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Hearables: Automatic Overnight Sleep
Monitoring With Standardized In-Ear

EEG Sensor
Takashi Nakamura , Yousef D. Alqurashi, Mary J. Morrell, and Danilo P. Mandic

Abstract—Objective: Advances in sensor miniaturization
and computational power have served as enabling tech-
nologies for monitoring human physiological conditions
in real-world scenarios. Sleep disruption may impact neu-
ral function, and can be a symptom of both physical and
mental disorders. This study proposes wearable in-ear elec-
troencephalography (ear-EEG) for overnight sleep monitor-
ing as a 24/7 continuous and unobtrusive technology for
sleep quality assessment in the community. Methods: A to-
tal of 22 healthy participants took part in overnight sleep
monitoring with simultaneous ear-EEG and conventional
full polysomnography recordings. The ear-EEG data were
analyzed in the both structural complexity and spectral
domains. The extracted features were used for automatic
sleep stage prediction through supervized machine learn-
ing, whereby the PSG data were manually scored by a sleep
clinician. Results: The agreement between automatic sleep
stage prediction based on ear-EEG from a single in-ear sen-
sor and the hypnogram based on the full PSG was 74.1%
in the accuracy over five sleep stage classification. This is
supported by a substantial agreement in the kappa metric
(0.61). Conclusion: The in-ear sensor is feasible for mon-
itoring overnight sleep outside the sleep laboratory and
also mitigates technical difficulties associated with PSG.
It, therefore, represents a 24/7 continuously wearable alter-
native to conventional cumbersome and expensive sleep
monitoring. Significance: The “standardized” one-size-fits-
all viscoelastic in-ear sensor is a next generation solution
to monitor sleep—this technology promises to be a viable
method for readily wearable sleep monitoring in the com-
munity, a key to affordable healthcare and future eHealth.

Index Terms—Automatic sleep staging, ear-EEG, elec-
troencephalography (EEG), structural complexity analysis,
wearable EEG.
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I. INTRODUCTION

S LEEP is an essential process for human well-being, and its
quality reflects both a person’s lifestyle as well as various

medical conditions. In our modern 24/7 society, sleep qual-
ity has become a major issue which affects the state of body
and mind, with implications on both general health and econ-
omy. Consequently, quality of sleep is considered one of the
most important current topics in sleep medicine [1]–[3], and
is typically investigated by recording a person’s sleep patterns
in a sleep clinic. However, current clinical sleep monitoring is
expensive, cumbersome to administer, and prohibitive to per-
forming recordings continuously over days and weeks; this also
affects the subsequent diagnosis and treatment. For example,
Beebe et al. designed and conducted sleep monitoring for three
weeks in home using a wrist-worn actigraphy, and found that the
daytime behavioural problems for adolescents may have been
caused by inadequate sleep [4]. Trotti et al. monitored peri-
odic leg movements (PLMs) in restless legs syndrome (RLS)
patients using actigraphy for 2-3 weeks in home, and found sig-
nificant variability of PLMs within a single RLS patient from
night to night [5]. Vazir et al. conducted cardiorespiratory mon-
itoring from patients with heart failure at patients’ home, and
reported shifting type of sleep-disordered breathing (SDB) over
four nights [6]. These issues and previous findings have spurred
the development of unobtrusive, wearable sensors capable of
long-term monitoring of physiological variables related to sleep
[7]. On the other hand, such miniaturisation of sensors inevitably
affects the quality of recorded data; this calls for advanced signal
processing and machine learning tools, throughout the process,
from data conditioning to automatic sleep staging.

