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This lecture & Time Series Modelling and Prediction

Q: Have you ever considered what the following tasks have in common?

e Forecasting of financial data
e Supply-demand modelling (e.g. electricity or air-ticket pricing)

e Modelling of COVID-19 spread

e Weather forecasting and modelling in astronomy (e.g. sunspots)

e Word generation by Large Language Models such as ChatGPT

A: These are time series of which the signal generating mechanisms are
largely unknown or untractable. We need to make inference from such data

based on historical observations (autoregression) — subject of this Lecture.
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It's always the same:
Just before the exam, book sales spike.
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Aims of this lecture

o To introduce linear stochastic models for real world data
o Establish the general regression and auto-regression frameworks

o Understand how stochastic processes are created, and to get familiarised
with the autocorrelation, variance and power spectrum of such processes

o Learn how to derive the parameters of linear stochastic ARMA models
o Introduce special cases: autoregressive (AR), moving average (MA)

o Stability conditions and model order selection (partial correlations)

o Optimal model order selection criteria (MDL, AIC, ...)

o Apply stochastic modelling to real world data (speech, environmental,
finance), and address the issues of under— and over—modelling

o Provide grounding and intuition for Generative Autoregressive models

This material is a first fundamental step for real-world time series analysis
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Relations between two variables: Scatter plots and

correlation

Correlation quantifies the strength (scatter) and direction of the linear
relationship between two variables.

e Strong Pos. Correlation = 0.98 )f:o

o Weak Positive Correlation = 0.55

° f\lo Correlation
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e Strong Neg. Correlation = -0.97

e Weak Negative Correlation = -0.6
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e No Correlation
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o In addition to the correlation between two variables, we would often like

X

a quantitative description of how the two variables vary together.
o We would also like to perform prediction based on this knowledge 3

subject of linear regression.

Regression line is a unique line
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Correlation versus Regression
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Correlation measures the strength of the relationship between the
variables x and y in both the z-direction and y-direction.

Regression examines the distance of all points from the regression line in
the y-direction only; it models the variation of the explained variable, v,
in response to the change in the explanatory variable, .

o Variable z is also called a regressor, independent variable, or predictor
o Variable y is also called response, dependent var., criterion or true label
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Regression: Advantages and limitations (see Lecture 6)
Motivation for Auto-Regression

Interpolation: Nobody in the Extrapolation: Needs to be
study drunk 6.5 pints of beer, considered much more carefully.
but we can still use regression to Height of Boys Over Time
interpolate and find the estimated
blood alcohol level.
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Interpolation is quite accurate, as

a linear fit matches the data.
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Example 1: Assessing the nature of a signal from its ACF

Windowed clean signal, signal in WGN, signal with DC offset (see also Lecture 1)

function sin(2x) function sin(2x) + 2 * randn function sin(2x) + 4
1 ‘ 8 ‘ 5 ‘
6
4+
4
2 3l
0
N 2
_4
1 L
-6
55 0 5 % [} 5

ACF of sin(2x) ACF of sin(2x) + 2*randn ACF of sin(2x) + 4

100 1200 3500
1000/ 1 3000}
50 800/ 1 2500}
600/ 1 2000}
0
400} 1 15007
_sol 200/ 1 1000}
0 500(
-1 : : : 2 : : : 0 : : :
b T — 0 5 10 b P — 0 5 10 10 5 0 5 10

Which disturbance is more detrimental: deterministic DC or stochastic noise
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Wold decomposition theorem
(Existence theorem, also mentioned in your coursework)

Wold's decomposition theorem plays a central role in time series analysis,
and explicitly proves that any covariance—stationary time series can be
decomposed into two different parts: deterministic (such as a sinewave)

and stochastic (filtered WGN).

Therefore, a general process can be written as a sum of two processes
q
x[n| = xpn] + z.[n| = z,[n] + Z bjwn — j] w ~~ white process
j=1

= x,n] %  regular random process
= xp[n] S predictable process, with z.[n] L z,[n],

E{a,[m]z,[n]} = 0
~+ we can treat separately the predictable part (e.g. a deterministic
sinusoidal signal) and the random signal.

Our focus will be on the modelling of the random component
NB: Recall the difference between shift—invariance and time—invariance

Imperial College
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How do we model a real world random signal?

Suppose the measured real world signal has A X(o)
e.g. a bandpass (any other) power spectrum
Modelling: We aim to describe the whole /\
long signal with only very few parameters R
bandpass ®
spectrum
Q1: Can we model first and second statistics of real world signal by shaping

Q2:

up the white noise spectrum using some coefficients (transfer function)?

Does this produce the same second order stats as those of the original
signal (mean, variance, ACF, spectrum) for any white noise input?

A B A
W(o) /*H(z): Ag \Q

2
P.=IH(o) P,

- -
flat (white) ® bandpass o
spectrum spectrum

Can we use this linear stochastic model for prediction?
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Towards linear stochastic processes
Wold’s theorem implies that any purely non-deterministic covariance—stationary

process can be arbitrarily well approximated by an ARMA process

From Wold's th., the power spectrum of a WSS process has the form

P.(e’*) Za;ﬁ w—wk) + Py (e?)

We are interested in processes generated by filtering white noise with a
linear shift—invariant filter that has a rational system (transfer) function.

This class of digital filters includes the following system functions:
e Autoregressive (AR) — all pole system — H(z) = 1/A(z)
e Moving Average (MA) — all zero system —  H(z) = B(z)

e Autoregressive Moving Average (ARMA) — poles and zeros

— H(z) = B(z)/A(z2)
Definition: A covariance-stationary process x|n] is called (linearly)
deterministic if p(z[n| | z[n — 1], z[n — 2|,...) = z[n].

A stationary deterministic process, x,[n|, can be predicted correctly (with
zero error) using the entire past, z,[n — 1], 2,0 — 2|, x50 — 3|, . ..
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Example 2: Second-order all-pole systems and sinewave
p1 = 0.999exp(jm/4), ps = 0.9exp(jn/4), ps = 0.9exp(j77/12)

To produce oscillations, we
need two conjugate complex
poles, e.g. p1 and p7,
therefore

(=}

1
Or H A
; = =G =)
—10} Z_2
= F1requencyr2ad/s ° - (1 T plz_l)(l T pTZ_l)

Transfer function for p = pe?? (ignoring =2 in the numerator on the RHS):
1 B 1
(1 — peifz=1)(1 — pe=i92=1) 1 —2pcos(f)z—1 + p2z—2

H(z) =

1 1

for the sinewave p =1 = H(z) = 1 —2cos(f)z=1 + 272 T 1+ a1z= 1+ agz=?

= Indeed, a sine can be modelled as an autoregressive AR(2) process
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Example 2: Sinewave revisited, is it determ. or stoch.?

Is a sinewave best described as nonlinear deterministic or linear stochastic?

London

= “"7x_<— pole py ]
Z osf 1 Matlab code:
S A S E—— -
s s i
F-o5f - _A.
= .l | __.x <« pole pj] | z1=0;
E P 0 1‘ 2 3 p1=[0.5+0.8661i,0.5-0.866i] ;
Real Part [numl,denl]=zp2tf(z1l,pl,1);
U zplane (numl,denl) ;
Z ol i s=randn(1,1000) ;
i o sl=filter (numl,denl,s);
= figure;
= -2r ]
subplot(311) ,plot(s),
o 50 100 150 200 250 300 0 subplot(313),plot(sl),
z(n) =x(n—1) —0.98z(n — 2) + w(n) subplot (312),;
o 30 T T T T T T
z | zplane (numl,denl)
= i
a
E 12 | The AR model of a
e sinewave
= 20t . x(n)=al*x(n-1)+a2*x(n-2)+w(n)
~%0 50 100 150 200 250 300 0 al=1, a2=-0.98, w~N(0,1)
Imperlal COIIege © D. P. Mandic Statistical Signal Processing & Inference 12



How can we categorise real-world measurements?
where would you place a DC level in WGN, z[n] = A + w[n], w ~ N(0,02)

(a) Noisy oscillations, (b) Nonlinearity and noisy oscillations, (c) Random nonlinear process

(7 left) Route to chaos, (7 top) stochastic chaos, (? middle) mixture of sources

Nonlinearity Ay
aos
?
?

f? ?
) NARMA
) ? .
' ARMA
Linearity >
Determinism Stochasticity

Our lecture is about ARMA models (linear stochastic)

How about observing the signal through a nonlinear sensor?

Imperial College
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Spectrum of ARMA models (Recap slides and Lecture 1)

recall that two conjugate complex poles of A(z) give one peak in the spectrum

ACF = PSD in terms of the information available

In ARMA modelling we filter white noise w[n| (so called driving input)
with a causal linear shift—invariant filter with the transfer function H(z), a
rational system function with p poles and ¢ zeros given by

By(z) _ D k=0 bz "
Ap(z) 1+ apz™"

X(z)=H(zW(z)  H(z)=

For a stable H(z), the ARMA(p,q) stochastic process a:[ | will be
wide—sense stationary. For the driving noise power P, = 02, the power of

the stochastic process x[n] is
(recall: power at the output of a linear system P, = |H(2)|°P, = H(2)H"(2)P,)

o By(2)By(27") o0 2’B 639)’ 2|B( )|
AT T ) T o T T )]

P.(z) =0

Notice that “(-)™" in analogue frequency corresponds to “2~!" in “digital freq.”

Imperial College
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Example 3: Can the shape of power spectrum tell us
about the order of the polynomials B(z) and A(z)?

