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Graph signal processing deals with signals which are observed on an irregular graph domain. While 
many approaches have been developed in classical graph theory to cluster vertices and segment large 
graphs in a signal independent way, signal localization based approaches to the analysis of data on graph 
represent a new research direction which is also a key to big data analytics on graphs. To this end, after 
an overview of the basic definitions of graphs and graph signals, we present and discuss a localized form 
of the graph Fourier transform. To establish analogy with classical signal processing, spectral domain and 
vertex domain definitions of the localization window are given next. The spectral and vertex localization 
kernels are then related to the wavelet transform, followed by their polynomial approximations and a 
study of filtering and inversion operations. For rigor, the analysis of energy representation and frames in 
the localized graph Fourier transform is extended to the energy forms of vertex-frequency distributions, 
which operate even without the requirement to apply localization windows. Another link with classical 
signal processing is established through the concept of local smoothness, which is subsequently related 
to the paradigm of signal smoothness on graphs, a lynchpin which connects the properties of the signals 
on graphs and graph topology. This all represents a comprehensive account of the relation of general 
vertex-frequency analysis with classical time-frequency analysis, an important but missing link for more 
advanced applications of graph signal processing. The theory is supported by illustrative and practically 
relevant examples.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Analysis and processing of data may significantly benefit from 
appropriate exploitation of relations between sensing locations, 
signal values, and analyzed data types (objects). In this way, a new 
data domain in the form of a graph arises as a natural choice [1]. 
It comprehensively takes into account irregular data relations as a 
part of problem definition, along with the corresponding data con-
nectivity. Although graph theory, as a branch of mathematics, has 
been established long time ago, it has largely focused on analyz-
ing the underlying graphs rather than a conjoint analysis of graphs 
themselves and signals on graphs, a research topic of recent sig-
nificant interest. Over-view of graph signal processing theory can 
be found in [2–5], along with relevant discussions regarding the 
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relations with classical digital signal processing, recent advances, 
methods, and applications. The spectral domain analysis, process-
ing, and filtering of signals on graphs are analyzed in [6,7], the 
sampling theory adapted to this emerging field has been also a 
topic of recent studies [8], while the principal relation of classical 
signal forms to the corresponding graph structures was presented 
in [9,10]. The Big Data paradigm has revealed the possibility of us-
ing smaller and localized subsets of the available information to 
enable a reliable mathematical analysis and local characterization 
of subsets of data of interest as elaborated in [11].

Oftentimes in practical applications concerned with large
graphs, we may not be interested in the analysis of the entire 
graph signal, but rather in its local behavior. It is therefore natural 
and practically useful to characterize the localized signal behavior 
in the joint vertex-frequency domain, with the first important step 
to establish links to classical time-frequency analysis [12–14]. In-
deed, the concept of vertex-frequency analysis was introduced in 
[15], by extending the principle of the signal localization by ap-
plying localization window functions to signals defined on graphs. 
This concept was further developed in [16], with the extensions 
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of this approach including the multi-window form [17], a short-
graph Fourier transform combined with page-rank vectors [18], 
or vertex domain localization windows [19]. Window forms have 
also been adapted to define the frequency-varying localized graph 
Fourier transform [20] and spectral domain wavelet transform-
based vertex-frequency kernels, including the signal adaptive ker-
nels with polynomial approximations and recursive realizations, 
[21–23].

The extension of time-frequency analysis to vertex-frequency 
analysis is not straightforward, since, owing to inherent properties 
of graphs which are irregular but interconnected domains, even 
an operation which is very simple in classical time-domain analy-
sis, like the time shift, cannot be straightforwardly generalized to 
graph signal domain. This has resulted in several approaches to the 
definition of the graph shift operator, and much ongoing research 
in this domain.

