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This lecture # Time Series Modelling and Prediction

Q: Have you ever considered what the following tasks have in common?

• Forecasting of financial data
• Supply-demand modelling (e.g. electricity or air-ticket pricing)
• Modelling of COVID-19 spread
• Weather forecasting and modelling in astronomy (e.g. sunspots)
• Word generation by Large Language Models such as ChatGPT

A: These are time series of which the signal generating mechanisms are
largely unknown or untractable. We need to make inference from such data
based on historical observations (autoregression) – subject of this Lecture.
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Aims of this lecture

◦ To introduce linear stochastic models for real world data

◦ Establish the general regression and auto-regression frameworks

◦ Understand how stochastic processes are created, and to get familiarised
with the autocorrelation, variance and power spectrum of such processes

◦ Learn how to derive the parameters of linear stochastic ARMA models

◦ Introduce special cases: autoregressive (AR), moving average (MA)

◦ Stability conditions and model order selection (partial correlations)

◦ Optimal model order selection criteria (MDL, AIC, ...)

◦ Apply stochastic modelling to real world data (speech, environmental,
finance), and address the issues of under– and over–modelling

◦ Provide grounding and intuition for Generative Autoregressive models

This material is a first fundamental step for real-world time series analysis
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Relations between two variables: Scatter plots and
correlation

Correlation quantifies the strength (scatter) and direction of the linear
relationship between two variables.

◦ In addition to the correlation between two variables, we would often like
a quantitative description of how the two variables vary together.

◦ We would also like to perform prediction based on this knowledge #
subject of linear regression. Regression line is a unique line
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Correlation versus Regression

Correlation measures the strength of the relationship between the
variables x and y in both the x-direction and y-direction.

Regression examines the distance of all points from the regression line in
the y-direction only; it models the variation of the explained variable, y,
in response to the change in the explanatory variable, x.

◦ Variable x is also called a regressor, independent variable, or predictor

◦ Variable y is also called response, dependent var., criterion or true label
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Regression: Advantages and limitations (see Lecture 6)
Motivation for Auto-Regression

Interpolation: Nobody in the
study drunk 6.5 pints of beer,
but we can still use regression to
interpolate and find the estimated
blood alcohol level.
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Interpolation is quite accurate, as
a linear fit matches the data.

Extrapolation: Needs to be
considered much more carefully.
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A “piece-wise” linear fit would be
more appropriate (or quadratic).
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Example 1: Assessing the nature of a signal from its ACF
Windowed clean signal, signal in WGN, signal with DC offset (see also Lecture 1)
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Which disturbance is more detrimental: deterministic DC or stochastic noise
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Wold decomposition theorem
(Existence theorem, also mentioned in your coursework)

Wold’s decomposition theorem plays a central role in time series analysis,
and explicitly proves that any covariance–stationary time series can be
decomposed into two different parts: deterministic (such as a sinewave)
and stochastic (filtered WGN).

Therefore, a general process can be written as a sum of two processes

x[n] = xp[n] + xr[n] = xp[n] +

q∑
j=1

bjw[n− j] w  white process

⇒ xr[n] # regular random process
⇒ xp[n] # predictable process, with xr[n] ⊥ xp[n],

E{xr[m]xp[n]} = 0

 we can treat separately the predictable part (e.g. a deterministic
sinusoidal signal) and the random signal.

Our focus will be on the modelling of the random component
NB: Recall the difference between shift–invariance and time–invariance
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How do we model a real world random signal?

Suppose the measured real world signal has
e.g. a bandpass (any other) power spectrum

Modelling: We aim to describe the whole
long signal with only very few parameters

ω

spectrum
bandpass

ω )X(

Q1: Can we model first and second statistics of real world signal by shaping
up the white noise spectrum using some coefficients (transfer function)?

Q2: Does this produce the same second order stats as those of the original
signal (mean, variance, ACF, spectrum) for any white noise input?
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Can we use this linear stochastic model for prediction?
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Towards linear stochastic processes
Wold’s theorem implies that any purely non-deterministic covariance–stationary

process can be arbitrarily well approximated by an ARMA process

From Wold’s th., the power spectrum of a WSS process has the form

Px(e
ω) =

N∑
k=1

αkδ(ω − ωk) + Pxr(e
ω)

We are interested in processes generated by filtering white noise with a
linear shift–invariant filter that has a rational system (transfer) function.

This class of digital filters includes the following system functions:

• Autoregressive (AR) → all pole system → H(z) = 1/A(z)

• Moving Average (MA) → all zero system → H(z) = B(z)

• Autoregressive Moving Average (ARMA) → poles and zeros
→ H(z) = B(z)/A(z)

Definition: A covariance-stationary process x[n] is called (linearly)
deterministic if p(x[n] | x[n− 1], x[n− 2], . . .) = x[n].

R A stationary deterministic process, xp[n], can be predicted correctly (with
zero error) using the entire past, xp[n− 1], xp[n− 2], xp[n− 3], . . .
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Example 2: Second-order all–pole systems and sinewave
p1 = 0.999exp(jπ/4), p2 = 0.9exp(jπ/4), p3 = 0.9exp(j7π/12)
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To produce oscillations, we
need two conjugate complex
poles, e.g. p1 and p∗1,
therefore

H(z) =
1

(z − p1)(z − p∗1)

=
z−2

(1− p1z−1)(1− p∗1z−1)

Transfer function for p = ρejθ (ignoring z−2 in the numerator on the RHS):

H(z) =
1

(1− ρejθz−1)(1− ρe−jθz−1)
=

1

1− 2ρ cos(θ)z−1 + ρ2z−2

for the sinewave ρ = 1 ⇒ H(z) =
1

1− 2 cos(θ)z−1 + z−2
=

1

1 + a1z−1 + a2z−2

R Indeed, a sine can be modelled as an autoregressive AR(2) process
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Example 2: Sinewave revisited, is it determ. or stoch.?
Is a sinewave best described as nonlinear deterministic or linear stochastic?
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← pole p1

← pole p∗1

x(n) = x(n− 1)− 0.98x(n− 2) + w(n)

Matlab code:

z1=0;

p1=[0.5+0.866i,0.5-0.866i];

[num1,den1]=zp2tf(z1,p1,1);

zplane(num1,den1);

s=randn(1,1000);

s1=filter(num1,den1,s);

figure;

subplot(311),plot(s),

subplot(313),plot(s1),

subplot(312),;

zplane(num1,den1)

The AR model of a
sinewave
x(n)=a1*x(n-1)+a2*x(n-2)+w(n)

a1=1, a2=-0.98, w~N(0,1)
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How can we categorise real–world measurements?
where would you place a DC level in WGN, x[n] = A+ w[n], w ∼ N (0, σ2

w)

(a) Noisy oscillations, (b) Nonlinearity and noisy oscillations, (c) Random nonlinear process

(? left) Route to chaos, (? top) stochastic chaos, (? middle) mixture of sources

Determinism

Nonlinearity

Linearity

Chaos

ARMA

(a)

(b)

(c)

? ?

?

?

? ?
?

?