Plot the power spectrum of an ARMA(2,2) process for which

o the zeros of H(z) are z = 0.95e+77/2

o poles are at z = 0.9¢*727/5

Solution: The system function is (poles and zeros — resonance & sink)

X(z) 1+ 0.90252 2
W(z) 1-—0.5562z=1+0.8122

= x(n) =0.5562x(n — 1) — 0.81z(n — 1) + w(n) 4+ 0.9025w(n — 2)

H(z) =

— 7
a8
O, 6f
x
B 4
o)
@ 3
o 2
=
o
o
il | k/'—_
o 05 1 15 2 21R: 3 3.5
requency
Imperial College
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Example 4: Power spectrum of real-world Sunspot data

Sunspot numbers and their PSD ~» even their AR(2) linear model is powerful!

Sunspot series —~ Burg Power Spectral Density Estimate
150 - - 2 35 - - - -
Q
30

1000 |

N
(&)

Signal values
o))
o
)]
<

—_
(&) ]

—_
o

Power/frequency (dB/rad/sam

. . 5 ; ; ; ;
0 100 200 300 0 02 04 06 08 1
Sample Number Normalized Frequency (xr rad/sample)

Recorded from about 1700 onwards

This signal is random, as sunspots originate from the explosions of helium
on the Sun. Still, the number of sunspots obeys a relatively simple model
and is predictable, as shown later in the Lecture.

Imperial College
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Difference equations &~ the ACF follows the data model!

(for convenience, a slight abuse in notation from A(z) to the autoregressive part)

Since X (z) = H(z)W(z), the random processes z|n| and w|n| are related
by a linear difference equation with constant coefficients, given by

B ! brz
— (Z): 2t=0 Ui < ARMA (p,q) < z[n Zalajn—l Zblwn—l

Alz) 1-=>7_jarz""F

' '
CL’U,tO’I“eg’I“BSS’L’UG movzng average

Notice that the autocorrelation function of x|n| and crosscorrelation
between the stochastic process x|n| and the driving input w[n| follow
the same difference equation, i.e. if we multiply both sides of the above
equation by x[n — k| and take the statistical expectation, we have

p q
Tez(k) = Zal Tew(k —1) + Zbl rew(k —1) (also Slide 18 & App. 3)
easy toralculate can be cgrrnplicate(;

Since x is WSS, it follows that z|[n| and w[n| are jointly WSS

Imperial College . e ,
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General linear processes: Stationarity and invertibility

Can we tell anything about the process = from the coefficients a, b (cf. i in FIR)

Consider a linear stochastic process & output from a linear filter, driven by

WGN, denoted by w|n]. (NB: Here w is “input” and x “output”)
z[n] = win| + bywn — 1] + bow[n — 2] 4+ - - - = wln| + Z bjwin — j]
j=1

that is, a weighted sum of past samples of driving white noise w|n]|.

For this process to be a valid stationary process, the coefficients must be
absolutely summable, that is > [b;] < oc.

This also implies that under stationarity conditions, x[n] is also a weighted
sum of past values of x, plus an added shock w|n/|, that is

z[n] = a1xn — 1] + asz[n — 2] + - - - + w|n] (see also Slide 30)
o Linear Process is stationary if 377~ [b;| < o0

o Linear Process is invertible if ).~ |a;| < oo
Recall that H(w) = > " jh(n)e ™ —forw=0 = H(0)=> ", h(n)

Imperial College
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Autoregressive processes (pole—only)

A general AR(p) process (autoregressive of order p) is given by
p
z[n| =azn — 1]+ - -+ apxn — p| + wln| = Z a;z[n — i) +wln] = a’ x[n] + wln]
i=1
Observe the auto—regression in {z|n|} 3> the past of x is used to generate the future

Duality between the AR and MA processes:

Impulse Response of lIR System

=

For example, consider the first order

autoregressive process, AR(1), gﬁjii;iiiii "
0 SE R
z[n] = a1xn — 1]+ wln] < ijw[n — 7] T T T T TR e
7=0 Impulse Resss}:r?lsz(;]f FIR System

It has an MA representation, too.
This follows from the duality
between IIR and FIR filters.

0 10 20 30 40 50
sample (-)

Imperial College
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Example 5: Statistical properties of AR processes
Drive the AR(4) model from Example 6 with two different WGN realisations ~ N (0, 1)

white Gaussian noise  ~ AR(4) process Autocorrelation Power spectrum
3000 20 : : ‘ ‘
% E < 2000 2
é 3 S 1000 5 10
8 % £ o k
- ° G s
8_ g_ L -1000 gi 0
§ 2 < 2000 2
4 4 -3000 -10
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0O 02 04 06 08 1
Sample number Sample number Correlation lag Normalized Frequency (x = rad/sample)
4 3000 20
© —
> S < 2000 )
£ B %1000 § 10
38 « 5
: < < o E
- ° ks i)
8_ ;3; s -1000 2 0
§ S < 2000 e
4 ‘ ‘ \ : 4 : : : : -3000 -10
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0O 02 04 06 08 1
Sample number Sample number Correlation lag Normalized Frequency (x = rad/sample)
r = wgn(2048,1,1); o The time domain random AR(4)
a = [2.2137, -2.9403, 2.1697, -0.9606]; processes look different
a = [1 -al; o The ACFs and PSDs are exactly
x = filter(1l,a,r); the same (2nd-order stats)!
xacf = xcorr(x); o This signifies the importance
xpsd = abs(fftshift(fft(xacf))); of taking a statistical approach
Imperial College
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ACF and normalised ACF of AR processes (see Appendix 3)
Key: ACF has the same form as the AR process in hand!

To obtain the autocorrelation function of an AR process, multiply the
above equation by x|[n — k| to obtain (recall that »(—m) = r(m))

x[n — klz[n] = a1z[n — klz[n — 1] + asz[n — klzn — 2] + - - -
+a,x[n — klxzn — p| + x[n — klwn]

Notice that E{x[n — k]w[n|} vanishes when k > 0. Therefore, we have

Tew(0) = a1722(1) + a2rzz(2) + -+ + apree(p) + 02, k=0
ree(k) = a17z0(k — 1) + aorgn(k — 2) 4+ - - + apra(k — p), k>0

On dividing throughout by 7,,(0) we obtain
p(k) = arp(k — 1) + azp(k —2) + -+ app(k —p) k>0

Quantities p(k) are called normalised correlation coefficients

Imperial College
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Variance and spectrum of AR processes

Variance:
For k = 0, the contribution from the term E{xz[n — kJw[n]} is 02, and

’I“acac(O) = alrm(—l) —|— az’[“xx(—Q) _|_ .. + apf,axx(_p) _|_ 0_1211
Divide by r,,(0) = 02 to obtain
2

w

_1_p1a1_p2a2_"'_ppap

2 0

O

Power spectrum: (recall that P,, = |H(2)|*Pyw = H(2)H*(2) Py, the
expression for the output power of a linear system — see Appendix)

Pou(f) = 20, 0<f<1/2
e B |]_ — a16_3277f . — ape_JZWpf‘2 - o

Fro more detail: “Spectrum of Linear Systems” from Lecture 1: Background

Imperial College . e ,
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Example 6a: AR(p) signal generation vs # data points
Consider an AR(4) process with coeff. a = [2.2137, —2.9403,2.1697, —0.9606]

Yule-Walker Power Spectral Density Estimate

T T T T [=256 points
—1024 points

o Generate the input signal 30—
x by filtering white noise
through the AR filter

no
o
T

—
o
T

o Estimate the PSD of x

based on a fourth-order
AR model

[an)
T

—
[a)
T

o Careful! The Matlab
routines require the AR

Power/frequency (dB/rad/sample)
& .
o

1 1 1 1

coeff. a in the format W01 02 03 04 05 06 07 08 09 1
Normalized Frequency (xn rad/sample)

wW
(=]

a=|[1,—ai,...,—ap _
Notice the dependence on data length
Solution:
randn(’state’,1);
x = filter(l,a,randn(256,1)); %» AR system output
pyulear(x,4) % Fourth-order estimate

Imperial College
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Example 6b: Alternative AR power spectrum calculation
(an alternative function in Matlab)

Consider the AR(4) system given by
z[n] = 2.2137x[n—1]—2.9403x[n—2]4+2.1697x[n—3] —0.9606x[n—4]+w|n]
a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients

freqz(1,a) 7 AR filter frequency response
title(’AR System Frequency Response’)

AR System Frequency Response

N
o

)
o
o 20 .
©
=
‘= 0 .
(@)
©
2_20 | | | | | | | [ s
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Normalized Frequency (xw rad/sample)
n
()
o
(@)
(]
o
O -
wn
©
<
0. -200 I I I I

| | | | |
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
Normalized Frequency (xm rad/sample)
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Key: Finding AR coefficients &~ the Yule—Walker eqns

(there are several similar forms — we follow the most concise one)

I Recall that we have already calculated the autocorrelation function (ACF)
which follows the same form as the AR(p) model as the data, that is
rea(k) = a1720(k — 1) + agry(k —2) + -+ + apre(k — p), k>0

Then, with the known 7,.(0),...,7.:(p — 1), we can build a system of p
equations with p unknowns (ai,...,a,), and solve for ay,...,a,, that is

’I“:c:c(l) — alra;x(O) + a2r9[39€(1) Tt aprww(p - 1)
Tacac(z) — alrww(l) T CLQTCL‘CL‘(O) Tt ap’l“;,;;,;(p a 2)

rez(p) = 1722 — 1) + a2ree(p — 2) + - -+ + aprz(0)
These equations are called the Yule—Walker or normal equations.