The polysomnography (PSG) is a standard clinical methodol-
ogy to diagnose sleep disorders [8]. The so-acquired sleep pro-
files of individuals are rigorous and comprehensive, however,
the expensive and cumbersome nature of PSG may even disturb
patients’ normal sleep, thus affecting diagnosis and treatment.
During the analysis, the recorded PSG data are scored manually
by a trained sleep clinician; given the scale of sleep disorders in
our modern society, this imposes unrealistic demands on their
time and incurs significant economic costs. Therefore, from a
point of view of continuous widely affordable healthcare in the
community and the future eHealth, conventional sleep moni-
toring based on the PSG is not realistic. To address this issue,
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TABLE I
COMPARISON OF EXISTING APPROACHES TO SLEEP RESEARCH USING IN-EAR/AROUND-EAR WEARABLE SENSING TECHNOLOGY

multiple potential solutions have been proposed which fall under
the two main categories:

1) Employ standard PSG but replace the clinician with an
automatic scoring system [9],

2) Use wearable sensing, possibly with a reduced number
of sensing modalities (e.g., only EEG or actigraphy), and
perform the analysis either by the clinician or automati-
cally based on machine learning [10].

To address the first issue of time-consuming sleep stage scor-
ing process performed by clinicians, automatic sleep staging
systems have been proposed based on full PSG recordings [19],
[20] – these include the electroencephalogram (EEG), elec-
trooculogram (EOG), and chin electromyogram (EMG) – or
more recently based on single channel EEG recordings [21]. The
corresponding automatic sleep stage classification approaches
employ various machine learning algorithms and have been val-
idated on both publicly available datasets [22] as well as on
proprietary data recorded as part of various research projects
[21]. Most studies have used sleep recordings of healthy par-
ticipants, and the state-of-the-art [23] indicates the possibility
of correctly discriminating five sleep stages – wake (W), non-
Rapid Eye Movements sleep (NREM1-3), and REM – based on
a single EEG (channel).

Regarding the second issue of a wider deployment of wear-
able devices, commercial products already exist based on wrist
activity (i.e. actigraphy) [24], [25]. Information from such wear-
able devices is proven to be sufficient to distinguish between
wakefulness and sleep, and the agreement between the actigra-
phy based wake/sleep stages and those manually scored based
on standard PSG recordings can be as high as 91% [26]. More
recently, data from commercial wrist-worn devices were found
to allow for identifying multiple sleep parameters, such as
‘sleep efficiency’ and ‘total sleep time’ [27]. The smartphone
accelerometers (i.e. off-body sensing) have also indicated the
possibility of monitoring ‘sleep duration’, although such stud-
ies typically do not simultaneously record standard PSG as a
‘ground-truth’ [7].

Despite relative success, current proof-of-concept achieve-
ments based on ‘wearables’ are not yet capable of faithfully
providing the much more complex information regarding clini-
cally valid sleep analyses, that is, to discriminate between wake-
fulness, Non-REM sleep, and REM sleep.

With the development in sensor technology, one of the most
convenient wearable solutions for physiological monitoring
introduced in the research community is based on sensing
from inside or around the ear, the so-called ‘hearables’ [28].
The original in-ear system in [29], [30] was shown to offer

unobtrusive and robust brain monitoring (ear-EEG). The so-
recorded data have been validated and compared to conventional
on-scalp EEG (scalp-EEG) in different scenarios, including
evoked potentials, brain-computer interface, and person au-
thentication [31]–[33]. Multiple strategies have also been
proposed for ear-EEG based sleep research, as summarised
in Table I.