NARMA

Stochasticity

Our lecture is about ARMA models (linear stochastic)

How about observing the signal through a nonlinear sensor?
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Spectrum of ARMA models (Recap slides and Lecture 1)

recall that two conjugate complex poles of A(z) give one peak in the spectrum

ACF ≡ PSD in terms of the information available

In ARMA modelling we filter white noise w[n] (so called driving input)
with a causal linear shift–invariant filter with the transfer function H(z), a
rational system function with p poles and q zeros given by

X(z) = H(z)W (z) # H(z) =
Bq(z)

Ap(z)
=

∑q
k=0 bkz

−k

1 +
∑p
k=1 akz

−k

For a stable H(z), the ARMA(p,q) stochastic process x[n] will be
wide–sense stationary. For the driving noise power Pw = σ2

w, the power of
the stochastic process x[n] is
(recall: power at the output of a linear system Py = |H(z)|2Px = H(z)H∗(z)Px)

Px(z) = σ2
w

Bq(z)Bq(z
−1)

Ap(z)Ap(z−1)
⇒ Pz(e

θ) = σ2
w

∣∣Bq(eθ)∣∣2
|Ap(eθ)|2

= σ2
w

|Bq(ω)|2

|Ap(ω)|2

Notice that “(·)∗” in analogue frequency corresponds to “z−1” in “digital freq.”
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Example 3: Can the shape of power spectrum tell us
about the order of the polynomials B(z) and A(z)?

Plot the power spectrum of an ARMA(2,2) process for which

◦ the zeros of H(z) are z = 0.95e±π/2

◦ poles are at z = 0.9e±2π/5

Solution: The system function is (poles and zeros – resonance & sink)

H(z) =
X(z)

W (z)
=

1 + 0.9025z−2

1− 0.5562z−1 + 0.81z−2

⇒ x(n) = 0.5562x(n− 1)− 0.81x(n− 1) + w(n) + 0.9025w(n− 2)
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Example 4: Power spectrum of real–world Sunspot data
Sunspot numbers and their PSD  even their AR(2) linear model is powerful!
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Recorded from about 1700 onwards

This signal is random, as sunspots originate from the explosions of helium
on the Sun. Still, the number of sunspots obeys a relatively simple model
and is predictable, as shown later in the Lecture.
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Difference equations # the ACF follows the data model!
(for convenience, a slight abuse in notation from A(z) to the autoregressive part)

Since X(z) = H(z)W (z), the random processes x[n] and w[n] are related
by a linear difference equation with constant coefficients, given by

H(z)=
B(z)

A(z)
=

∑q
k=0 bkz

−k

1−
∑p
k=1 akz

−k ↔ARMA(p,q)↔ x[n]=

p∑
l=1

alx[n− l]︸ ︷︷ ︸
autoregressive

+

q∑
l=0

blw[n− l]︸ ︷︷ ︸
moving average

Notice that the autocorrelation function of x[n] and crosscorrelation
between the stochastic process x[n] and the driving input w[n] follow
the same difference equation, i.e. if we multiply both sides of the above
equation by x[n− k] and take the statistical expectation, we have

rxx(k) =

p∑
l=1

al rxx(k − l)︸ ︷︷ ︸
easy to calculate

+

q∑
l=0

bl rxw(k − l)︸ ︷︷ ︸
can be complicated

(also Slide 18 & App. 3)

Since x is WSS, it follows that x[n] and w[n] are jointly WSS
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General linear processes: Stationarity and invertibility
Can we tell anything about the process x from the coefficients a, b (cf. h in FIR)

Consider a linear stochastic process # output from a linear filter, driven by
WGN, denoted by w[n]. (NB: Here w is “input” and x “output”)

x[n] = w[n] + b1w[n− 1] + b2w[n− 2] + · · · = w[n] +

∞∑
j=1

bjw[n− j]

that is, a weighted sum of past samples of driving white noise w[n].

For this process to be a valid stationary process, the coefficients must be
absolutely summable, that is

∑∞
j=0 |bj| <∞.

This also implies that under stationarity conditions, x[n] is also a weighted
sum of past values of x, plus an added shock w[n], that is

x[n] = a1x[n− 1] + a2x[n− 2] + · · ·+ w[n] (see also Slide 30)

◦ Linear Process is stationary if
∑∞
j=0 |bj| <∞

◦ Linear Process is invertible if
∑∞
j=0 |aj| <∞

Recall that H(ω) =
∑∞
n=0 h(n)e−ωn → for ω = 0 ⇒ H(0) =

∑∞
n=0 h(n)
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Autoregressive processes (pole–only)

A general AR(p) process (autoregressive of order p) is given by

x[n] = a1x[n− 1] + · · ·+ apx[n− p] + w[n] =

p∑
i=1

aix[n− i] + w[n] = aTx[n] + w[n]

Observe the auto–regression in {x[n]} # the past of x is used to generate the future

Duality between the AR and MA processes:

For example, consider the first order
autoregressive process, AR(1),

x[n] = a1x[n− 1] + w[n] ⇔
∞∑
j=0

bjw[n− j]

It has an MA representation, too.
This follows from the duality

between IIR and FIR filters.

x[n] = 0.9x[n− 1] + w[n]

x[n]=w[n]+.9w[n− 1]+.81w[n− 2]+· · ·
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Example 5: Statistical properties of AR processes
Drive the AR(4) model from Example 6 with two different WGN realisations ∼ N (0, 1)
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white Gaussian noise AR(4) process Autocorrelation Power spectrum

r = wgn(2048,1,1);

a = [2.2137, -2.9403, 2.1697, -0.9606];

a = [1 -a];

x = filter(1,a,r);

xacf = xcorr(x);

xpsd = abs(fftshift(fft(xacf)));

◦ The time domain random AR(4)

processes look different

◦ The ACFs and PSDs are exactly

the same (2nd-order stats)!

◦ This signifies the importance

of taking a statistical approach
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ACF and normalised ACF of AR processes (see Appendix 3)

Key: ACF has the same form as the AR process in hand!

To obtain the autocorrelation function of an AR process, multiply the
above equation by x[n− k] to obtain (recall that r(−m) = r(m))

x[n− k]x[n] = a1x[n− k]x[n− 1] + a2x[n− k]x[n− 2] + · · ·
+apx[n− k]x[n− p] + x[n− k]w[n]

Notice that E{x[n− k]w[n]} vanishes when k > 0. Therefore, we have

rxx(0) = a1rxx(1) + a2rxx(2) + · · ·+ aprxx(p) + σ2
w, k = 0

rxx(k) = a1rxx(k − 1) + a2rxx(k − 2) + · · ·+ aprxx(k − p), k > 0

On dividing throughout by rxx(0) we obtain

ρ(k) = a1ρ(k − 1) + a2ρ(k − 2) + · · ·+ apρ(k − p) k > 0

Quantities ρ(k) are called normalised correlation coefficients
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Variance and spectrum of AR processes

Variance:
For k = 0, the contribution from the term E{x[n− k]w[n]} is σ2

w, and

rxx(0) = a1rxx(−1) + a2rxx(−2) + · · ·+ aprxx(−p) + σ2
w

Divide by rxx(0) = σ2
x to obtain

σ2
x =

σ2
w

1− ρ1a1 − ρ2a2 − · · · − ρpap

Power spectrum: (recall that Pxx = |H(z)|2Pww = H(z)H∗(z)Pww, the
expression for the output power of a linear system → see Appendix)