I’= Their solution gives us the set of autoregressive parameters, a1, ..., ap,

ora=a,... ,ap]T, which build the AR(p) model and generate an
AR(p) process.

Imperial College
London
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A vector—matrix form of the Yule—Walker equations

The above set of Yule-Walker equations can be expressed in a compact
vector—matrix form

r.. = R,.a a=|ay,ao,... ,ap]T
since
ree(0) ree(l) e ree(p—1) ] (1)
R = | e e e g ] )
(P —1) rep—2) o ra(0)  raelp)

I”& The ACF matrix R, is positive definite (Toeplitz) which guarantees matrix
inversion, so that the Yule-Walker solution for the unknown AR(p)

coeficients, [a1,...,a,]" = a, becomes
Yule-Walker solution: a=R_Ir,,
Imperlal CO"ege © D. P. Mandic Statistical Signal Processing & Inference 26
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Example 7: Find the parameters of an AR(2) process,
a:(n), generated by xz[n] = 1.2z[n — 1] — 0.8xz[n — 2] + wn]

Homework: Comment on the shape of the ACF for large lags

AR(2) signal x=filter([1],[1, -1.2, 0.8],w) 2OOOACF for AR(2) signal x=filter([1],[1, -1.2, 0.8],w) ACF for AR(2) signal x=filter([1],[1, -1.2, 0.8],w)
%_2 | é 0 | St) 500

_0 50 100 é;%]pléogumﬁgr 300 350 400 B -400 -300 -200 —E)()grrelaotion |1a00g 200 300 400 -20 —1000rre|a(;i0n |ag10 20
Matlab: for i=1:6; [a,e]=aryule(x,i); display(a);end
all) = [0.6689] a(?) = [1.2046, —0.8008]
a3 =[1.1759, —0.7576, —0.0358]
al®) =[1.1762, —0.7513, —0.0456, 0.0083]
al®) =[1.1763, —0.7520, —0.0562, 0.0248, —0.0140]
al6) =[1.1762, —0.7518, —0.0565, 0.0198, —0.0062, —0.0067]
Imperial COIIege © D. P. Mandic Statistical Signal Processing & Inference 27
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Example 8: Advantages of model-based analysis

Consider the PSDs for different realisations of the AR(4) process from Example 5

50

PSD (dB)
o

-50

--PSD from data
—PSD from model

--PSD from data

50

PSD (dB)
o

-50

—PSD from model

0 0.2 0.4 0.6

Normalized frequency w/w
max

o The different realisations of the AR(4) process (based on different driving WGNs) lead
to different Empirical PSD’s (in thin black)

o The theoretical PSD from the model is consistent regardless of the data (in thick red)

1024;
wgn(N,1,1);

[1 -al;

filter(1,a,w);

xacf = xcorr(x);

dft = fft(xacf);

EmpPSD = abs(dft/length(dft)).” 2;
ThePSD = abs(freqz(1,a,N,1)).” 2 ;

oo s =
|

= [2.2137, -2.9403, 2.1697, -0.9606];

1 0 0.2 0.4 0.6 0.8

Normalized frequency w/w
max

% Coefficients of AR(4) process

% Autocorrelation of AR(4) process

% Empirical PSD obtained from data
% Theoretical PSD obtained from model
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Normal equations for the autocorrelation coefficients

Standard correlations can take any value, so it is often convenient to
consider correlations coefficients

Pk = Tzz(k)/72:(0) —1<pr<l1

which are normalised by r,.(0) (signal power), and take values € [—1,1].

Then, the Yule-Walker equations expressed in terms of pi become

p1 = Qa1+ azp1+ -+ ApPp—1
p2 = aip1t+ag+ -+ appp_2
pp — @110p_1+a/210p_2_|_...+a}p

Q: When does the sequence {po, p1, p2, ...} vanish?

Homework: Explore the command xcorr in Matlab
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Yule—Walker modelling in Matlab

In Matlab — Power spectral density using Y-W method pyulear

Pxx = pyulear(x,p)

[Pxx,w] = pyulear(x,p,nfft)

[Pxx,f] = pyulear(x,p,nfft,fs)

[Pxx,f] = pyulear(x,p,nfft,fs,’range’)
[Pxx,w] = pyulear(x,p,nfft,’range’)

Description:
Pxx = pyulear(x,p)

implements the Yule-Walker algorithm, and returns Pxx, an estimate of the
power spectral density (PSD) of the vector x.

To remember for later — This estimate is also an estimate of the
maximum entropy.

See also aryule, lpc, pburg, pcov, peig, periodogram
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Stochastic modelling: From raw data to ARMA(p,q) proc.

So far, we have assumed the model (AR, MA, or ARMA) and analysed the
ACF and PSD based on known model coefficients.

In practice: DATA + MODEL

This procedure is as follows:

record data x(k)

find the autocorrelation of the data ACF(x)

divide by r_xx(0) to obtain correlation coefficients \rho(k)
write down Yule-Walker equations

solve for the vector of AR parameters

* ¥ X X *

The problem is that we do not know the model order p beforehand.

An intuition into the choice of the correct morel order is given in
the following example.
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Example 9: Sunspot number estimation

consistent with the properties of a second order AR process

Sunspots ACF Zoomed ACF
200 \ ‘ 1 1
091 0.9f
150+ 0.8l
0.8
0.7¢
100} (M H 0.7t
0.6r 1
(tm
Wl | é os!
l 0.5 1
50
A} m 0.4 0.5
07 . : 0.4 :
1700 1800 1900 -100 0 100 -10 0 10
Time [years] Delay [years] Delay [years]

a; = [0.9295] ap = [1.4740, —0.5857]

as = [1.5492, —0.7750, 0.1284]

a, = [1.5167, —0.5788, —0.2638, 0.2532]

a5 = [1.4773,—0.5377, —0.1739,0.0174, 0.1555]

ag = [1.4373, —0.5422, —0.1291, 0.1558, —0.2248, 0.2574]

‘Best” model is AR(2): z[n| =1.474x[n — 1] — 0.5857 z[n — 2] + w[n]
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Special case #1: AR(1) process (Markov)

For Markov processes, we have the first order conditional expectation,
given by

p(z[n]|z[n —1],z[n = 2],...,2[0]) = p(z[n]|z[n — 1])

= wln] + awn — 1] + afwln — 2] + - - -

\ . 7

Then z[n] = a1x[n — 1] + w(n|

equivalent MXoo process
Therefore: order-1 memory (o0)

i) For the AR(1) process to be stationary —1 < a; < 1.
ii) Autocorrelation Function of AR(1): From the Yule-Walker equations
Tez(k) = a1z (k—1), k>0

ro = a17gz(1) + 02, k=0
In terms of the correlation coefficients, p(k) = r(k)/r(0), with pg =1
Pk = alfa k>0

Notice the difference in the behaviour of the ACF for a positive and negative a;
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Variance and power spectrum of AR(1) process

Both can be calculated directly from the general expression for the
variance and spectrum of AR(p) processes, given in Slide 22.

o Variance: Also from a general expression for the variance of linear
processes from Lecture 1

2

w

2 O-w o

o

mzl—plalzl—a%

o Power spectrum: Notice how the flat PSD of WGN is shaped
according to the position of the pole of AR(1) model (Low-Pass for
0 < a; < 1 and High-Pass for —1 < a; < 0)

Po(f) = 202 B 202
R 11— aye—227f | 14 a? —2aicos(2mf)
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Example 10 a): ACF and spectrum of AR(1) for a = £0.8

a < 0 — High Pass

a >0 — Low Pass

x[n] = -0.8*x[n-1] + w[n]

5
(%)
()
>
©
>
©
c
2
n
-5 ‘ ‘ : :
0 200 400 600 800 1000
Sample Number
ACF
1 : :
ol
5 T e
5 J J iTlTL?U*"
o}
o
-1t : : ‘
0 5 10 15 20
Correlation Lag
) Burg Power Spectral Density Estimate
10 ‘ ‘ ‘ ‘
m
©
LT 0
GB) 10 /
o
o
107

02 04 06 08 1
Normalised Frequency, xr rad/sample

o

x[n] = 0.8*x[n-1] + w[n]

Signal Values
o

_50 2000 400 600 800 1000
Sample Number
ACF
1$ |

C

i

©

205 1

0 IITTTTTT???QQQ??
0 5 10 15 20
Correlation Lag
) Burg Power Spectral Density Estimate
10 ‘ ‘ ‘ ‘

o)
©

. 0

03310 \

@]

o —

107

0.2 04 0.6 0.8 1
Normalised Frequency, xrt rad/sample

o
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Example 10 b): Model order of a financial time series

(the ’'correct’ and 'time-reversed’ time series)

£/$ Exchange Rate
1970-2018

Time-Reversed £/$ Exchange Rate
1970-2018

Rate [$/£]

Rate [$/£]

o
I=3
S

AutoCorr value

[}
S
>

=2}
S
I=3

200

o

-600

AutoConv value

1000

o
S
S

s

S

S
T

S

]

o o
=

7275 77 80 8 85 87 90 9 95 97 00 02 05 07 10 12 16 17
Date _
Autocorrelation Function

7275 77 80 8 85 7 9 92 9 97 00 02 05 07 10 12 16 17
Date _
Autocorrelation Function