The original study by Looney et al. [11] recorded daytime
naps with simultaneous ear-EEG and scalp-EEG systems, from
four healthy participants. The corresponding manually scored
hypnograms conclusively validated the feasibility of ear-EEG
for sleep monitoring. The same data were also used for automatic
sleep stage classification in [12], which further demonstrated
the possibility of out-of-clinic sleep monitoring with ear-EEG.
After this initial proof-of-concept stage, Alqurashi et al. [13]
conducted comprehensive multiple daytime nap recordings to
establish the degree of matching of the corresponding sleep la-
tencies based on ear-EEG and scalp-EEG under two conditions:
1) after normal sleep and 2) after sleep restriction. The same nap
data over twenty three participants were used by Nakamura et al.
[14] to establish the potential of ear-EEG in automatic detection
of drowsiness (i.e. to distinguish between wakefulness and light
sleep). Nguyen et al. [15] conducted overnight sleep recordings
over eight participants to evaluate their in-ear sensing system;
their sensors were able to record the EEG, EOG, and EMG,
key physiological variables for sleep monitoring. It is important
to highlight that the sleep studies in [11]–[15], together with
this study, were conducted using one-size-fits-all viscoelastic
in-ear sensors, which are not optimised for a particular user but
are convenient for wide deployment and promise an affordable
out-of-clinic solution. Owing to their flexibility and favourable
stress-strain properties (memory foam) [28], these viscoelastic
earpieces can be squeezed and shaped up to fit comfortably
any ear; such a ‘generic’ in-ear sensor is readily applicable to
a large population, a pre-requisite for the future eHealth in the
community. With custom-made hardshell earpieces, a technol-
ogy derived from hearing aids earpieces, Looney et al. estab-
lished the ear-EEG concept [29], while more recently Zibrandt-
sen et al. [16] monitored overnight sleep EEG activity from a
single participant, and confirmed the similarities in temporal and
spectral features between ear-EEG and conventional scalp-EEG.
Recently, Mikkelsen et al. [17] validated automatic overnight
sleep staging using hardshell binaural ear-EEG recordings over
nine participants. The recent around-ear EEG device (cEEGrid)
[18], which strictly speaking records scalp-EEG behind the ear,
has also been utilised for overnight sleep recordings. It has been
shown to be capable of monitoring specific sleep patterns, such
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as the K-complex, theta activity, and delta activity in NREM 3
stage sleep.

With our own one-size-fits-all in-ear sensing system [28],
we here further establish and validate the feasibility of sleep
monitoring in the community using ear-EEG in the following
setups:

1) ‘Standardised’ viscoelastic in-ear sensors [34] for off-the-
shelf sleep monitoring of a relatively large population of
young healthy adults;

2) A ‘real-world’ out-of-clinic overnight sleep scenario,
namely in participants’ homes to reflect their normal sleep
patterns (community based screening);

3) In conjunction with the conventional PSG for hypnogram
generation, which then serves as the ‘ground-truth’ for
further analyses.

For rigour and feasibility considerations, in this study, we
employ the exact same shape of ‘standardised’ earpieces (size,
materials) throughout the recordings on multiple participants.
The recordings were undertaken in participants’ homes; such
familiar environments are a key to truly representative sleep
monitoring, as this minimises the stress and inconvenience of
the participants while maximising the likelihood of exhibiting
usual sleep patterns. Our comprehensive setup involves simul-
taneous ear-EEG and PSG recordings; the ear-EEG data were
used for automatic sleep stage classification, whilst the PSG
data were scored manually by Author YDA. To benchmark the
performance of ear-EEG against scalp-EEG, two channels of
scalp-EEG were extracted from PSG and used for automatic
sleep stage classification. Through a rigorous comparative ex-
amination of performance metrics of an automatic sleep staging
method based on ear-EEG and the manually scored hypnogram
(based on the standard PSG), we conclusively confirm the fea-
sibility of automatic overnight sleep monitoring in out-of-clinic
scenarios with readily deployable ‘standardised’ one-size-fits-
all in-ear sensors, a prerequisite for affordable eHealth.

II. METHODS

Figure 1 presents the flowchart for this study, whereby after
simultaneous ear-EEG and PSG recording in the first step, two
channels of scalp-EEG were extracted from the PSG data. The
ear-EEG and scalp-EEG data were preprocessed through down-
sampling, bandpass filtering, and removal of noisy epochs.
Then, both structural complexity and frequency domain fea-
tures for classification were extracted. The full PSG recordings
were manually scored, and the so-obtained hypnogram was used
as the ‘ground-truth’ of sleep stages for their automatic classifi-
cation.

A. Data Acquisition

The ear-EEG and PSG data were simultaneously recorded
between October 2017 and June 2018 under the ethics ap-
proval, ICREC 17IC4150, Joint Research Office at Imperial
College London. In total, twenty two healthy participants (aged
23.8 ± 4.8 years) were recorded, after an informed consent was
obtained. Only two participants had worn our in-ear sensor prior
to this study, whilst none of participants had ever participated
in overnight PSG recordings.

Fig. 1. Flowchart for the automatic sleep stage classification in this
study.