Pxx(f) =
2σ2

w

|1− a1e−2πf − · · · − ape−2πpf |2
0 ≤ f ≤ 1/2

Fro more detail: “Spectrum of Linear Systems” from Lecture 1: Background
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Example 6a: AR(p) signal generation vs # data points
Consider an AR(4) process with coeff. a = [2.2137,−2.9403, 2.1697,−0.9606]

◦ Generate the input signal
x by filtering white noise
through the AR filter

◦ Estimate the PSD of x
based on a fourth-order
AR model

◦ Careful! The Matlab
routines require the AR
coeff. a in the format

a = [1,−a1, . . . ,−ap]
Normalized Frequency  (×π rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/r
a
d
/s

a
m

p
le

)

-30

-20

-10

0

10

20

30
Yule-Walker Power Spectral Density Estimate

256 points
1024 points

Notice the dependence on data length
Solution:
randn(’state’,1);

x = filter(1,a,randn(256,1)); % AR system output

pyulear(x,4) % Fourth-order estimate
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Example 6b: Alternative AR power spectrum calculation
(an alternative function in Matlab)

Consider the AR(4) system given by

x[n] = 2.2137x[n−1]−2.9403x[n−2]+2.1697x[n−3]−0.9606x[n−4]+w[n]

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients

freqz(1,a) % AR filter frequency response

title(’AR System Frequency Response’)
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Key: Finding AR coefficients # the Yule–Walker eqns
(there are several similar forms – we follow the most concise one)

R Recall that we have already calculated the autocorrelation function (ACF)
which follows the same form as the AR(p) model as the data, that is

rxx(k) = a1rxx(k − 1) + a2rxx(k − 2) + · · ·+ aprxx(k − p), k > 0

Then, with the known rxx(0), . . . , rxx(p− 1), we can build a system of p
equations with p unknowns (a1, . . . , ap), and solve for a1, . . . , ap, that is

rxx(1) = a1rxx(0) + a2rxx(1) + · · ·+ aprxx(p− 1)

rxx(2) = a1rxx(1) + a2rxx(0) + · · ·+ aprxx(p− 2)

... = ...

rxx(p) = a1rxx(p− 1) + a2rxx(p− 2) + · · ·+ aprxx(0)

These equations are called the Yule–Walker or normal equations.

R Their solution gives us the set of autoregressive parameters, a1, . . . , ap,

or a = [a1, . . . , ap]
T , which build the AR(p) model and generate an

AR(p) process.
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A vector–matrix form of the Yule–Walker equations

The above set of Yule–Walker equations can be expressed in a compact
vector–matrix form

rxx = Rxxa a = [a1, a2, . . . , ap]
T

since

Rxx =


rxx(0) rxx(1) · · · rxx(p− 1)
rxx(1) rxx(0) · · · rxx(p− 2)

... ... . . . ...
rxx(p− 1) rxx(p− 2) · · · rxx(0)

 and rxx =


rxx(1)
rxx(2)

...
rxx(p)


R The ACF matrix Rxx is positive definite (Toeplitz) which guarantees matrix

inversion, so that the Yule-Walker solution for the unknown AR(p)
coeficients, [a1, . . . , ap]

T = a, becomes

Yule-Walker solution: a = R−1xxrxx
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Example 7: Find the parameters of an AR(2) process,
x(n), generated by x[n] = 1.2x[n− 1]− 0.8x[n− 2] + w[n]

Homework: Comment on the shape of the ACF for large lags
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ACF for AR(2) signal x=filter([1],[1, −1.2, 0.8],w)

Matlab: for i=1:6; [a,e]=aryule(x,i); display(a);end

a(1) = [0.6689] a(2) = [1.2046,−0.8008]

a(3) = [1.1759,−0.7576,−0.0358]

a(4) = [1.1762,−0.7513,−0.0456, 0.0083]

a(5) = [1.1763,−0.7520,−0.0562, 0.0248,−0.0140]

a(6) = [1.1762,−0.7518,−0.0565, 0.0198,−0.0062,−0.0067]
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Example 8: Advantages of model-based analysis
Consider the PSDs for different realisations of the AR(4) process from Example 5
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◦ The different realisations of the AR(4) process (based on different driving WGNs) lead

to different Empirical PSD’s (in thin black)

◦ The theoretical PSD from the model is consistent regardless of the data (in thick red)

N = 1024;

w = wgn(N,1,1);

a = [2.2137, -2.9403, 2.1697, -0.9606]; % Coefficients of AR(4) process

a = [1 -a];

x = filter(1,a,w);

xacf = xcorr(x); % Autocorrelation of AR(4) process

dft = fft(xacf);

EmpPSD = abs(dft/length(dft)).^ 2; % Empirical PSD obtained from data

ThePSD = abs(freqz(1,a,N,1)).^ 2 ; % Theoretical PSD obtained from model
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Normal equations for the autocorrelation coefficients

Standard correlations can take any value, so it is often convenient to
consider correlations coefficients

ρk = rxx(k)/rxx(0) − 1 < ρk < 1

which are normalised by rxx(0) (signal power), and take values ∈ [−1, 1].

Then, the Yule-Walker equations expressed in terms of ρk become

ρ1 = a1 + a2ρ1 + · · ·+ apρp−1

ρ2 = a1ρ1 + a2 + · · ·+ apρp−2
... = ...

ρp = a1ρp−1 + a2ρp−2 + · · ·+ ap

Q: When does the sequence {ρ0, ρ1, ρ2, . . .} vanish?

Homework: Explore the command xcorr in Matlab
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Yule–Walker modelling in Matlab

In Matlab – Power spectral density using Y–W method pyulear

Pxx = pyulear(x,p)

[Pxx,w] = pyulear(x,p,nfft)

[Pxx,f] = pyulear(x,p,nfft,fs)

[Pxx,f] = pyulear(x,p,nfft,fs,’range’)

[Pxx,w] = pyulear(x,p,nfft,’range’)

Description:

Pxx = pyulear(x,p)

implements the Yule-Walker algorithm, and returns Pxx, an estimate of the
power spectral density (PSD) of the vector x.

To remember for later → This estimate is also an estimate of the
maximum entropy.

See also aryule, lpc, pburg, pcov, peig, periodogram
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Stochastic modelling: From raw data to ARMA(p,q) proc.

So far, we have assumed the model (AR, MA, or ARMA) and analysed the
ACF and PSD based on known model coefficients.

In practice: DATA # MODEL

This procedure is as follows:

* record data x(k)

* find the autocorrelation of the data ACF(x)

* divide by r_xx(0) to obtain correlation coefficients \rho(k)

* write down Yule-Walker equations

* solve for the vector of AR parameters

The problem is that we do not know the model order p beforehand.