£/$ Exhange Rate

Time-Reversed £/$ Exhange Rate

-1 05 0 0.5 1

-1 0.5 0 0.5 1

Lags w10t Lags et
Autoconvolution Function Autoconvolution Function
£/$ Exhange Rate o Time-Reversed £/$ Exhange Rate
T T T 5 600 T T T T T
1 a 400
1 > 200 F
>
C 0
(@]
b O -200
1 -9 -400 1
L L L 2 -600 L
-1 -0.5 0 0.5 1 < 1 0.5 0 0.5 1

Lags x10*

Lags x10*

Autoregressive coefficients:
AR(1): a = [0.9994]

AR(2): a = [.9994, —.0354]

AR(3): a = [.9994, —.0354,
—.0024]

AR(4): a = [.9994, —.0354,
—.0024, .0129]

AR(5): a = [.9994, —.0354,
—.0024, .0129, —.0129]

AR(6): a = [.9994, —.0354,
—.0024,.0129, —.0129, —.0172]
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Special case #2: Second order autoregressive processes,
p =2, ¢ =0, hence the notation AR(2)

The input—output functional relationship is given by (w[n] ~ any white noise)

zln] = aixn— 1]+ asx[n — 2] + w|n]
X(2) = (@127 +a227%) X(2) + W(z)
X (2) 1
= H —
(2) Wi(z) 1—aiz7!—agz=?
1
_ Jwy _ 2 2
HW) =H(E) = i = Pule) = [H@) o}
Y-W equations for p=2 Connecting a’s and p's
— a
P1 = a1 + G2p1 0 = 1
1 — as
P2 = ai1p1 + ag 5
aj
P2 = a2 +
when solved for a; and a9, we have 1 —as
p1(1 — p3) p2 — p3  Since p1 < p(0) = 1 & a stability
1= 2 42 = 2 diti d
1 — p? 1 —p2 condition on a; and as
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Variance and power spectrum (see Slide 22)

Both readily obtained from the general AR(2) process equation!

Variance

2 _ o2 B (1 — ag) o2
T 1 — prag — paas l+as/) (1—az)?—af

Power spectrum

Poulf) = 20,
o 1= age 2 — gge—aAnt|?
2
- 20 0< f<1/2

14 a3 + a3 —2a1(1 — azcos(27f) — 2ag cos(4n f))’

Stability conditions ~~ (Condition 1 can be obtained from the
denominator of variance, Condition 2 from the expression for p1, etc.)

Condition 1 : a1 t+ay < 1
Condition 2 : ar —a; < 1
Condition 3 : —1<ay < 1

This can be visualised within the so—called “stability triangle”
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Stability triangle

k Roots

-1

i) Real roots Region 1: Monotonically decaying ACF

i) Real roots Region 2: Decaying oscillating ACF

iii) Complex roots Region 3: Oscillating pseudo-periodic ACF
iv) Complex roots Region 4: Pseudo-periodic ACF
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Example 11: Stability triangle and ACFs of AR(2) signals

Left: a = [—0.7,0.2] (region 2) Right: a = [1.474, —0.586] (region 4)
x[n] = -0.7*x[n-1] + 0.2*x[n-2] + w[n] Sunspot series
6 ‘ ‘ 200 ‘ ‘
* «» 150r L)
() ()
=) =)
) )
> = 100| L «g
© ©
c c
(@] (@]
50AA N
-6 : : 0 : :
0 100 200 300 0 100 200 300
Sample Number Sample Number
ACF for AR(2) signal ACF for sunspot series
1 ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘
0.54]
c c 0.5f
I
® 0 [Tt s
: i s oLl ALl
(@) (@] O I 1 1 I Il l II I
R
-1t : : : -0.5" ‘ ‘ : ‘
0 10 20 30 40 50 0 10 20 30 40 50
Correlation Lag Correlation Lag
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Determining regions in the stability triangle

let us examine the autocorrelation function of AR(2) processes

The ACF

Pk = Q1Pk—1 + A20K—2 k>0

o Real roots: = (a? + 4a, > 0) ACF & mixture of damped exponentials

o Complex roots: = (a? + 4az < 0) = ACF exhibits a pseudo—periodic
behaviour
DF sin(2m fok + @)
sin ¢

Pr =

D - damping factor, of a sinewave with frequency fy and phase ®

D = VvV —ao

aq
cos(2mfo) =
1+ D?
tan(®) = tan(27
( ) 1 — D2 ( fO)
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Example 12: AR(2) where a; >0, a2 <0 % Region 4
Consider:  z[n]| = 0.75z[n — 1] — 0.5z|n — 2| + w|n]

x[n] = 0.75"x[n-2] - 0.5*x[n-1] + w[n]

Signal values
— no
o o o

N
o
T

The damping factor

20 5‘0 1(‘)0 15‘30 2(;0 2’:")0 3(‘)0 3g0 460 4é0 500 _D — \/ 05 — 0.71,
Sample Number
ACF
1 T
Frequency

g °'5‘ ’ o= cos 1(0.5303) _ 1
g 0 0??0 0?0 29 Q04 099 OMOUMOM O 27 62
(©) 6 & 00U 066‘7’ 040 0460 060

osb— 0 The fundamental period of

0 5 10 15 20 25 30 35 40 45 50
Correlation lag

Burg Power Spectral Density Estimate

the autocorrelation function
is therefore

Ty =6.2.

—_ .
o o1 o o

I
o

| |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xn rad/sample)

L
o

o
o
p—y
o
no

Power/frequency (dB/rad/sample)
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x[n+1]

x[n+1]

1.0

0.5+

0.0+

—0.51

—1.01

Model order selection 3~ Intuition

Consider an AR(1) process with a; = —0.3, and an AR(2) with a; < 0,a2 > 0

The nature of an AR process may be inferred through scatter plots of pairs

x[n], z[m + n], separated by an interval (lag), m.

x[n+1] vs. x[n]

x[n+2] vs. x[n]

x[n+4] vs. x[n]

4 = Correlation: -0.39 = Correlation: 0.12 o = Correlation: -0.07
1.0 1.0 .
— 0.5 — 0.5 ° o :2;800 .
Oo% ° OOQb e®
(: i ° ° '1)@ ° ° g;b&é?gﬁ?z? %osgo% oo
£ 0.0 S 001 T e — -
X X 8 °© o 00?00?&%% 0.8% oo oOoo
—-0.51 —-0.51 s ° ® R °
. ° w°o [ ]
-1.0] -1.0{ °
-1.0 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0
x[n] x[n]
AR(1) process z[n] = —0.3xz[n — 1] + w(n]
x[n+1] vs. x[n] x[n+2] vs. x[n] x[n+4] vs. x[n]
° = Correlation: -0.42 = Correlation: 0.20 ° = Correlation: -0.05
1.0 1.0 ..
051 051 ) °&%°O:oo§go°° . .
? / i ° o & o° ooﬂp 6.00058 (gg&(?%o&) )
£ 0.0 c 00y = R -
X X ® o 08680000‘0%3 P T
° ooc;bQPOOO °
—0.51 —0.51 ° e ® e,
) ‘ L]
. -1.0{ -1.01 o, :
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0
x[n] x[n] x[n]
AR(2) process z[n] = —0.3z[n — 1] + 0.1x[n — 2] + w[n]
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Model order selection: Partial autocorrelation function

Consider an earlier example using a slightly different notation for AR coefficients

AR(2) signal x=filter([1],[1, -1.2, 0.8],w) ACF for AR(2) signal x=filter([1],[1, -1.2, 0.8],w) ACF for AR(2) signal x=filter([1],[1, -1.2, 0.8],w)
6 T T T T T T T 2000 T T T T T T T T T T T
1500
i 1500
8 (_(g 1000+ 1 @ 00y
2 a5 D 2
g v o
5 N s ra
€ o o 1
3 T L
~ o (o}
N of 1w T
o Q 5001 10
< < L -500f
4 ~1000}
-1000f
-6 . . . . * . —— 1500 . . . . . . . . * ’ .
0 50 100 150 200 250 300 350 400 -400 -300 -200 -100 0 100 200 300 400 -20 -10 0 10 20
Sample number Correlation lag Correlation lag

To find p, first re-write AR coeffs. of order p as [a_pl,...,a_pp]

p=1%[0.6689] = a1 p=2% [1.2046, —0.8008] = [az1, aso)]
p=3 %[11759, —0.7576, —00358] = [CL31, as2, CL33]
p=4% [1.1762, -0.7513, —0.0456,0.0083] = [a41, G42, A43, G4d]

p=>5% [1.1763,—0.7520, —0.0562, 0.0248, —0.0140] = |as1, . - ., ass]
p=6% [1.1762,—0.7518, —0.0565, 0.0198, —0.0062, —0.0067]
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Partial autocorrelation function: Motivation
see Appendix b for more detail

Notice: ACF of AR(p) infinite in duration, but can by be described in
terms of p nonzero functions ACFs.

Denote by ay; the jth coefficient in an autoregressive representation of
order k, so that ax iIs the last coefficient. Then

pj = agjpj—1+ -+ Ag—1)Pj—k+1 T akkpj—k I =1,2,.. .k

leading to the Yule—Walker equations, which can be written as

1 P1 P2 "t Pk—1 ak1 P1
P1 1 P1 T Pe—2 g2 | _ | P2
| Pk—1 Pk-2 Pr—3 " L | | akk | | Pk

The only difference from the standard Y-W equations is the use of the
symbols aj; to denote the AR coefficient a; & k indicating the model order

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 45



Finding partial ACF coefficients AR_2_Highpass_Circularity.m

Solving these equations for £k = 1,2,... successively, we obtain

L p1 m

pr 1 p2

2
— P2 P1 P3
a1l = Pi, ag2 = '02—'021, a3z = ; etc

1 —p7 L p1 p2

I

p2 p1 1

o The quantity apg, regarded as a function of the model order &, is called
the partial autocorrelation function (PAC) (more details in Appendix 5)

e The PAC, agr, measures the linear correlation between x(n) and
x(n — k), once we have removed the influence of x,,_1,...,Zn_ k11

o For an AR(p) process, the PAC ay; will be nonzero for k < p and
zero-valued for k > p % indicates the order of an AR(p) process.