Participants were visited in their own home at night (ap-
proximately two hours before their usual bedtime) to setup the
ear-EEG and PSG sensors; after the sensor setup, the clinician
started the recording and left the participant’s home. Each par-
ticipant went to bed as per usual and had their normal overnight
sleep. The next morning, the clinician visited to detach the sen-
sors; the participants were instructed to detach the sensors at
any point during the night should they feel any discomfort.

The ear-EEG and PSG were recorded simultaneously from
two data acquisition systems, and these two amplifiers were
manually controlled to start and stop each recording. To en-
sure data alignment, the agreements between their time stamps
were checked before every recording. For the ear-EEG, the g.tec
g.USBamp amplifier with 24-bit resolution at a sampling fre-
quency fs = 1200 Hz was used for the recordings. The ‘stan-
dardised’ in-ear sensor was in the form of a one-size-fits-all
viscoelastic earplug with two flexible electrodes, the details can
be found in [28], [34]. The size of in-ear sensors was the same for
all participants, approximately 25 mm in length and 12 mm in
diameter. Before insertion, a participant’s ear canal was cleaned
with a cotton bud to remove ear wax; then conductive gel was
applied to the electrode. The in-ear sensor was inserted into
either participant’s left or right ear, according to their prefer-
ence, within a monaural setup. After the insertion, the sensor
adapted snugly to the shape of the ear canal. Standard gold-cup
electrodes were used as a reference (behind the ipsilateral helix)
and ground (the ipsilateral earlobe). Figure 2 shows the in-ear
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Fig. 2. The in-ear sensor used in our study. Left: Wearable in-ear sen-
sor with two flexible electrodes. Right: Placement of the in-ear sensor.

sensors with two electrodes (left) and the placement of earpiece
(right). Before the overnight recordings, the quality of ear-EEG
responses was inspected during the participants’ resting state
with their eyes closed, and the electrode impedance was also
checked.

The PSGs were recorded by the SOMNO Screen device, by
SOMNO medics. The electro-physiological sensors were placed
onto participants’ scalp (including eight channels of EEG: F3,
F4, C3, C4, O1, O2, M1, and M2, according to the international
10–20 system), face (including two channels of EOG), chin
(three channels of EMG), chest, abdomen, and legs (including
two channels of electrocardiography (ECG)). The ground and
reference electrodes were attached on the forehead. Multiple
other signals were monitored, such as participants’ movement,
body position, pulse rate and the pulse waveform (pulse oxime-
ter), Naso/Oral flow (thermistor), and snoring sound. The data
were recorded at a sampling frequency of 256 Hz, and transmit-
ted to a laptop wirelessly.

B. Manual Scoring

The recorded PSG data, including EEG, EOG, EMG, and res-
piration, were analysed by the Domino Plus system, by SOMNO
medics. The obtained PSGs were bandpass filtered with the pass-
band frequencies from 0.2 − 35 Hz, and such processed PSG
data were then manually scored by a clinician based on the
American Academy of Sleep Medicine (AASM) criteria [35].
The so-labeled sleep stages were Wakefulness (W), NREM1
(N1), NREM2 (N2), NREM3 (N3), REM, and Movement. A
PSG recording by one participant was not scored due to high
frequency artefacts; therefore, overall, 21 out of 22 participants’
overnight recordings were used for further analyses.

C. Pre-Processing

The recorded signals were first aligned in accordance with the
time stamps from the separate ear-EEG and PSG amplifiers. In
total, approximately 165 hours (i.e. approximately eight hours
per participant) of ear-EEG and PSG data were used for fur-
ther analyses. For the classification, we used: 1) two ear-EEG
channels (upper and lower channel of the earpiece), and 2) two
scalp-EEG channels (C3-M2 and C4-M1) from the PSG record-
ings. The ear-EEG and scalp-EEG signals were downsampled
to 120 Hz and 128 Hz, respectively; the downsampled frequen-

cies of two systems were different due to the recording sam-
pling rates (1200 Hz for ear-EEG, and 256 Hz for scalp-EEG).
After downsampling, the EEG signals were bandpass filtered
using a fourth-order Butterworth filter with the passband from
0.5 − 30 Hz. Figure 3 illustrates different EEG sleep features,
including alpha, theta, K-complex, and delta activities, from an
on-scalp and the in-ear EEG channel.