An intuition into the choice of the correct morel order is given in
the following example.
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Example 9: Sunspot number estimation
consistent with the properties of a second order AR process
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a1 = [0.9295] a2 = [1.4740,−0.5857]
a3 = [1.5492,−0.7750, 0.1284]
a4 = [1.5167,−0.5788,−0.2638, 0.2532]
a5 = [1.4773,−0.5377,−0.1739, 0.0174, 0.1555]
a6 = [1.4373,−0.5422,−0.1291, 0.1558,−0.2248, 0.2574]

R ‘Best” model is AR(2): x[n] = 1.474x[n− 1]− 0.5857x[n− 2] + w[n]
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Special case #1: AR(1) process (Markov)

For Markov processes, we have the first order conditional expectation,
given by

p(x[n]|x[n− 1], x[n− 2], . . . , x[0]) = p(x[n]|x[n− 1])

Then x[n] = a1x[n− 1] + w[n] = w[n] + a1w[n− 1] + a21w[n− 2] + · · ·︸ ︷︷ ︸
equivalent MA(∞) process

Therefore: order-1 memory

i) For the AR(1) process to be stationary −1 < a1 < 1.

ii) Autocorrelation Function of AR(1): From the Yule-Walker equations

rxx(k) = a1rxx(k − 1), k > 0

r0 = a1rxx(1) + σ2
w, k = 0

In terms of the correlation coefficients, ρ(k) = r(k)/r(0), with ρ0 = 1

ρk = ak1, k > 0

Notice the difference in the behaviour of the ACF for a positive and negative a1
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Variance and power spectrum of AR(1) process

Both can be calculated directly from the general expression for the
variance and spectrum of AR(p) processes, given in Slide 22.

◦ Variance: Also from a general expression for the variance of linear
processes from Lecture 1

σ2
x =

σ2
w

1− ρ1a1
=

σ2
w

1− a21

◦ Power spectrum: Notice how the flat PSD of WGN is shaped
according to the position of the pole of AR(1) model (Low-Pass for
0 < a1 < 1 and High-Pass for −1 < a1 < 0)

Pxx(f) =
2σ2

w

|1− a1e−2πf |2
=

2σ2
w

1 + a21 − 2a1cos(2πf)
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Example 10 a): ACF and spectrum of AR(1) for a = ±0.8

a < 0 → High Pass a > 0 → Low Pass
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Example 10 b): Model order of a financial time series
(the ’correct’ and ’time-reversed’ time series)
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Autoregressive coefficients:

AR(1): a = [0.9994]

AR(2): a = [.9994,−.0354]

AR(3): a = [.9994,−.0354,
−.0024]

AR(4): a = [.9994,−.0354,
−.0024, .0129]

AR(5): a = [.9994,−.0354,
−.0024, .0129,−.0129]

AR(6): a = [.9994,−.0354,
−.0024, .0129,−.0129,−.0172]
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Special case #2: Second order autoregressive processes,
p = 2, q = 0, hence the notation AR(2)

The input–output functional relationship is given by (w[n] ∼ any white noise)

x[n] = a1x[n− 1] + a2x[n− 2] + w[n]

X(z) =
(
a1z
−1 + a2z

−2)X(z) +W (z)

⇒ H(z) =
X(z)

W (z)
=

1

1− a1z−1 − a2z−2

H(ω) = H(eω) =
1

1− a1e−ω − a2e−2ω
→ Pxx(ω) = |H(ω)|2 σ2

w

Y-W equations for p=2

ρ1 = a1 + a2ρ1

ρ2 = a1ρ1 + a2

when solved for a1 and a2, we have

a1 =
ρ1(1− ρ2)

1− ρ21
a2 =

ρ2 − ρ21
1− ρ21

Connecting a’s and ρ’s

ρ1 =
a1

1− a2

ρ2 = a2 +
a21

1− a2
Since ρ1 < ρ(0) = 1 # a stability
condition on a1 and a2
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Variance and power spectrum (see Slide 22)

Both readily obtained from the general AR(2) process equation!

Variance

σ2
x =

σ2
w

1− ρ1a1 − ρ2a2
=

(
1− a2
1 + a2

)
σ2
w

(1− a2)2 − a21
Power spectrum

Pxx(f) =
2σ2

w

|1− a1e−2πf − a2e−4πf |2

=
2σ2

w

1 + a21 + a22 − 2a1(1− a2 cos(2πf)− 2a2 cos(4πf))
, 0 ≤ f ≤ 1/2

Stability conditions  (Condition 1 can be obtained from the
denominator of variance, Condition 2 from the expression for ρ1, etc.)

Condition 1 : a1 + a2 < 1

Condition 2 : a2 − a1 < 1

Condition 3 : − 1 < a2 < 1

This can be visualised within the so–called “stability triangle”
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Stability triangle

ACF

m

ACF

m

ACF

m

IVIII

II I

Real Roots

Complex Roots

a

a

1

−1

2−2 1

2

ACF

m

i) Real roots Region 1: Monotonically decaying ACF
ii) Real roots Region 2: Decaying oscillating ACF

iii) Complex roots Region 3: Oscillating pseudo-periodic ACF
iv) Complex roots Region 4: Pseudo-periodic ACF
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Example 11: Stability triangle and ACFs of AR(2) signals
Left: a = [−0.7, 0.2] (region 2) Right: a = [1.474,−0.586] (region 4)
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Determining regions in the stability triangle
let us examine the autocorrelation function of AR(2) processes

The ACF

ρk = a1ρk−1 + a2ρk−2 k > 0

◦ Real roots: ⇒ (a21 + 4a2 > 0) ACF # mixture of damped exponentials

◦ Complex roots: ⇒ (a21 + 4a2 < 0) ⇒ ACF exhibits a pseudo–periodic
behaviour

ρk =
Dk sin(2πf0k + Φ)

sin Φ

D - damping factor, of a sinewave with frequency f0 and phase Φ

D =
√
−a2

cos(2πf0) =
a1

2
√
−a2

tan(Φ) =
1 +D2

1−D2
tan(2πf0)
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Example 12: AR(2) where a1 > 0, a2 < 0 # Region 4
Consider: x[n] = 0.75x[n− 1]− 0.5x[n− 2] + w[n]
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The damping factor

D =
√

0.5 = 0.71,

Frequency

f0 = cos−1(0.5303)
2π = 1

6.2

The fundamental period of
the autocorrelation function
is therefore

T0 = 6.2.
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Model order selection # Intuition
Consider an AR(1) process with a1 = −0.3, and an AR(2) with a1 < 0, a2 > 0

The nature of an AR process may be inferred through scatter plots of pairs
x[n], x[m+ n], separated by an interval (lag), m.
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Model order selection: Partial autocorrelation function
Consider an earlier example using a slightly different notation for AR coefficients
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To find p, first re-write AR coeffs. of order p as [a_p1,...,a_pp]

p = 1# [0.6689] = a11 p = 2# [1.2046,−0.8008] = [a21, a22]

p = 3#[1.1759,−0.7576,−0.0358] = [a31, a32, a33]

p = 4# [1.1762,−0.7513,−0.0456, 0.0083] = [a41, a42, a43, a44]

p = 5# [1.1763,−0.7520,−0.0562, 0.0248,−0.0140] = [a51, . . . , a55]

p = 6# [1.1762,−0.7518,−0.0565, 0.0198,−0.0062,−0.0067]
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Partial autocorrelation function: Motivation
see Appendix 5 for more detail

Notice: ACF of AR(p) infinite in duration, but can by be described in
terms of p nonzero functions ACFs.