In practice, we introduce a small threshold, as for real world data it is

difficult to guarantee that axr = 0 for £ > p. (see your Coursework)
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Signal values

Correlation

Example 13: Work by Yule &~ model of sunspot numbers
Recorded for > 300 years. To study them in 1927 Yule invented the AR(2) model

50 | _ Sunspotseries | We first center the data, as we do
“ not wish to model the DC offset
100 | n | (determinisic component), but
| the stochastic component (AR
model driven by white noise)!
o “ “ 1 Using the Y-W equations we obtain:
_500 5‘0 100 1‘50 260 ng 300 al — :0.9295]
Sample Number as = [1.4740, —0.5857]
1 | ACFlorsunspotsetes g4 = [1.5492, —0.7750, 0.1284]

a,=[1.5167,-0.5788,-0.2638,0.2532]

| ag=[ 1.4773,-0.5377,-0.1739,
‘ ‘ H 0.0174,0.1555]

| ————— ‘Hl lH" ||||| L 362[14373, —05422, -01291,

0.5[

| |
-054 :
0 5

0.1558, -0.2248, 0.2574]
s w » = See also Slide 9

Correlatlon Iag
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Example 13 (contd.): Model order for sunspot numbers

After k = 2 the partial correlation function (PAC) is very small, indicating p = 2

The broken red lines denote the 95% confidence interval which has the

150

1007

Signal values
[¢)]
o

o

0.5}

Correlation
o

Sunspot series

|

100 200 300
Sample Number

Partial ACF for sunspot series

10 20 30 40 50
Correlation lag

Correlation

—_

Power/frequency (dB/rad/sample

value j:1.96/\/N, and where PAC ~ 0

ACF for sunspot series

0.5¢

, ‘“‘I |H| o |
|H| e

0 10 20 30 40 50
Correlation lag

Burg Power Spectral Densnty Estlmat4
o 39

30

257

207

151

101

5

0 0.2 0.4 0.6 0.8 1
Normalized Frequency (xmt rad/sample

(see Appendix 5)
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Example 14: Model order for an AR(3) process

An AR(3) process realisation, its ACF, and partial autocorrelation (PAC)

AR(3) signal ACF for AR(3) signal
1
0.8
(%]
. 5
= 2 06
g ©
= o
c S 04 ~
-5-’)’ O
-15 : : : : 0
0 100 200 300 400 500 0 10 20 30 40 50
Sample Number Correlation lag
Partial ACF for AR(3) signal < Burg Power Spectral Density Estimate
0.4 : : : ‘ -5 30 : ‘ : :
§
0.2
,,,,,,,,,,,,,,,,,, L 20
0 | I 1l i, u g
T T I I T TT T Il | -
1 . ~
L @A 1
& 02 )
[O) >
T 04 2
o) c 0
O 3
-0.6 g
0.8 < 7
2
-1 : : : : S -20 : : : :
0 10 20 30 40 50 O 0 0.2 0.4 0.6 08 1
Correlation lag Normalized Frequency (xrn rad/sample

After lag k& = 3, the PAC becomes very small (broken line ~~ conf. int.)
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Example 15: The Partial Correlation view &~ model order
of a financial time series (the 'correct’ and 'time-reversed’ time series)

£/$ Exchange Rate
1970-2018

Time-Reversed £/$ Exchange Rate
1970-2018

Rate [$/£]

Rate [$/£]

72 75 77 80 82 85 87 90 92 95 97 00 02 05 07 10 12 15 17

72 75 77 80 82 85 87 90 92 95 97 00 02 05 07 10 12 15 17

Date _ Date .
Autocorrelation Function Autocorrelation Function
£/$ Exhange Rate Time-Reversed £/$ Exhange Rate
Q 1500 T T T Q 1500 T T T T T
=)
g 1000}
g 500 -
@)
O o
5
< 500 : ‘ : : : : : : : :
-1 -05 0 05 1 -1 0.5 0 0.5 1
Lags x10* Lags x10*
Autoconvolution Function Autoconvolution Function
o £/$ Exhange Rate Time-Reversed £/$ Exhange Rate
9 600 : : : g 600 : : ‘ : :
TU 400 - 1 a
> 200 1 >
> >
C 0 cC
(@] (@]
O -200 - 1 O -
S} 1 9.
o) ‘ ‘ ‘ o) ]
< o0 -1 -0.5 0 0.5 1 <

Lags x10*

Partial correlations:
AR(1): a = [0.9994]

AR(2): a = [.9994, —.0354]

AR(3): a = [.9994, —.0354,
—.0024]

AR(4): a = [.9994, —.0354,
—.0024, .0129]

AR(5): a = [.9994, —.0354,
—.0024, .0129, —.0129]

AR(6): a = [.9994, —.0354,
—.0024,.0129, —.0129, —.0172]
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Example 16: ARMA(p,q) modelling of COVID-19 data?

COVID-19 time series in the UK Second wave, UK COVID-19

55 x10° !:IalmI casesl . 35 210% . Daily .cases
RS 3k
25k 25k
2F 2L
151 15k
1} 1}
05| M LER S
% 50 100 150 200 250 300 350 o 26 pr 50 a6 ] 120
Daily deaths Daily deaths
1400 r r 700 r
1200 | - 600 b
1000 | E 500 b
800 b . am b
600 N 300 b
400 b 9 200 1
200 - - 100 +
% 50 00 150 200 250 300 350 % 20 10 50 a0 100 120
oz PAC COVID UK daily cases 02 PAC COVID UK daily cases
T T T v T T T T v T T T
| 1 1
0 0
1 1T 717 1 r 1T r 1 1
0z - 02
204 204
06 1 06
08 - 08
a1 . . . L L . . " a
1 2 3 4 5 6 7 8 E] 10 1 H 3 4 5 & 7 8 E] 10
05 PAC COVID UK daily deaths o4 PAC COVID UK daily deaths
T T T T . T v T T

: I T ! I T T
I oz}t I I

0 I - - 0

= I

L4

AC
&
L]
—
=
-
—
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AR model based prediction: Importance of model order

For a zero mean process x|n|, the best linear predictor, in the mean
square error sense, of x[n| based on x[n — 1], z[n —2],... is

z[n| = ag—11zn — 1] + ag—122n — 2| + - -+ ag—1 p—12[n — k + 1]

(apply the E{-} operator to the general AR(p) model expression, and
recall that E{w[n]} = 0)

Hint:
(E{az[n]} = z[n| = E{ar_11z[n — 1]+ - -+ ar—1k—1xn — k+ 1] + wn]} =
ar—11z[n — 1]+ -+ + ap_1p—1zn — k +1]) )
whether the process is an AR or not
In MATLAB, check the function:
ARYULE
and functions
PYULEAR, ARMCOV, ARBURG, ARCOV, LPC, PRONY
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Example 17: AR(1) and AR(3) prediction of COVID-19

data

AR(1) T: cases, B: Deaths

. AR(1) prediction model m=1 . AR(1) prediction model m=2

) 0 100 300 400 ) 0 100

200 200 300 400
days days
. AR(1) prediction model m=5 4AR{1) prediction model m=10

200 300 400 “o 100 200 300 400
days days

, AR(1) prediction model m=1 , AR(1) prediction model m=2

. AR(3) prediction model m=1

AR(3) T: cases, B: Deaths

. AR(3) prediction model m=2

) 0 100

300 400 ) 0 100

200 200 300 400
days days
s AR(3) prediction model m=5 4AFI{:!) prediction model m=10

, AR(3) prediction model m=1

200 300 400 “o 100 200 300 400
days days

, AR(3) prediction model m=2

——
3 — pradiciion
2
1
a
) 1] 100 200 300 400 ‘10 100 200 300 400 ) 1] 100 200 300 400 ) a 100 200 300 400
days days days days
. AR(1) prediction model m=5 4.|&F{{1) prediction model m=10 . AR(3) prediction model m=5 4JI!\FI{3) prediction model m=10
5 p— a 3 p—
2
2 2
1
1 J . 1
0 a i
) _— P — _
¢ 300 400 -20 100 200 300 400 ) 1] 100 200 300 400 ! a 100 200 300 400
Imperial Collegje Js

London © D. P. Mandic

. days . . days
Statistical Signal Processing & Inference

53



Example 18: Under— vs Over—fitting a model 3
Estimation of the parameters of an AR(2) process

Consider AR(2): z[n] = —0.2x[n —

1]

—0.9z[n — 2] + w|n|, w(n|

~ N(0,1)

75 We perform its prediction using AR(1), AR(2) and AR(20) models:

Original and estimated signals

5_

l

H!':H

W

|

W

!‘V‘v

!

360 370 380 390
Time [sample]

400

0.2

0

-0.2}
-0.4}
-0.6¢

-0.8}

AR coefﬁments

(g

a;sis"“‘m

—@ Original AR(2) signall
—@ AR(1), Error=5.2627

— @ AR(2), Error=1.0421 |
—® AR(20), Error=1.06211

5 10 15 20
Coeflicient index

The higher order coefficients of the AR(20) model are close to zero and
therefore do not contribute significantly to the estimate, while the AR(1)

does not have sufficient degrees of freedom.