Epochs scored as ‘Movement’ were removed. In this anal-
ysis, we considered the standard epochs (i.e. 30 s segment of
recordings) while epochs which contained amplitudes of more
than ±200 μV for ear-EEG, and ±400 μV for scalp-EEG, were
deemed to be contaminated by noise. This is because, for the
scalp-EEG, the amplitude of the K-complex, a signature re-
sponse of NREM 2 sleep, is normally less than ±400 μV [36];
we also assumed ±200 μV was applicable for such amplitude
thresholding in ear-EEG, since the amplitude of ear-EEG is
smaller than that of scalp-EEG [29], as also seen in Figure 8. In
order to remove noisy epochs from further analyses, the epochs
for classification were selected using the criteria below:

1) Find all epochs which contain amplitudes larger than the
threshold (i.e. ±200 μV for ear-EEG, and ±400 μV for
scalp-EEG) in each channel;

2) Remove an epoch if at least one channel of ear-EEG (or
scalp-EEG) has amplitudes above the threshold;

3) Count the number of removed epochs (noisy epochs);
4) Do not consider a trial if the number of noisy epochs is

more than 50% of the entire recording from a participant.
We applied this epoch/participant rejection strategy to ear-

EEG and scalp-EEG separately, therefore, the total numbers
of epochs in the ear-EEG and scalp-EEG systems for further
analyses were different, with details of their proportion given in
Table II. The number of participants and epochs for further anal-
ysis of ear-EEG were respectively N = 16 and 11610 (out of
15120 – 76.8% remaining epochs), while for scalp-EEG we had
N = 17 and 13040 (out of 15970–81.7% remaining epochs).
This, in turn, means that the remaining participants for ear-EEG
and scalp-EEG were not necessarily the same, since the removed
participants were chosen based on amplitude thresholding, as
explained earlier.

D. Feature Extraction

After the pre-processing stage, feature extraction was per-
formed using: 1) a complexity science feature, multi-scale en-
tropy (MSE) [37], and 2) a frequency feature, the spectral edge
frequency (SEF) [38]. These metrics were calculated for each
epoch of both ear-EEG and scalp-EEG data. This combina-
tion of multi-scale permutation entropy (MSPE) and SEF was
proven to be particularly successful in our previous automatic
sleep staging work [23] which considered a publicly available
overnight Sleep-EDF [expanded] dataset [39]. Based on two
channels of scalp-EEGs from 61 participants, the achieved ac-
curacy was 88.6% with the corresponding kappa coefficient [40]
of κ = 0.84 (Almost Perfect Agreement) in the 5-class sleep
stage classification. For continuity, the same feature extraction
methodology was applied in this study.
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Fig. 3. EEG recordings from a single participant in different sleep stages (Red: the on-scalp C3-M2 channel, Blue: in-ear upper channel).

TABLE II
PROPORTION OF SCORED SLEEP STAGES IN DIFFERENT SYSTEMS

1) Structural Complexity Feature: The MSE method was
shown to be able to quantify the degree of correlation in a time
series, therefore it can be used to estimate structural complex-
ity in data. The original MSE was designed to estimate sample
entropy of coarse grained time series, while its multi-variated
generalisation (MMSE) has been proposed to assess structural
complexity of noisy multi-channel physiological data [41], [42].
As a structural complexity entropy based method for this study,
we employed the permutation entropy (PE) [43]. The PE is a
metric for detecting dynamical changes and for estimating the
information contained in a time series based on comparing con-
secutive values of a time series. Compared to other entropy
metrics, the PE requires less computational time and is robust to
noise in the measurements; hence, the method is suited to time
series with poor stationarity characteristics, such as physiolog-
ical signals [44].

The details of MSPE can be found in our earlier related work
[23]; the same parameters (i.e. the scale: τ = 20, the embedding
dimension: d = 5, and the time delay: L = 1) were used for this
study. Figure 4 illustrates the MSPE analysis for ear-EEG and
scalp-EEG channels of overnight data for one participant. The
trends of two MSPEs for ear-EEG and scalp-EEG were similar,
as evidenced by lower complexity in the N3 sleep stage which
is due to the ‘deterministic’ dominant delta activity (0.5–4 Hz),
and especially for slow wave activity (0.5–2 Hz).