A common approach to windowing in the graph domain is to 
utilize the signal eigenspectrum to obtain window functions for 
each graph vertex [24]. Another possibility is to define a window 
support as a local neighborhood for each vertex [19]. In either case, 
the localization window is defined by a set of vertices that contain 
the current vertex, n, and all vertices that are close to the vertex 
n, that is, a neighborhood of vertex n. Special attention is paid to 
the local graph Fourier transform approaches that can be imple-
mented in the vertex domain, since this domain can be a basis for 
numerically efficient analysis in the case of very large graphs and 
big data.

As in the classical signal analysis, a localization window should 
be narrow enough in order to provide good localization of the sig-
nal properties in the vertex domain but wide enough to produce 
high resolution in the graph spectral domain. To automatize the 
process of making this compromise, optimization approaches are 
typically involved, some of which are related to the uncertainty 
principle. This forms the basis for vertex-frequency analysis which 
can be used for graph signal estimation, filtering, and efficient 
graph signal representation, together with a framework for signal 
reconstruction in the vertex-frequency domain. Two forms of the 
local graph Fourier transform inversion approaches (corresponding 
to the constant overlap-add and weighted overlap-add methods 
in classical time-frequency analysis) are considered in this work, 
while the inversion condition is also defined within the frames 
framework. For generality, the local graph Fourier transform and 
its inversion are further related to the graph wavelet transform.

Finally, the energy versions of the vertex-frequency represen-
tations are considered and shown to admit implementation even 
without a localization window, through their relation with the lo-
cal smoothness index estimators. The reduced interference vertex-
frequency distributions, which satisfy the marginal property and 
localize graph signal energy in the vertex-frequency domain are 
subsequently reviewed and related to the classical time-frequency 
analysis, as a special case. All concepts are illustrated through in-
tuitive examples.

The paper is organized as follows. The basic definitions of graph 
signals and spectral graph domain are given in Section 2. The lo-
calized graph Fourier transform is presented in Section 3, where 
various approaches to define this transform are considered. The lo-
cal graph Fourier transform is further related to the graph wavelet 
transform. The topic of Section 4 is the optimization of the graph 
signal localization window, while Section 5 gives the inversion re-
lations and conditions for the considered graph transforms. The 
uncertainty principle in graph signals is reviewed in Section 6. The 
graph spectrogram is related to the frames in Section 7. The en-
ergy vertex-frequency representations are defined and analyzed in 
Section 8.
Table 1
Summary of graph spectral bases.

Operator Eigenanalysis relation

Graph Laplacian Luk = λkuk

Generalized eigenvectors Luk = λkDuk

of graph Laplacian

Normalized graph Laplacian
(
D−1/2LD−1/2

)
uk = λkuk

Adjacency matrix Auk = λkuk

Normalized adjacency matrix
(

1
λmax

A
)

uk = λkuk

2. Review of basic background concepts

Consider a graph with N vertices, denoted by n ∈ V = {1, 2, . . . ,
N}, which are connected with edges whose weights are Wmn . If 
the vertices m and n are not connected, then Wmn = 0. The edge 
weights Wmn are commonly written in an N × N matrix form, W. 
For undirected graphs the weight matrix W is symmetric, W = WT . 
In the case of unweighted graphs, all nonzero elements in W are 
equal to unity, and this specific form is called the connectivity or 
adjacency matrix, denoted by A.

For an enhanced graph description, in addition to matrix A or 
W, it is common to use a diagonal degree matrix D, whose el-
ements Dnn are equal to the sum of all edge weights connected 
to the considered vertex, n, that is, Dnn = ∑

m Wmn , thus indi-
cating the vertex importance. The weight matrix and the degree 
matrix can be combined to produce the graph Laplacian, given by 
L = D − W. The Laplacian of an undirected graph is symmetric, 
L = LT .

Spectral analysis of graphs is most commonly based on the 
eigendecomposition of the graph Laplacian L or the adjacency 
matrix, A. Some of the common eigendecompositions in graph 
signal analysis are given in Table 1. By default, we will assume 
the decomposition of the graph Laplacian, L, if not stated other-
wise. The eigenvectors, uk , and the eigenvalues, λk , of the graph 
Laplacian are calculated based on the usual definition Luk = λkuk , 
k = 1, 2, . . . , N .