(see also Appendix 3)
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Effects of over-modelling on autoregressive spectra:
Spectral line splitting

Consider an AR(2) signal
z(n) = —0.9z(n — 2) + w(n) with w ~ N (0,1)
We have N = 64 data samples, and model orders p = 4 (solid blue) and

p = 12 (broken green). AR_2_Highpass_Circularity.m
AR(4) — |
@600
g, oo M Ara2)
E j k

(0] 0.2 0.4 0.6 0.8 1
Frequency (units of i)

Notice that this is an AR(2) model!

Although the true spectrum has a single spectral peak at w — 7/2 (blue),
when over-modelling using p = 12 this peak is split into two peaks (green).

Imperial College
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Model order selection &~ practical issues (see Appendix 7)

In practice: the greater the model order the greater accuracy & complexity
Q: When do we stop? What is the optimal model order?

Solution: To establish a trade—off between computational complexity and
model accuracy, we introduce a “penalty” for high model orders. Some of
the criteria for model order selection are:

MDL: The minimum description length criterion (MDL) (by Rissanen),
AIC: The Akaike information criterion (AlC)

p*log(N)
N

AIC pypr = min|log(E) 4+ 2p/N]
P

MDL pype = min |log(E) +
P

E ~~ the loss function (typically cumulative squared error),
p ~» the number of estimated parameters (model order),
N ~~ the number of available data points.

Imperial College
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Example 19: Model order selection - MDL vs AIC
MDL and AIC criteria for an AR(2) model with a; = 0.5 ar» = —0.3

MDL for AR(2) The graphs on the left
1 T T . .
—— ML - show the (prediction
0.98F Cumulative Squared Error|- - - - 9 . .
error)  (vertical axis)
0.96
versus the model order p
0.94 . . .
(horizontal axis). Notice
v - that popt = 2.
09 T
0.88 ' ' ' ' ' ' The curves are convex,
1 2 3 4 5 6 7 [ _
l.e. a monotonically
AIC for AR(2) decreasing error? with an
1 D increasing penalty term
- Cumulative S d E .
ne e (MDL or AIC correction).
096
0.94] S Hence, we have a
092} ] unique minimum at p =
0ot — ‘ ‘ — 4 2, reflecting the correct
088 RN S S model order (no over-
1 2 3 4 5 6 7 8 10 . L.
model order p modelling /fitting)
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Moving average processes, MA(q)

A general MA(q) process is given by
z[n] = wln] + bywn — 1] + - - + byw[n — ¢

Autocorrelation function: The autocovariance function of MA(q)

¢, = E|(wn] + byw[n — 1] + -+ + byw[n — q|) x z[n — k]

The ACF of an MA process has a cutoff after lag g.

Hence the, for k = 0, the variance of the MA(q) process becomes

co=(1+bf+ - +b))o,,

Spectrum: All-zero transfer function = struggles to model 'peaky’ PSDs

P(f) = 20y, ’1 +bie P e bqe_ﬂmﬁ‘2

Imperial College
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Example 20: Third order moving average MA(3) process
An MA(3) process and its autocorrel. (ACF) and partial autocorrel. (PAC) fns.

Signal values

Correlation
o

-0.11

-0.21

-0.3

MA(3) signal

100 200 300 400 500
Sample Number

Partial ACF for MA(3) signal

0

10 20 30 40 50
Correlation lag

ACF for MA(3) signal

1.2

0.8}

0.6

0.4

Correlation

0.21

oL T 1 1T 1
| [E | | L

0 10 20 30 40 50
Correlation lag

Burg Power Spectral Density Estimate
_4 . . ; ;

6t

-8

-10

~14}

Power/frequency (dB/rad/sample)

-16 ‘ ‘ ‘ ‘
0 02 04 06 08 1

Normalized Frequency (xm rad/sample)

After lag k = 3, the PAC becomes very small (broken line ~~ conf. int.)
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Example 21: Analysis of nonstationary signals

Signal values

Speech Signal

W2

|

o Consider a real-
world speech signal,
and thee different

segments with
0 . . .l . , different statistical
2000 3000 4000 5000 6000 7000 8000 900¢ 1000C .
Y Sample Nur¥ber Y propertles
Partial ACF for W1 Partial ACF for W2 Partial ACF for W3
0 ‘ ‘ o Different AR
I 5§ 0 5 model orders
< 1f 3 0 %ﬂ%@é@‘u g . f
£ £ £ required or
0 -0.5 -0.5 .
different segments
o 25 50 0 25 50 0 25 so  of speech S
Correlation lag Correlation lag Correlation lag .
MDL calculated for W1 MDL calculated for W2 MDL calculated for W3 opportun |ty for
1 1 1
sl
0.8ll Calculated Calculated Model 0.8l Calculated Model content anaIySIS *
Model Order = 13 Order > 50 Order = 24 .
3 06 e o To deal with
0.4 nonstationarity we
W : :
02 0 _ need short sliding
0 25 50 0 25 50 0 25 50 .
Model Order Model Order Model Order data WlndOWS
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Example 22: Problems with nonstationary data

The nonstat. air passengers time series has trend, cyclical and seasonal comp.

600 1 —— Raw
g 500 1 —— First Order Regression
2400 -
@
% 300 1
a 200 A
100
1950 1952 1954 1956 1958 1960
150 1 —= Detrended
§ 100
c 50 1
S
g
_50 4
—100 - . . . . . .
1950 1952 1954 1956 1958 1960
Date
, PAC AirPassengers
; ACF AirPassengers 0.8~
06
0.8
04
£, L, 1l L.
L 04 L]
S L O [ N
‘% -02 -
E 021
] 04
0 -06 -
208 1 1 1 |
-0.2 L L L L 0 2 4 6 8 10 12 14 16 18 20
0 5 10 15 20 25 30 35 40 Lag

Lag

I This is reflected in the autocorrelation and PAC functions (trend, seasonal)
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Dealing with nonstationarity in data: Autoregresive
Integrated Moving Average models, ARIMA(p,d,q)

o ARMA models should be used when the data is stationary

o When data shows elements of non-stationarity, a generalisation of ARMA
models may be used which accounts for nonstationarity, referred to as the
autoregressive integrated moving average (ARIMA) model

o The form of ARIMA models is same as that of ARMA models, but with
additional differencing of the input data in order to remove elements of
non-stationarity (e.g. drifts or trends)

o This differencing corresponds to the “integrated” part of the model
o ARIMA(p, d, q) means: AR of order p, MA of order ¢, d x differentiation

y(m) =" ay(n =)+ Y biuw(n - j) + win)

7= where y(n) is the d-th difference of x(n). Therefore,
o For d =0, we have (y(n) =x(n) oFord=1, y(n)=xz(n)—xz(n-—1)
o For d = 2, that is, for an ARIMA(p,2,q) model, we have
yn)=[z(n)—z(n—1)]—-[z(n—1)—x(n—2)] =z(n) —2x(n—1) +z(n —2)

Imperial College
London
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600 1

ssengers

8 200

600

Predicted

100

[
o

Residual
)

Example 22a: ARMA vs ARIMA, nonstationary data
One-step prediction: ARMA(2,4) vs ARIMA(2,1,4) model, air passenger data

For ARIMA(2,1,4) modelling and subsequent prediction (inference), the
non-statationary airline passenger time series was first differentiated as

y(n) =z(n) —z(n - 1)

for n=1,....N—1

The ARIMA(2,1,4) model was then found, in the form
y(n) =ay(n — 1)+ asy(n —2) + byw(n — 1) +--- + bgw(n — 4) + w(n)

4001

w

T
1950

T
1952

T
1954

T
1956

T
1958

T
1960

400

200

w

600
) — Passengers
]
2400
[]
0
n
& 200

T T T T T T
1950 1952 1954 1956 1958 1960

Predicted

Rl — Predicted
400
200

1950

1952

1954

1956

1958

1960

| — sum(Residual?) = 136266

T
1950

T
1952

T
1954

T
1956

T
1958

T
1960

ARMA(2, 4) one-step prediction

1950 1952 1954 1956 1958 1960

w
S

Residual
o

— sum(Residual?) = 118276
-50

T T T T T T
1950 1952 1954 1956 1958 1960

ARIMA(2, 1, 4) one-step prediction

The ARIMA(2,1,4) model was able to deal better with the nonstationarity
input, with error? = 118 k as opposed to error? = 135k for ARMA(2,4).

Imperial College
London
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Example 22b: ARMA vs ARIMA, nonstationary data
5-step ahead prediction: ARMA(12,4) versus ARIMA(12,1,4) model

For ARIMA(12,1,4) modelling and subsequent prediction (inference), the
airline passenger time series was first differentiated as

y(n)=xz(n) —x(n—1) for n=1,...,N—1
The ARIMA(12,1,4) model was then found, of the form
y(n) =ayin—1)4+--- 4+ ay(n —12) + byw(n — 1) + - - - + byw(n — 4) + w(n)

600
" — Passengers 600
2 5004 — Passengers
500 0
0 L 500
2 400 s
c 2 400
[} =
0 300 v
a 9300
&€ 200 £ 200
100 1 i } | : ' :

100

6001 —
0 —— 5-step Ahead Prediction R 6001 5-step Ahead Prediction
9} — Passengers o — Passengers
2 400 2 400
o [
& 300 @ 300
E 200 1 & 200

1004 T T T T T T 100 T T T T T T

0 —_ H 2\ —
so) — sum(Residual®) = 207041 ) sum(Residual?) = 59115

E W :
3 T
% 04 G 0
2 o

=50

T T T T T T
1950 1952 1954 1956 1958 1960

T T T T T T
1950 1952 1954 1956 1958 1960

ARMA(12, 4), 5-step prediction ARIMA(12, 1, 4), 5-step prediction
I The ARIMA(12,1,4) model yields much better inference than ARMA(12,4)
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Example 22c: ARIMA prediction of COVID-19 data

(see Lecture 3 for the Bias—Variance trade—off)

Consider the prediction of COVID-19 death rates in the UK.