Fig. 4. Averaged multi-scale permutation entropy (MSPE) for the
overnight sleep of one participant for an in-ear upper channel (ear-EEG,
Top panel) and an on-scalp C3-M2 channel (scalp-EEG, Bottom panel)
over different sleep stages. The error bars represent the standard error.

2) Spectral Feature: As a frequency domain feature, the
r% spectral edge frequency (SEF), denoted by SEFr was used.
The SEFr is defined as the frequency value which contains r%
of the power in a given frequency range, that is

fh ig h∑

f =f l ow

‖magnitude (f)‖2 × r

100
=

SEF r∑

f =f l ow

‖magnitude (f)‖2 .

Owing to its robustness and ease of calculation, the SEF metric
is now commonly used in physiological data analyses, espe-
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cially in studies of EEG [38]. Relevant to this work, recently
Imtiaz et al. [45] utilised the SEF methods in a sleep study,
and proposed using the difference between SEF95 and SEF50,
called SEFd, to detect the REM stage effectively, whereby
SEFd = SEF95 − SEF50.

For our study, the power spectral density (PSD) of each
epoch (30 s) was obtained using Welch’s averaged periodogram
method with the window length of 4 s and 50% window over-
lap. Following the analysis in [23], we chose the same fre-
quency ranges for SEF50, SEF95, and SEFd in the following
bands; δ − β = 0.5–30 Hz, δ − α = 0.5–16 Hz, θ = 2–8 Hz,
α = 8–15 Hz, αl = 8–11 Hz, αh = 11–15 Hz, and β = 16–
30 Hz.

E. Classification

The extracted features were normalised to between [0,1]
participant-wise before performing classification. The multi-
class support vector machine (SVM) with the radial basis
function (RBF) kernel was employed as a classifier. The regular-
isation parameter was set to C = 3, and the hyper-parameters of
the RBF kernel were set to γ = 1. The same hyper-parameters
were used throughout the analysis.

F. Evaluation

The pre-processing and feature extraction analyses were con-
ducted in Matlab 2016b, and the classification was implemented
in Python 2.7.12, Anaconda 4.2.0 (x86_64) operated on an iMac
with 2.8GHz Intel Core i5, and 16GB of RAM. In order to eval-
uate the classification performance of the proposed study, we
utilised two metrics: 1) class-specific performance and 2) overall
performance.

The class-specific performance metrics used were the
sensitivity, SE = TP/(TP + FN), and precision, PR =
TP/(TP + FP ), where TP (true positive) represents the num-
ber of positive (target) epochs correctly predicted, FN (false
negative) designates the number of positive epochs incorrectly
predicted as negative class, and FP (false positive) is the num-
ber of negative epochs incorrectly predicted as positive class.

The overall performance was evaluated by the accuracy (AC)
and Kappa coefficient (κ) metrics [40], defined as:

AC =
∑M

i=1 TPi

Nepoch
, κ =

AC − πe

1 − πe
,

where πe =
∑M

i=1 {(TPi + FPi)(TPi + FNi)}
Nepoch

2 .

The parameter M denotes the number of classes (e.g., M = 5
class: Wake, N1, N2, N3, REM), and Nepoch is the total number
of epochs.

G. Validation Setup

A 10-fold cross-validation (CV) approach was utilised; EEG
recordings from all participants were concatenated into one
large matrix, which was then randomly split into the training
data (90%) and the test data (10%). We repeated the valida-

Fig. 5. Confusion matrix for the classification results. Upper: Ear-EEG,
Lower: Scalp-EEG. The symbols SE/PR on the bottom right denote
respectively sensitivity (above) and precision (below).

Fig. 6. Classification accuracy (blue bars) and kappa values (red dots)
for individual participants, P1-17. Upper: Ear-EEG based results, Lower:
Scalp-EEG based results.
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Fig. 7. Manually scored hypnograms of overnight sleep based on the full PSG (blue) and the automatically predicted label by the proposed
algorithm with the ear-EEG and scalp-EEG features (red) from two participants (A and B). The black crosses above the W stage indicate the epochs
removed from the analyses due to the amplitude thresholding.

tion 10 times with changing the selection of training and test
data.