Denote by akj the jth coefficient in an autoregressive representation of
order k, so that akk is the last coefficient. Then

ρj = akjρj−1 + · · ·+ ak(k−1)ρj−k+1 + akkρj−k j = 1, 2, . . . , k

leading to the Yule–Walker equations, which can be written as
1 ρ1 ρ2 · · · ρk−1
ρ1 1 ρ1 · · · ρk−2
... ... ... . . . ...

ρk−1 ρk−2 ρk−3 · · · 1



ak1
ak2

...
akk

 =


ρ1
ρ2
...
ρk


The only difference from the standard Y-W equations is the use of the
symbols aki to denote the AR coefficient ai # k indicating the model order
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Finding partial ACF coefficients AR 2 Highpass Circularity.m

Solving these equations for k = 1, 2, . . . successively, we obtain

a11 = ρ1, a22 =
ρ2 − ρ21
1− ρ21

, a33 =

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

∣∣∣∣∣∣
, etc

◦ The quantity akk, regarded as a function of the model order k, is called
the partial autocorrelation function (PAC) (more details in Appendix 5)

• The PAC, akk, measures the linear correlation between x(n) and
x(n− k), once we have removed the influence of xn−1, . . . , xn−k+1

◦ For an AR(p) process, the PAC akk will be nonzero for k ≤ p and
zero-valued for k > p # indicates the order of an AR(p) process.

In practice, we introduce a small threshold, as for real world data it is
difficult to guarantee that akk = 0 for k > p. (see your Coursework)
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Example 13: Work by Yule # model of sunspot numbers
Recorded for > 300 years. To study them in 1927 Yule invented the AR(2) model
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We first center the data, as we do
not wish to model the DC offset
(determinisic component), but
the stochastic component (AR
model driven by white noise)!

Using the Y-W equations we obtain:

a1 = [0.9295]

a2 = [1.4740,−0.5857]

a3 = [1.5492,−0.7750, 0.1284]

a4=[1.5167,-0.5788,-0.2638,0.2532]

a5=[ 1.4773,-0.5377,-0.1739,
0.0174,0.1555]

a6=[1.4373, -0.5422, -0.1291,
0.1558, -0.2248, 0.2574]

See also Slide 9
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Example 13 (contd.): Model order for sunspot numbers
After k = 2 the partial correlation function (PAC) is very small, indicating p = 2
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The broken red lines denote the 95% confidence interval which has the
value ±1.96/

√
N , and where PAC ≈ 0 (see Appendix 5)
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Example 14: Model order for an AR(3) process
An AR(3) process realisation, its ACF, and partial autocorrelation (PAC)
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After lag k = 3, the PAC becomes very small (broken line  conf. int.)
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Example 15: The Partial Correlation view # model order
of a financial time series (the ’correct’ and ’time-reversed’ time series)
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Partial correlations:

AR(1): a = [0.9994]

AR(2): a = [.9994,−.0354]

AR(3): a = [.9994,−.0354,
−.0024]

AR(4): a = [.9994,−.0354,
−.0024, .0129]

AR(5): a = [.9994,−.0354,
−.0024, .0129,−.0129]

AR(6): a = [.9994,−.0354,
−.0024, .0129,−.0129,−.0172]
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Example 16: ARMA(p,q) modelling of COVID-19 data?

COVID-19 time series in the UK Second wave, UK COVID-19
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AR model based prediction: Importance of model order

For a zero mean process x[n], the best linear predictor, in the mean
square error sense, of x[n] based on x[n− 1], x[n− 2], . . . is

x̂[n] = ak−1,1x[n− 1] + ak−1,2x[n− 2] + · · ·+ ak−1,k−1x[n− k + 1]

(apply the E{·} operator to the general AR(p) model expression, and
recall that E{w[n]} = 0)

(Hint:

E{x[n]} = x̂[n] = E {ak−1,1x[n− 1] + · · ·+ ak−1,k−1x[n− k + 1] + w[n]} =

ak−1,1x[n− 1] + · · ·+ ak−1,k−1x[n− k + 1]) )

whether the process is an AR or not

In MATLAB, check the function:

ARYULE

and functions

PYULEAR, ARMCOV, ARBURG, ARCOV, LPC, PRONY
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Example 17: AR(1) and AR(3) prediction of COVID-19
data

AR(1) T: cases, B: Deaths AR(3) T: cases, B: Deaths
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Example 18: Under– vs Over–fitting a model #
Estimation of the parameters of an AR(2) process

Consider AR(2): x[n] = −0.2x[n− 1]− 0.9x[n− 2] +w[n], w[n] ∼ N (0, 1)

R We perform its prediction using AR(1), AR(2) and AR(20) models:

360 370 380 390 400 410
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5

Original and estimated signals

Time [sample]
0 5 10 15 20

−0.8

−0.6

−0.4

−0.2

0

0.2

Coefficient index

AR coefficients

Original AR(2) signal

AR(1), Error=5.2627

AR(2), Error=1.0421

AR(20), Error=1.0621

The higher order coefficients of the AR(20) model are close to zero and
therefore do not contribute significantly to the estimate, while the AR(1)
does not have sufficient degrees of freedom. (see also Appendix 3)
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Effects of over-modelling on autoregressive spectra:
Spectral line splitting

Consider an AR(2) signal

x(n) = −0.9x(n− 2) + w(n) with w ∼ N (0, 1)

We have N = 64 data samples, and model orders p = 4 (solid blue) and
p = 12 (broken green). AR 2 Highpass Circularity.m
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AR(4)→

← AR(12)

Notice that this is an AR(2) model!

Although the true spectrum has a single spectral peak at ω − π/2 (blue),
when over-modelling using p = 12 this peak is split into two peaks (green).
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Model order selection # practical issues (see Appendix 7)

In practice: the greater the model order the greater accuracy & complexity

Q: When do we stop? What is the optimal model order?

Solution: To establish a trade–off between computational complexity and
model accuracy, we introduce a “penalty” for high model orders. Some of
the criteria for model order selection are:

MDL: The minimum description length criterion (MDL) (by Rissanen),

AIC: The Akaike information criterion (AIC)

MDL popt = min
p

[
log(E) +

p ∗ log(N)

N

]
AIC popt = min

p
[log(E) + 2p/N ]

E  the loss function (typically cumulative squared error),
p  the number of estimated parameters (model order),
N  the number of available data points.
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Example 19: Model order selection # MDL vs AIC
MDL and AIC criteria for an AR(2) model with a1 = 0.5 a2 = −0.3
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model order  p

AIC for AR(2)

 

 
AIC

Cumulative Squared Error

MDL

Cumulative Squared Error

The graphs on the left
show the (prediction
error)2 (vertical axis)
versus the model order p
(horizontal axis). Notice
that popt = 2.

The curves are convex,
i.e. a monotonically
decreasing error2 with an
increasing penalty term
(MDL or AIC correction).