The graph Fourier transform (GFT), denoted by

X = [X(1), X(2), . . . , X(N)]T ,

of a graph signal, x = [x(1), x(2), . . . , x(N)]T , is defined as an ex-
pansion onto a set of orthonormal basis functions, uk , the elements 
of which are uk(n), n = 1, 2, . . . , N , that is

X(k) = GFT{x(n)} =
N∑

n=1

x(n) uk(n). (1)

The inverse graph Fourier transform (IGFT) is then defined accord-
ingly as

x(n) = IGFT{X(k)} =
N∑

k=1

X(k) uk(n). (2)

More details on the GFT definition and interpretation can be found 
in Appendix A.

Remark 1. The graph Fourier transforms in (1) and (2) reduces 
to the classical discrete Fourier transform (DFT) and the inverse 
DFT, if the graph is circular and directed. The eigenvectors of a 
directed graph are complex-valued and for this case we should 
use complex-conjugate basis functions, u∗

k (n), in (1). The eigende-
composition of the adjacency matrix A is commonly used for the 
directed graphs [25,26].
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Since the graph Laplacian eigenvectors are a key concept un-
derpinning vertex-frequency representations, we shall now review 
their properties related to the presented analysis. The Laplacian 
matrix is defined in such a way that the sum of elements in each 
its row (column) is zero. As a consequence, this enforces the inner 
products of every row of L with any constant vector to be zero-
valued. This also means that at least one eigenvalue of the Lapla-
cian is zero, λ1 = 0, and its corresponding eigenvector is given by 
u1 = [1, 1, . . . , 1]T /

√
N . Since the graph Laplacian eigenvectors are 

orthogonal, uT
k ul = 0 for k �= l, this means that 

∑N
n=1 uk(n)ul(n) =

δ(k − l). Also, the eigenvectors for k > 1 are orthogonal to the con-
stant eigenvector, u1, resulting in 

∑N
n=1 uk(n) = 0, for k > 1.

From the eigenvector definition, Luk = λkuk , it follows that 
uT

k Luk = λk , or in an element-wise form

ukLuk = 1

2

N∑
m=1

N∑
n=1

Wmn

(
uk(n) − uk(m)

)2 = λk.

In other words, the above quadratic form of the graph Laplacian is 
equal to the sum of squared differences of the eigenvector value 
at a vertex, n, and its neighboring vertices, m. In this way, the 
eigenvalue can be considered as a measure of the rate of change 
(smoothness) of the considered eigenvector, whereby faster chang-
ing eigenvectors (corresponding to high-frequency signals) have 
larger smoothness values. Therefore, the smoothness of an eigen-
vector, λk , in graph signal processing plays the role of frequency in 
classical spectral analysis (see Appendix A).

3. Localized graph Fourier transform (LGFT)

The localized graph Fourier transform (LGFT) can be considered 
an extension of the standard localized time (short time) Fourier 
transform (STFT), and can be calculated as the GFT of a signal, x(n), 
multiplied by an appropriate vertex localization window function, 
hm(n), to yield

S(m,k) =
N∑

n=1

x(n)hm(n) uk(n). (3)

In general, is assumed that a graph window function, denoted by 
hm(n), should be such that it localizes the signal content around 
the vertex m. In other words, its values should be close to 1 at a 
vertex m and vertices in its close neighborhood, while approaching 
0 for vertices far from vertex m.

Remark 2. The classical time-frequency analysis (STFT) form of the 
relation in (3) is

S(m,k) = 1√
N

N∑
n=1

x(n)hm(n)e− j2π(n−1)(k−1)/N ,

with the localization window, hm(n) = h(n − m).