III. RESULTS

The feature matrices based on two ear-EEG channels and two
scalp-EEG channels were classified by a multi-class SVM with
fixed hyper-parameters as explained in Section II-E.

Figure 5 shows the classification results for M = 5 classes
(W, N1, N2, N3, and REM) using the ear-EEG and scalp-EEG.
In the ear-EEG setup, the overall accuracy was 74.1% with the
corresponding kappa value of κ = 0.61, which indicates Sub-
stantial Agreement, whereas the accuracy and κ of scalp-EEG
were respectively 85.9% and 0.79 (Substantial Agreement). The

sensitivities to each sleep stage of ear-EEG were approximately
10% lower than those of scalp-EEG, except for the REM condi-
tion. The sensitivities to REM of ear-EEG and scalp-EEG were
45.8% and 81.8%, respectively. Notice that more epochs labeled
REM were misclassified as N2 (679 epochs) than correctly clas-
sified as REM (677 epochs) in the ear-EEG setup.

Figure 6 depicts the participant-wise classification accuracy
(blue bar plot) and the corresponding κ (red dot plot) for both
the ear-EEG and scalp-EEG scenarios. Although not without
variations, overall, data from all participants were amenable to
being automatically classified using the proposed methods.

Figure 7 illustrates the overnight hypnograms of two partic-
ipants for both the ear-EEG and scalp-EEG system; the graphs
show the manually scored hypnograms based on the full PSG
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TABLE III
SENSITIVITY AND PRECISION (IN ITALIC) FOR SLEEP CLASSIFICATION IN

DIFFERENT CLASS SCENARIOS, M=2, 3, 5

recordings (blue) and the automatically predicted label based
on the proposed algorithm (red). The black crosses denote the
epochs removed from the analyses due to amplitude threshold-
ing (see Section II-C). In Figure 7A, notice the REM condition
between time stamps 03:30 and 04:30; regarding the predicted
label based on ear-EEG, a large portion of epochs was misclas-
sified as N2 sleep, whereas the majority of epochs was correctly
classified as REM in the prediction based on scalp-EEG. For
further illustration, in a hypnogram of another participant in
Figure 7 B, multiple sleep cycles, e.g., three REM conditions,
can be observed.

Table III displays the classification results over different num-
ber of classes (M = 2, 3, 5). The class-wise sensitivity and
precision (in italic), and overall accuracy and κ are also pro-
vided. The notation M = 2 means the 2-stage classification
(Wake vs Sleep), whereas M = 3 denotes 3-stage classifica-
tion (Wake vs NREM sleep vs REM sleep). The accuracy of
ear-EEG ranged from 74.1% to 89.9% with the corresponding,
κ, from 0.60 to 0.68. The accuracies and kappa coefficients of
scalp-EEG were higher than those of ear-EEG.

IV. DISCUSSION

This study has proposed an overnight sleep monitoring sys-
tem using a ‘standardised’ in-ear sensor, and has validated the
feasibility of automatic sleep staging based on ear-EEG. Com-
pared to the gold standard – manually scored hypnogram based
on a standard PSG recording – the obtained classification accu-
racy using ear-EEG features was 74.1% with the corresponding
κ value of 0.61, which indicates Substantial Agreement.

Compared to the classification performance based on ear-
EEG, the results based on scalp-EEG were better, especially
regarding the sensitivity to REM stage. As seen in Figure 5, the
majority of manually labeled REM epochs were misclassified as
N2 in the ear-EEG setup. Figure 8 illustrates the averaged power
spectral density for the ear-EEG (left) and the scalp-EEG (right)
of two participants. For this analysis, the recorded signals were
manually selected in order to compare N2 vs N3 vs REM; for
the top panel (Participant 1), a single consecutive 90 minutes of
sleep data were selected, whereas two consecutive 60 minutes of

Fig. 8. Averaged periodograms of ear-EEG and scalp-EEG during se-
lected consecutive epochs of two different participants. The vertical lines
denote the 2 and 4 Hz frequencies in order to designate the delta activity
(0.5–4 Hz) and slow wave activity (0.5–2 Hz).