Hence, we have a
unique minimum at p =
2, reflecting the correct
model order (no over-
modelling/fitting)
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Moving average processes, MA(q)

A general MA(q) process is given by

x[n] = w[n] + b1w[n− 1] + · · ·+ bqw[n− q]

Autocorrelation function: The autocovariance function of MA(q)

ck = E
[
(w[n] + b1w[n− 1] + · · ·+ bqw[n− q])× x[n− k]

]
The ACF of an MA process has a cutoff after lag q.

Hence the, for k = 0, the variance of the MA(q) process becomes

c0 = (1 + b21 + · · ·+ b2q)σ
2
w

Spectrum: All–zero transfer function ⇒ struggles to model ’peaky’ PSDs

P (f) = 2σ2
w

∣∣1 + b1e
−2πf + b2e

−4πf + · · ·+ bqe
−2πqf ∣∣2
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Example 20: Third order moving average MA(3) process
An MA(3) process and its autocorrel. (ACF) and partial autocorrel. (PAC) fns.
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After lag k = 3, the PAC becomes very small (broken line  conf. int.)
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Example 21: Analysis of nonstationary signals
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◦ Consider a real–
world speech signal,
and thee different
segments with
different statistical
properties

◦ Different AR
model orders
required for
different segments
of speech #
opportunity for
content analysis!

◦ To deal with
nonstationarity we
need short sliding
data windows
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Example 22: Problems with nonstationary data
The nonstat. air passengers time series has trend, cyclical and seasonal comp.

1950 1952 1954 1956 1958 1960
100
200
300
400
500
600

Pa
ss

en
ge

rs

Raw
First Order Regression

1950 1952 1954 1956 1958 1960
Date

100
50

0
50

100
150

De
tre

nd
ed

Detrended

R This is reflected in the autocorrelation and PAC functions (trend, seasonal)
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Dealing with nonstationarity in data: Autoregresive
Integrated Moving Average models, ARIMA(p,d,q)

◦ ARMA models should be used when the data is stationary

◦ When data shows elements of non-stationarity, a generalisation of ARMA
models may be used which accounts for nonstationarity, referred to as the
autoregressive integrated moving average (ARIMA) model

◦ The form of ARIMA models is same as that of ARMA models, but with
additional differencing of the input data in order to remove elements of
non-stationarity (e.g. drifts or trends)

◦ This differencing corresponds to the “integrated” part of the model

◦ ARIMA(p, d, q) means: AR of order p, MA of order q, d × differentiation

y(n) =

p∑
i=1

aiy(n− i) +

q∑
j=1

bjw(n− j) + w(n)

R where y(n) is the d-th difference of x(n). Therefore,

◦ For d = 0, we have (y(n) = x(n) ◦ For d = 1, y(n) = x(n)− x(n− 1)

◦ For d = 2, that is, for an ARIMA(p,2,q) model, we have
y(n)=[x(n)−x(n−1)]− [x(n−1)−x(n−2)] = x(n)−2x(n−1)+x(n−2)
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Example 22a: ARMA vs ARIMA, nonstationary data
One-step prediction: ARMA(2,4) vs ARIMA(2,1,4) model, air passenger data

For ARIMA(2,1,4) modelling and subsequent prediction (inference), the
non-statationary airline passenger time series was first differentiated as

y(n) = x(n)− x(n− 1) for n = 1, . . . , N − 1
The ARIMA(2,1,4) model was then found, in the form
y(n) = a1y(n− 1) + a2y(n− 2) + b1w(n− 1) + · · ·+ b4w(n− 4) + w(n)
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ARMA(2, 4) one-step prediction
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ARIMA(2, 1, 4) one-step prediction

The ARIMA(2,1,4) model was able to deal better with the nonstationarity
input, with error2 = 118 k as opposed to error2 = 135 k for ARMA(2,4).
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Example 22b: ARMA vs ARIMA, nonstationary data
5-step ahead prediction: ARMA(12,4) versus ARIMA(12,1,4) model

For ARIMA(12,1,4) modelling and subsequent prediction (inference), the
airline passenger time series was first differentiated as

y(n) = x(n)− x(n− 1) for n = 1, . . . , N − 1

The ARIMA(12,1,4) model was then found, of the form

y(n) = a1y(n− 1) + · · ·+ a12y(n− 12) + b1w(n− 1) + · · ·+ b4w(n− 4) + w(n)
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ARMA(12, 4), 5-step prediction
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ARIMA(12, 1, 4), 5-step prediction

R The ARIMA(12,1,4) model yields much better inference than ARMA(12,4)
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Example 22c: ARIMA prediction of COVID-19 data
(see Lecture 3 for the Bias–Variance trade–off)

Consider the prediction of COVID-19 death rates in the UK.

◦ The AR(1) prediction exhibits bias, as the mean of the predicted data (in
red) is “off-set” from the mean of true data (in blue) for most of the plot

◦ The ARIMA(7,1,1) prediction is almost unbiased, and with similar
variance as AR(1) prediction (which one do you prefer)
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Nonlinear autoregressive models and Neural Networks
Nonlinear Autoregressive with Exogenous Inputs (NARX)

Recall the ARMA model

y(n) = a1y(n− 1) + · · ·+ apy(n− p) + w(n) + b1w(n− 1) + · · ·+ b1w(n− q)

This model provides two forms of geometric invariance: 1) scale invariance
and 2) time translation # very useful in Neural Networks

The above NARMA(3,2) RNN has three hidden neurons and performs
mapping ŷn+1 = Φ(yn, yn−1, yn−2, un, un−1, un−2)
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Summary: AR and MA Processes

◦ A stationary AR(p) process can be represented as an infinite order MA
process. A finite MA process has a dual infinite AR process.

◦ A finite MA(q) process has an ACF that is zero beyond lag q. For an
AR process, the ACF is infinite in length and consists of mixture of
damped exponentials and/or damped sinusoids.

◦ Finite MA processes are always stable, and there is no requirement on
the coefficients of MA processes for stationarity. For invertibility, the
roots of the characteristic equation must lie inside the unit circle.

◦ AR processes produce spectra with sharp peaks (two poles of A(z) per
peak), whereas MA processes cannot produce peaky spectra.

◦ For Vector Autoregressive (VAR) models, see Appendix 8.

ARMA modelling is a classic technique which has found a
tremendous number of practical applications.