ARIMA(7,1,1) 10 days ahead

AR(1) model, 10 days ahead
—data —data
— prediction 6 — prediction |

0 5IU 1 [IJU 1 éU 2[I]U 25IU 3[IJU 0 5IU 1 [IJU 1 éU 2[IJU 25IU 3[IJU
days days
o The AR(1) prediction exhibits bias, as the mean of the predicted data (in

red) is “off-set” from the mean of true data (in blue) for most of the plot

o The ARIMA(7,1,1) prediction is almost unbiased, and with similar
variance as AR(1) prediction (which one do you prefer)
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Nonlinear autoregressive models and Neural Networks

Nonlinear Autoregressive with Exogenous Inputs (NARX)

Input =
u

_ Output

Recall the ARMA model
y(n) = ary(n —1) + - +apy(n — p) + w(n) + byw(n —1) +--- 4+ brw(n — q)
This model provides two forms of geometric invariance: 1) scale invariance

and 2) time translation 3~ very useful in Neural Networks

The above NARMA(3,2) RNN has three hidden neurons and performs
mapping ﬁn—l—l — (I)(ynayn—layn—%unaun—laun—Q)

Imperial College
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Summary: AR and MA Processes

o A stationary AR(p) process can be represented as an infinite order MA
process. A finite MA process has a dual infinite AR process.

o A finite MA(q) process has an ACF that is zero beyond lag ¢. For an
AR process, the ACF is infinite in length and consists of mixture of
damped exponentials and/or damped sinusoids.

o Finite MA processes are always stable, and there is no requirement on
the coefficients of MA processes for stationarity. For invertibility, the
roots of the characteristic equation must lie inside the unit circle.

o AR processes produce spectra with sharp peaks (two poles of A(z) per
peak), whereas MA processes cannot produce peaky spectra.

o For Vector Autoregressive (VAR) models, see Appendix 8.

ARMA modelling is a classic technique which has found a
tremendous number of practical applications.

Even Large Language Models (LLM) such as ChatGPT perform a form of
auto-regression when generating new words (see Appendix 10).

Imperial College
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Summary: Wold’s decomposition, ARMA, ARIMA

O

Every stationary time series can be represented as a sum of a perfectly
predictable process and a feasible moving average process

Two time series with the same Wold representations are the same, as
the Wold representation is unique

Since any MA process also has an ARMA representation, working with
ARMA models is not an arbitrary choice but is physically justified

The causality and stationarity on ARMA processes depend entirely on
the AR parameters and not on the MA parameters

An MA process is not uniquely determined by its ACF
An AR(p) process is always invertible, even if it is not stationary
An MA(q) process is always stationary, even if it is non-invertible

For non-stationary data we may employ ARIMA(p,d,q) models

Imperial College
London
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Recap: Linear systems

transfer function
known unknown/known

input | H@) output H(z) = Y(2)
X(z) h(k) Y(z) X(2)
X(k) known/unknown y(k)

Described by their impulse response h(n) or the transfer function H(z)

In the frequency domain (remember that z = €’%) the transfer function is

> nme® galal) | G | iy

n=——oo

that is Z h(r)xin —r] =hx*xx

r——00

The next two slides show how to calculate the power of the output, y(n).

Imperial College
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Recap: Linear systems — statistical properties &~ mean
and variance

i) Mean
Edy[n]} = E{ > h(T)w[n"“]}z > h(r)E{zn —r]}
= py =pe ¥ h(r) = pH(0)

[ NB: H(0) = >~

r=——00

h(r)e 7™ For @ = 0, then H(0) = >°°___h(r) ]

ii) Cross—correlation

rye(m) = Elylnlzn+ml} = )  h(r)B{zln —rlz[n +m]}

r=—00

Z h(r)rzz(m —r) convolution of input ACF and {h}

r=—00

= Cross-power spectrum S, (f) = F(ry) = Sux(f)H(f)
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Recap: Lin. systems — statistical properties &~ output

These are key properties &~ used in AR spectrum estimation

From 7., (m) = ryz(—m) we have
rey(m) =37 h(r)rgz(m —r). Now we write

ryy(m) = Blylnlyln +m]} = Y h(r)E{z[n —rlyln +m]}

T=—00

Z h(r)ryy(m+r) = Z h(—=7)rgy(m —r)

r=——00 r=—00

by taking Fourier transforms we have

Sfliy(f) — S:C:L’(f)H(f)
Syy(f) = Suy(f)H(—f) ~» function of 7y,

S,y (£) = H(E)H(—£)Se(£) = [H(E) *Sx(£)

Output power spectrum = input power spectrum Xx squared transfer function

Imperial College
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More on Wold Decomposition (Representation) Theorem

Example: A “paradox”, can we talk about a deterministic random process

Consider a stochastic process given by
x[n] = Acos|n| + Bsin|n]

where A, B € M(0,02) and A is independent of B (A and B are
independent normal random variables).

This process is deterministic because it can be written as
sin(2)

x|n] = sn(1) xn — 1] — x[n — 2]

N

that is, based on the history of x|n|. Therefore

paln] | zln — 1], 2fn — 2],..) = 228; 2 —1] — afn — 2] = z[n]

Remember: Deterministic does not mean that z|n| is non-random

Imperial College
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Appendix 1: Sunspot numbers (recorded since 1874)

Top: original sunspots Middle and Bottom: AR(2) representations
Left: time Middle:spectrum Right: autocorrelation
Average number of sunspots NASA Burg Power Spectral Density Estimation Partial ACF for sunspot series

200 ‘ ‘ ‘ 1
100 05
0 0 T T ?e 040 Q o
-100 ; ‘ ; -0.5 ‘ ‘
0 200 400 600 15 20 0 5 10 15
st filtered Gaussmn process (2nd order YW) PSD or 1st f|Itered S|gnal Partial ACF for 1st filtered signal
10 1 : :
0.5
0
0 T 9066000
-10 ‘ ‘ ‘ ‘ -0.5 ‘ ‘
0 200 400 600 5 10 15 20 0 5 10 15
2nd filtered Gaussmn process (2nd order YW) PSD for 2nd filtered signal Partial ACF for 2nd filtered signal
10 ‘ ; : 1 : :
05
0
0 ? 00909 0p®
-10 ‘ ; -0.5 ‘ ‘
0 200 400 600 15 20 0 5 10

Top: original Middle: first AR(2) model Bottom: second AR(2) model
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Appendix 2: Model order for an AR(2) process
An AR(2) signal, its ACF, and its partial autocorrelations (PAC)

AR(2) signal ACF for AR(2) signal
8 1
6,
4} 05}
g | c
g | [ £ L
s | | =
(_z 0 ‘ ‘ 1 @ 0 — l||l1“l'Il l.'” 11 I”'l“l i Ll I
% -2f ‘ g
|
-4} -0.5 1
-6
-8 : : : : 1L : : : : :
0 100 200 300 400 500 0 10 20 30 40 50
Sample Number Correlation lag
Partial ACF for AR(2) signal —  Burg Power Spectral Density Estimate
0.8 %_ 15
E
0.6 o 10f
2
0.4} Sl
c =
Qo 02 Q
® |dr-=---rFaT1r----- ke
o opbertabtplilpul bl
5 0.2 1 S
o~ 3
o4 g -10f
= 15l
_06 q;) —15
-0.8 : : : : O -20 : : : :
10 20 30 40 50 o o 0.2 0.4 0.6 08 1
Correlation lag Normalized Frequency (xrn rad/sample’

After lag k = 2, the PAC becomes very small (broken line ~~ conf. int.)
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Appendix 3: Obtaining the ACF of a general AR(p)
process

Consider the AR(p) process, given by
z[n| = a1zin — 1] + asx[n — 2| + - - - + apx|n — p| + w(n]
To obtain the autocorrelation function of this AR process, multiply the
above equation by x[n — k| to obtain (recall that (—m) = r(m))
z[n — klx|n| = a1x[n — klxn — 1] + asx[n — klxn — 2] + - -
+a,x[n — klxz[n — p| + x[n — klwn]
Apply the statistical expectation operator (the coefficients a; go in front)

E{z[n — K]z[n]} = a1 E{z[n — klz[n — 1]} +a2 E{z[n — k]z[n — 2]} +---

4

'rw;?k) rww?lg—l) rwx?/g—Q)
+ap E{z[n — klz[n — pl} + E{z[n — klwln]}
wa?lg—p) T:Bw?g)zo

I= ry(k) = 0since x[n—k|] = arxln—k—1]+---+apz[n—k—p]|+wn—kl.
As w[n — x| L w|n], then E{x[n — k]w|n|} vanishes for k > 0, to give
Tee(k) = a17z0(k — 1) + aorge(k — 2) 4+ - - + apra(k — p), k>0
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Appendix 4a): Scatter plots
financial index

of the detrended S&P 500
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The detrended S&P 500 time series shows strong correlations for small

lags in t
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Appendix 4b): Euro vs USD currency exchange