sleep data were selected (i.e. 120 minutes in total) for the bottom
panel (Participant 2). The PSDs were obtained using Welch’s
averaged periodogram method, the window length was 4 s with
50% of window overlap. The trends in ear-EEG and scalp-EEG
analyses were similar and included: 1) high-alpha (12–15 Hz)
activities in N2 sleep, 2) prominent delta activities (0.5–4 Hz),
and especially slow wave activity (0.5–2 Hz) in N3 sleep, and
3) relatively lower EEG amplitude in REM. However, the slow
wave activities of N2 and REM sleep in the ear-EEG were simi-
lar, as evidenced by an overlap in their spectrum, whereas clear
visual separation was present in the scalp-EEG setup. This over-
lap might have caused the lower discrimination performance
for N2 and REM in the ear-EEG scenario. We would like to
highlight that the scalp-EEG montage (C3-M2 and C4-M1) is
the gold standard for sleep medicine, and has been studied and
validated over decades. Also, the algorithm applied in this study
was originally tested and developed on a publicly available
dataset of scalp-EEG [23]. In [23], the classification perfor-
mance based on two scalp-EEG channels over 61 participants
from a publicly available dataset was 88.6% in accuracy with the
corresponding κ of 0.84 in a 5-class sleep stage classification,
which was similar to the results in this study – the accuracy and
κ were respectively 85.9% and 0.79 in a 5-class sleep staging
using two channels of scalp-EEG over 17 participants. Future
work will consider introducing a fine-tuned classifier, specifi-
cally designed for ear-EEG. Collecting a very large cohort of
in-ear sleep EEG data will allow us to examine more practi-
cal validation setups, such as leave-one-participant-out CV in
addition to K-fold CV.

Our study leaves room for improvement; for example, some
noisy epochs were removed by amplitude thresholding, and
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some participants were removed from the analyses as mentioned
in Section II-C. According to visual inspection of the shape of
the recorded signal, the noise was categorised into: 1) abrupt
electrode noise and 2) physiological noise from respiration.
The first type of noise might have been caused by participants’
movement. Note that our in-ear sensor has been extensively val-
idated in a research lab when the participants were in the resting
state, but only a few studies were conducted under participants’
movements (e.g., jaw movement [28]). These issues can be
resolved with a future advanced sensor design. The second type
of noise was due to the placement of the in-ear sensor on the
participant’s head. In certain recordings, the recorded ear-EEG
signal was overlaid by a slow oscillation of large amplitude,
which represents an artefact from respiration. Our study utilised
a monaural setup in order to minimise both the time for techni-
cal setup and participants’ inconvenience, however, this might
have interfered with the quality of recordings. As shown in our
recent work [46], in addition to one more degrees of freedom
in ear-EEG recording, a binaural setup would also allow for the
monitoring of other physiological parameters such as ECG and
respiration [28].

V. CONCLUSION

We have proposed and validated an automatic overnight sleep
monitoring system with readily deployable ‘standardised’ one-
size-fits-all viscoelastic in-ear sensors. Full standard PSG and
in-ear EEG have been simultaneously recorded for twenty-two
healthy participants, who participated in overnight sleep record-
ings at their own home in order to both minimise participants’
inconvenience and provide a ‘real-world’ out-of-clinic scenario.
The scalp-EEG and ear-EEG have been shown to exhibit a high
degree of similarity in both the structural complexity and spec-
tral domains. The agreement between manually scored hypno-
grams based on full PSG and automatic 5-class sleep stage
prediction based on ear-EEG was 74.1% in the accuracy with
the kappa coefficient of 0.61 (Substantial Agreement), whereas
the obtained accuracy and κ based on scalp-EEG were 85.9%
and 0.79 (Substantial Agreement), respectively. This study has
demonstrated that a single in-ear sensor is capable of moni-
toring overnight sleep in an unobtrusive and inexpensive way,
and that one-size-fits-all viscoelastic sensor promises to become
a viable eHealth community-based alternative to conventional
sleep monitoring in a clinic.
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