Even Large Language Models (LLM) such as ChatGPT perform a form of
auto-regression when generating new words (see Appendix 10).
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Summary: Wold’s decomposition, ARMA, ARIMA

◦ Every stationary time series can be represented as a sum of a perfectly
predictable process and a feasible moving average process

◦ Two time series with the same Wold representations are the same, as
the Wold representation is unique

◦ Since any MA process also has an ARMA representation, working with
ARMA models is not an arbitrary choice but is physically justified

◦ The causality and stationarity on ARMA processes depend entirely on
the AR parameters and not on the MA parameters

◦ An MA process is not uniquely determined by its ACF

◦ An AR(p) process is always invertible, even if it is not stationary

◦ An MA(q) process is always stationary, even if it is non-invertible

◦ For non-stationary data we may employ ARIMA(p,d,q) models
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Recap: Linear systems

H(z)

X(z)

Y(z)
H(z) =

unknown/known

known/unknown

known
functiontransfer

outputinput

h(k)

y(k)x(k)

Y(z)X(z)

Described by their impulse response h(n) or the transfer function H(z)

In the frequency domain (remember that z = eθ) the transfer function is

H(θ) =

∞∑
n=−∞

h(n)e−nθ {x[n]} →
∣∣∣∣ {h(n)}
H(θ)

∣∣∣∣→ {y[n]}

that is y[n] =

∞∑
r=−∞

h(r)x[n− r] = h ∗ x

The next two slides show how to calculate the power of the output, y(n).
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Recap: Linear systems – statistical properties # mean
and variance

i) Mean

E{y[n]} = E

{ ∞∑
r=−∞

h(r)x[n− r]

}
=

∞∑
r=−∞

h(r)E{x[n− r]}

⇒ µy = µx

∞∑
r=−∞

h(r) = µxH(0)

[ NB: H(θ) =
∑∞

r=−∞ h(r)e
−jrθ. For θ = 0, then H(0) =

∑∞
r=−∞ h(r) ]

ii) Cross–correlation

ryx(m) = E{y[n]x[n+m]} =

∞∑
r=−∞

h(r)E{x[n− r]x[n+m]}

=

∞∑
r=−∞

h(r)rxx(m− r) convolution of input ACF and {h}

⇒ Cross-power spectrum Syx(f) = F(ryx) = Sxx(f)H(f)
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Recap: Lin. systems – statistical properties # output
These are key properties # used in AR spectrum estimation

From rxy(m) = ryx(−m) we have
rxy(m) =

∑∞
r=−∞ h(r)rxx(m− r). Now we write

ryy(m) = E{y[n]y[n+m]} =

∞∑
r=−∞

h(r)E{x[n− r]y[n+m]}

=

∞∑
r=−∞

h(r)rxy(m+ r) =

∞∑
r=−∞

h(−r)rxy(m− r)

by taking Fourier transforms we have
Sxy(f) = Sxx(f)H(f)

Syy(f) = Sxy(f)H(−f)  function of rxx

or
Syy(f) = H(f)H(−f)Sxx(f) = |H(f)|2Sxx(f)

Output power spectrum = input power spectrum × squared transfer function
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More on Wold Decomposition (Representation) Theorem
Example: A “paradox”, can we talk about a deterministic random process

Consider a stochastic process given by

x[n] = A cos[n] +B sin[n]

where A, B ∈ N (0, σ2) and A is independent of B (A and B are
independent normal random variables).

This process is deterministic because it can be written as

x[n] =
sin(2)

sin(1)
x[n− 1]− x[n− 2]

that is, based on the history of x[n]. Therefore

p(x[n] |x[n− 1], x[n− 2], . . .) =
sin(2)

sin(1)
x[n− 1]− x[n− 2] = x[n]

Remember: Deterministic does not mean that x[n] is non-random
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Appendix 1: Sunspot numbers (recorded since 1874)
Top: original sunspots Middle and Bottom: AR(2) representations

Left: time Middle:spectrum Right: autocorrelation
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Appendix 2: Model order for an AR(2) process
An AR(2) signal, its ACF, and its partial autocorrelations (PAC)
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Appendix 3: Obtaining the ACF of a general AR(p)
process

Consider the AR(p) process, given by

x[n] = a1x[n− 1] + a2x[n− 2] + · · ·+ apx[n− p] + w[n]

To obtain the autocorrelation function of this AR process, multiply the
above equation by x[n− k] to obtain (recall that r(−m) = r(m))

x[n− k]x[n] = a1x[n− k]x[n− 1] + a2x[n− k]x[n− 2] + · · ·
+apx[n− k]x[n− p] + x[n− k]w[n]

Apply the statistical expectation operator (the coefficients ai go in front)

E{x[n− k]x[n]}︸ ︷︷ ︸
rxx(k)

= a1E{x[n− k]x[n− 1]}︸ ︷︷ ︸
rxx(k−1)

+a2E{x[n− k]x[n− 2]︸ ︷︷ ︸
rxx(k−2)

}+ · · ·

+apE{x[n− k]x[n− p]}︸ ︷︷ ︸
rxx(k−p)

+E{x[n− k]w[n]}︸ ︷︷ ︸
rxw(k)=0

R rxw(k) = 0 since x[n−k] = a1x[n−k−1] + · · ·+apx[n−k−p] +w[n−k].

As w[n− x] ⊥ w[n], then E{x[n− k]w[n]} vanishes for k > 0, to give

rxx(k) = a1rxx(k − 1) + a2rxx(k − 2) + · · ·+ aprxx(k − p), k > 0
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Appendix 4a): Scatter plots of the detrended S&P 500
financial index
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The detrended S&P 500 time series shows strong correlations for small
lags in the scatter plot.

c© D. P. Mandic Statistical Signal Processing & Inference 76



Appendix 4b): Euro vs USD currency exchange
Scatter plots of a detrended EUR/USD exchange rate vs its τ days lagged version
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Appendix 5: More on the Partial Autocorrelation
Function (PACF)

The PACF of a stationary process is a vector, π, defined as

π(k) =

{
π(0) = 1
π(k) = akk, for k ≥ 1

where akk is the last component of ak = [ak1, ak2, . . . , akk]
T , k = 1, 2, . . . p

which are calculated from ak = R−1k rk (Yule-Walker, see Slide 23)

R It is possible to show that its value π(k) = akk, for k ≥ 1 is equivalent to
the correlation coefficient between the residuals of the regressions

x(n)− x̂(n) = x(n)− E
{
x(n) |x(n− 1), . . . , x(n− k + 1)

}
and

x(n− k)− x̂(n− k) = x(n− k)− E
{
x(n− k) |x(n− k + 1), . . . , x(n− 1)

}
future values

R π(k) (or equally the AR coefficient akk) measures the linear dependence
between x(n) and x(n− k), once we have removed the influence of
xn−1, . . . , xn−k+1, i.e. akk = corr

(
x(n)− x̂(n), x(n− k)− x̂(n− k)

)
.
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Appendix 5: Confidence intervals for PACFs (intuition)

Quenouille (1949) showed that on the hypothesis that the process is
AR(p), the estimated partial autocorrelations of order p+ 1, and higher,
are approximately independently and normally distributed with zero mean.

With N observations, we then have var(âkk) ≈ 1/N, k ≥ p+ 1.

Thus, the standard error (SE) of the estimated PAC âkk is

SE(âkk) = σ̂(âkk) ≈ 1/
√
N, k ≥ p+ 1.

Intuition: Let us establish whether a time series, {x1, . . . , xN}, is an
independent identically distributed process, that is, x ∼ i.i.d.(0, σ2)

To achieve this, we need a decision rule, for example

Reject the null hypothesis H0 : ρk = 0 if |ρ̂k| > c, with c a constant.

Constant c is a threshold, arising e.g. from a statistical significance test

P (|ρ̂k| > c|H0) = 0.05 ⇒ P (|ρ̂k| > c|H0) = 1− P (|ρ̂k| ≤ c|H0) = 0.05

This implies that P (|ρ̂k| ≤ c|H0) = P (−c
√
N ≤

√
Nρ̂k ≤ c

√
N) = 0.95
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Appendix 5: Confidence intervals for PACFs (intuition)

If xn is i.i.d.(0, σ2), then
√
Nρ̂k → N (0, 1) and, for large N , a normal

distribution is a good approximation to the true distribution of
√
Nρ̂k. s.t.

