing noise-free algorithm for different
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Fig. 5. The steady-state PI value of the two algorithms with respect to different SNRs.
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signal-to-noise ratios (SNRs) and the results are
shown in Fig. 5. Since the proposed algorithm takes
the same form as the existing noise-free algorithm
when there is no noise present (s ¼ 0), we should
expect a very similar performance for low noise
levels, as shown in the figure. When the noise level
increases, starting from about SNR ¼ 25 dB up to
about SNR ¼ 5 dB, the proposed approach outper-
forms the existing one and there is an approximately
5 dB difference between them for a major part of
this range. When the noise level increases further,
with the SNR smaller than about 5 dB, both of the
two algorithms fail to extract the source signals due
to the high noise level, although the proposed one
has a more consistent performance for this very high
noise level situation.

5. Conclusions

We have proposed a novel BSE algorithm for
noisy measurements based on the maximisation/
minimisation of the normalised kurtosis. The effect
of noise is removed from the previously proposed
cost function provided the knowledge of the
correlation matrix of the noise. A proof of this
method is provided and the performance of
the proposed adaptive algorithm is verified by
simulations.
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