Scatter plots of a detrended EUR/USD exchange rate vs its 7 days lagged version

10 Trend estimation on EURUSD Curncy 0.2 02
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Appendix 5: More on the Partial Autocorrelation
Function (PACF)

The PACF of a stationary process is a vector, 7, defined as

| m(0)=1
ﬂ-(k) N { 7T(]€) = ALk, for k Z 1
where ayy, is the last component of a;, = [ag1, ar2, ..., are]’, k=1,2,...p
which are calculated from a; = R,;lrk (Yule-Walker, see Slide 23)

& It is possible to show that its value 7(k) = axk,for k > 1 is equivalent to
the correlation coefficient between the residuals of the regressions

z(n) — &(n) = z(n) — E{z(n) |z(n—1),...,z(n—k+1)} and
z(n—k)—2(n—k)=z(n—k)— E{z(n—k)|z(n—k+1),...,z(n—1)}

I”= 7(k) (or equally the AR coefficient axr) measures the linear dependence
between x(n) and z(n — k), once we have removed the influence of

Tp—1y---yTon_ki1, €. ark = corr(z(n) — &(n), z(n — k) — &(n — k)).
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Appendix 5: Confidence intervals for PACFs (intuition)

Quenouille (1949) showed that on the hypothesis that the process is
AR(p), the estimated partial autocorrelations of order p + 1, and higher,
are approximately independently and normally distributed with zero mean.

With N observations, we then have var(axy) ~ 1/N, k>p+1.
Thus, the standard error (SE) of the estimated PAC ayy, is
SE(aw) = 6(aps) ~ 1/VN, k>p+1.

Intuition: Let us establish whether a time series, {x1,...,xn}, is an
independent identically distributed process, that is, x ~ i.i.d.(0, o?)

To achieve this, we need a decision rule, for example
Reject the null hypothesis Hy : pi, = 0 if |pr| > ¢, with ¢ a constant.

Constant c is a threshold, arising e.g. from a statistical significance test
P(|px| > c|Hy) =0.06 =  P(|px| > c|Hy) =1 — P(|pr| < c¢|Hp) = 0.05

This implies that  P(|px| < c|Ho) = P(—cvV/'N < V/Npi, < cvVN) = 0.95
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Appendix 5: Confidence intervals for PACFs (intuition)

If z, is 3.3.d.(0, 02), then v Np, — N(0,1) and, for large N, a normal
distribution is a good approximation to the true distribution of v/ N . s.t.

1.96
P(—eV'N < VNpp, <cVN)=095 iff ¢v/N=196 = c= i

We can reject Hy if |p| > 1.96/v N thatis, if o, ¢ [-1.96/vN,1.96/vN|

In a two-tailed test, the rejection region for a
significance level of 0.05 is at both ends of the
distribution (in our case Gaussian), and amounts to

up to 5% of the area under the curve (white regions).

-1.96 0 1.96

I’ If the data, x1,...,zn were indeed generated by an 7.:.d. process, then =
95% of sample ACFs, p1, ..., pn, should be within the bounds +1.96/v/N.

In other words, about 5% of the sample correlations should be outside the
broken red lines in the PACF plots. For example, if 20 values of p; are
calculated, then only one of its values should lie outside these limits.
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Appendix 5: Confidence intervals for PACFs (intuition)

I”= The PACF basically finds correlation between the residuals at time n and
time n — k (after removing the effects which are already explained by the
earlier lags).

This is why it is called “partial” as the already found variations are
removed before calculating the next correlation.

If there is any hidden information left in the residual, we might have a
good correlation at the next lag, so we keep exploring along the lags.

I’ Too many correlated features are not desirable, as this can create
collinearity issues & we should retain only the relevant features.

The null hypothesis is the “default” assumption that there has been no
change in statistical behaviour.

To determine whether a result is statistically significant, we calculate a

p-value, which is the probability of a more extreme statistical behaviour
given that the null hypothesis is true.

The null hypothesis is rejected if the p-value is less than (or equal to) a
predetermined level — the significance level — which is usually set at 5%.
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Appendix 6: A note on over—parametrisation

Consider the linear stochastic process given by
z[n] = x[n — 1] — 0.16x|n — 2] + w[n| — 0.8w[n — 1]

It clearly has an ARMA(2,1) form. Consider now its coefficient vectors
written as polynomials in the z—domain

a(z)=1—2"1 401622 =(1-08z"1)(1-02z"1)
b(z) =1—0.82""

These polynomials have a common factor (1 — 0.8271), and therefore after
cancelling these terms, we have the resulting lower—order polynomials

a(z) =1—-0.2z""1
b(z) =1
The above process is therefore an AR(1) process, given by
x[n] = 0.2z[n — 1] + w(n]

and the original ARMA(2,1) version was over—parametrised.
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Appendix 7: More on model order selection

A criterion is said to be consistent if the correct model is chosen with probability one as
the number of data points asymptotically approaches oc.
o MDL is consistent whereas AlIC is not.

o Hannan and Quinn (1979) proposed the Hannan-Quinn information criterion (HQC) as
a means of improving the consistency of AlC.

o Small-sample properties of AlIC lead to over-estimating the model order. Hurvich and
Tsai (1989) derived a ‘corrected’ AlC, referred to as AlCc, in order to compensate for the
small-sample over-fitting.

More detail in e.g. “Regression and Time Series Model Selection” by McQuarrie and Tsai.

plog N 2p

2ploglog N 2p(p + 1)
HQC = log F AlCc = Al 2
Q og B, + ~ C C+N—p—1 (2)

where p is the model order, £, is the loss function for the model with p
parameters and N is the number of estimated data points.
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Appendix 7: More on model order selection

The results below show that the AIC, criterion was able to identify the
most parsimonious model order of p = 2.

AR Model Order Selection

—_
=

—
(8]

Criteria Value

—
oo

2 K |
10 20 30 40
AR Model Order

Figure 1: Information criteria for AR model order selection, with cumulative
squared error as the loss function. A short segment of an AR(2) process
was considered, which affected the reliability of these information criteria.
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Appendix 8: Vector Autoregressive models (VAR)

o The multivariate, also called Vector Autoregressive (VAR), processes
generalise the standard AR (and ARMA) models.

o This allows us to make inference from multiple data channels together

o The quantities x, a and w now become matrices, so e.g. the VAR(1)
process can be expressed as

X(n)=AX(n—-1)+ W(n)

o Something to think about: Would the inverse of the multichannel
correlation matrix depend on "how similar’ the data channels are;
Explain this also in terms of eigenvalues and 'collinearity’.

o Threshold autoregressive (TAR) models allow for the mean of a time
series to change along the blocks of data. What are the advantages of
such a model?

o How would you express an AR(p) process as a state-space model; What
kind of the transition matrix between the states would you have?
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Appendix 8:Multivariate inference often helps

For a rigorous account of multivariate inference, see Lecture 4

VAR(5),AAPL prediction model m=1  VAR(5),AAPL prediction model m=2
ai T T T v ad r T . .

— dama — dam i
80| —— predicted 80 | —— predicted

70} / Fot
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40 40
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VAR(5),AAPL prediction model m=5  VAR(5),AAPL prediction model m=10
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Apple stock prediction using a vector autoregressive VAR(5) model (Apple

as one variate and 5 other stocks from S&P 500 as other variates)
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Appendix 9: From stochastic Autoregression to
Autoregressive Generative Al

Recall: The term ‘autoregressive’ originates from the field of time-series
forecasting, where future predictions are based on the past observations.

Such a “sequence prediction” has been routinely used in e.g. natural
language processing (NLP).

I’= Autoregressive generative models are much more complex, as e.g. even a
standard image of 1,000 x 1,000 pixels has a whopping 10° pixels!
Basis of Autoregressive Generative models

For an n-dimensional dataset to learn from, the joint distribution of data is
p(ﬂ?o, L1y 73777,—1) — p($0)p($1|$0)p(x2|$17 CEO) te 'p(ajn—l‘xn—% ey I, ':UO)

This precisely depicts the operation of large autoregressive models (no
assumption of conditional independence between variables).

Current Deep Autoregressive Generative models (2025) include Pixel CNN,
Pixel RNN, Character CNN, Character RNN, Wave—Net.

Pro’s and Con’s: Pos: Intuitive, well understood supervised learning

process; Neg: Needs ordering of random variables, sequential generation
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Consider also: Fourier transform as a filtering operation
We can see FT as a convolution of a complex exponential and the data (under a

mild assumption of a one-sided h sequence, ranging from 0 to o)

1) Continuous FT. For a continuous FT  F(w) = foo

x(t)e I9tdt

Let us now swap variables t — 7 and multiply by e/*?, to give

eIt / x(T)e 7Tdr = /JT(T),GJw(t_T), dr = x(t) * 2" (= x(t) * h(t))
h(t—T1)

2) Discrete Fourier transform. For DFT, we have a filtering operation

N-1
X(k) =Y a(n)e T = z(0) + W[m(l) + W z(2) + - } W = e 8"
=0 ) cumulative adg and multiply .
. . —z_l *
with the transfer function (large N)  H(z) = — 7 = 75— ekz‘ivlJrz_Q
exp(jwt) discrete time case
: X[n DFT
—{X(1)*exp(jwt) > n B >
x(t) DFT -
Z—1 — W —

continuous time case
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Notes
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