P (−c
√
N ≤

√
Nρ̂k ≤ c

√
N) = 0.95 iff c

√
N = 1.96 ⇒ c =

1.96√
N

We can reject H0 if |ρ̂k| > 1.96/
√
N that is, if ρ̂k /∈ [−1.96/

√
N, 1.96/

√
N ]

In a two-tailed test, the rejection region for a

significance level of 0.05 is at both ends of the

distribution (in our case Gaussian), and amounts to

up to 5% of the area under the curve (white regions).

R If the data, x1, . . . , xN were indeed generated by an i.i.d. process, then ≈
95% of sample ACFs, ρ̂1, . . . , ρ̂n, should be within the bounds ±1.96/

√
N .

In other words, about 5% of the sample correlations should be outside the
broken red lines in the PACF plots. For example, if 20 values of ρ̂k are
calculated, then only one of its values should lie outside these limits.
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Appendix 5: Confidence intervals for PACFs (intuition)

R The PACF basically finds correlation between the residuals at time n and
time n− k (after removing the effects which are already explained by the
earlier lags).

This is why it is called “partial” as the already found variations are
removed before calculating the next correlation.

If there is any hidden information left in the residual, we might have a
good correlation at the next lag, so we keep exploring along the lags.

R Too many correlated features are not desirable, as this can create
collinearity issues # we should retain only the relevant features.

The null hypothesis is the “default” assumption that there has been no
change in statistical behaviour.
To determine whether a result is statistically significant, we calculate a
p-value, which is the probability of a more extreme statistical behaviour
given that the null hypothesis is true.
The null hypothesis is rejected if the p-value is less than (or equal to) a
predetermined level – the significance level – which is usually set at 5%.
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Appendix 6: A note on over–parametrisation

Consider the linear stochastic process given by

x[n] = x[n− 1]− 0.16x[n− 2] + w[n]− 0.8w[n− 1]

It clearly has an ARMA(2,1) form. Consider now its coefficient vectors
written as polynomials in the z–domain

a(z) = 1− z−1 + 0.16z−2 = (1− 0.8z−1)(1− 0.2z−1)

b(z) = 1− 0.8z−1

These polynomials have a common factor (1− 0.8z−1), and therefore after
cancelling these terms, we have the resulting lower–order polynomials

a(z) = 1− 0.2z−1

b(z) = 1

The above process is therefore an AR(1) process, given by

x[n] = 0.2x[n− 1] + w[n]

and the original ARMA(2,1) version was over–parametrised.
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Appendix 7: More on model order selection

A criterion is said to be consistent if the correct model is chosen with probability one as

the number of data points asymptotically approaches∞.

◦ MDL is consistent whereas AIC is not.

◦ Hannan and Quinn (1979) proposed the Hannan-Quinn information criterion (HQC) as

a means of improving the consistency of AIC.

◦ Small-sample properties of AIC lead to over-estimating the model order. Hurvich and

Tsai (1989) derived a ‘corrected’ AIC, referred to as AICc, in order to compensate for the

small-sample over-fitting.

More detail in e.g. “Regression and Time Series Model Selection” by McQuarrie and Tsai.

MDL = logEp +
p logN

N
AIC = logEp +

2p

N
(1)

HQC = logEp +
2p log logN

N
AICc = AIC +

2p(p+ 1)

N − p− 1
(2)

where p is the model order, Ep is the loss function for the model with p
parameters and N is the number of estimated data points.
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Appendix 7: More on model order selection

The results below show that the AICc criterion was able to identify the
most parsimonious model order of p = 2.

Figure 1: Information criteria for AR model order selection, with cumulative
squared error as the loss function. A short segment of an AR(2) process
was considered, which affected the reliability of these information criteria.
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Appendix 8: Vector Autoregressive models (VAR)

◦ The multivariate, also called Vector Autoregressive (VAR), processes
generalise the standard AR (and ARMA) models.

◦ This allows us to make inference from multiple data channels together

◦ The quantities x, a and w now become matrices, so e.g. the VAR(1)
process can be expressed as

X(n) = AX(n− 1) + W(n)

◦ Something to think about: Would the inverse of the multichannel
correlation matrix depend on ’how similar’ the data channels are;
Explain this also in terms of eigenvalues and ’collinearity’.

◦ Threshold autoregressive (TAR) models allow for the mean of a time
series to change along the blocks of data. What are the advantages of
such a model?

◦ How would you express an AR(p) process as a state-space model; What
kind of the transition matrix between the states would you have?
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Appendix 8:Multivariate inference often helps
For a rigorous account of multivariate inference, see Lecture 4

Apple stock prediction using a vector autoregressive VAR(5) model (Apple
as one variate and 5 other stocks from S&P 500 as other variates)
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Appendix 9: From stochastic Autoregression to
Autoregressive Generative AI

Recall: The term ‘autoregressive’ originates from the field of time-series
forecasting, where future predictions are based on the past observations.

Such a “sequence prediction” has been routinely used in e.g. natural
language processing (NLP).

R Autoregressive generative models are much more complex, as e.g. even a
standard image of 1,000 × 1,000 pixels has a whopping 106 pixels!

Basis of Autoregressive Generative models

For an n-dimensional dataset to learn from, the joint distribution of data is

p(x0, x1, . . . , xn−1) = p(x0)p(x1|x0)p(x2|x1, x0) · · · p(xn−1|xn−2, . . . , x1, x0)

This precisely depicts the operation of large autoregressive models (no
assumption of conditional independence between variables).

Current Deep Autoregressive Generative models (2025) include Pixel CNN,
Pixel RNN, Character CNN, Character RNN, Wave–Net.

Pro’s and Con’s: Pos: Intuitive, well understood supervised learning
process; Neg: Needs ordering of random variables, sequential generation
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Consider also: Fourier transform as a filtering operation
We can see FT as a convolution of a complex exponential and the data (under a

mild assumption of a one-sided h sequence, ranging from 0 to ∞)

1) Continuous FT. For a continuous FT F (ω) =
∫∞
−∞ x(t)e−ωtdt

Let us now swap variables t→ τ and multiply by eωt, to give

eωt
∫
x(τ)e−ωτdτ =

∫
x(τ) eω(t−τ)︸ ︷︷ ︸

h(t−τ)
dτ = x(t) ∗ eωt (= x(t) ∗ h(t))

2) Discrete Fourier transform. For DFT, we have a filtering operation

X(k) =

N−1∑
n=0

x(n)e−
2π
N nk = x(0) +W

[
x(1) +W

[
x(2) + · · ·

]
︸ ︷︷ ︸

cumulative add and multiply

W = e−
2π
N n

with the transfer function (large N) H(z) = 1
1−z−1W = 1−z−1W ∗

1−2 cos θkz
−1+z−2

−x(t)

exp(jwt)

DFT
xx(t)*exp(jwt) +

DFTx[n]

Wz−1

discrete time case

continuous time case
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Notes
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