In a matrix notation, the local GFT, S, contains all the elements, 
S(m, k), m = 1, 2, . . . , N , k = 1, 2, . . . , N , while the columns of S
which correspond to a vertex m are given by

sm = GFT{x(n)hm(n)} = UH xm,

where xm is the vector whose elements, x(n)hm(n), are equal to 
the graph signal samples, x(n), multiplied by the window func-
tion, hm(n), centered at the vertex m, and matrix U is composed of 
eigenvectors uk, k = 1, 2, . . . , N as its columns.
In general, the set of vertices, m, and spectral indices, k, where 
the LGFT is calculated may be reduced from the original N2 vertex-
frequency points, (m, k), to N points and corresponding values, 
S(m, k), in a non-redundant representation [27].

Special cases:

• For hm(n) = 1, the localized vertex spectrum is equal to the 
standard spectrum S(m, k) = X(k) in (1) for each m, meaning 
that no vertex localization is performed.

• If hm(m) = δ(m − n), the localized vertex spectrum for k = 1 is 
equal to S(m, 1) = x(m)/

√
N .

The subsequent subsections outline ways to create appropriate 
windows for vertex-frequency analysis. Several approaches to the 
definition of a localization kernel will be presented, including:

• A spectrum domain defined window function, which is graph 
shifted and modulated to the vertex-frequency domain point;

• A spectral shifted form of the kernel using a band-pass type 
function in the spectral domain;

• Spectral varying forms of the spectral shifted kernels, as in the 
spectral graph wavelet transform or a signal adaptive kernel;

• Pure vertex domain forms and graph shifts of the window.

For the spectral shifted forms of the LGFT, the polynomial approx-
imations shall be presented together with appropriate recursive 
realizations in the localized vertex domain, leading to the vertex 
domain implementation of the LGFT.

3.1. Windows defined in the GFT domain

Generalized convolution of graph signals. Consider two signals, 
x(n) and y(n), defined on a graph, with the corresponding GFTs 
denoted by X(k) and Y (k). A generalized convolution, z(n), of signals 
x(n) and y(n) can then be defined in the GFT domain, in analogy 
with the classical definition of convolution, as

z(n) = x(n) ∗ y(n) = IGFT{Z(k)}, where

Z(k) = GFT{x(n) ∗ y(n)} = X(k)Y (k). (4)

Shift operator for graph signals. A “shift” on a graph cannot be 
extended to graph signals in a direct and unique analogy to the 
classical signal shift. Among several forms of signal shift on a 
graph which have been proposed in graph theory, the most com-
monly used in the graph signal filtering and the GFT definition 
are those based on the matrix multiplication of the signal with 
one of the graph connectivity operators (listed in Table 1 and dis-
cussed in Appendix A). Within vertex-frequency analysis, an in-
teresting attempt has been made to generalize the convolution 
and to define a corresponding shift operator on a graph [15]. Be-
cause of its significance in this field, this approach will be reviewed 
next.

Consider the graph signal, h(n), and the delta function located 
at a vertex m, given by δm(n) = δ(n −m). The GFT of delta function, 
δm(n), is then given by

�m(k) = GFT{δm(n)} =
N∑

n=1

δm(n)uk(n) = uk(m).

We will use the symbol hm(n) to denote a shifted version of the 
graph signal, h(n), “toward”a vertex m. Based on (4), this kind of 
graph signal shift will be defined following the same reasoning as 
in classical signal processing, where the shifted signal is obtained 
as a convolution of the original signal and an appropriately shifted 
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delta function. Therefore, a graph shifted signal can be defined as 
a generalized graph convolution, h(n) ∗ δm(n), the GFT of which is 
equal to

GFT{h(n) ∗ δm(n)} = H(k)uk(m). (5)

The graph-shifted signal then represents the IGFT of H(k)uk(m), 
so that from (4) the window localized at the vertex m, denoted by 
hm(n), is given by [16]

hm(n) = h(n) ∗ δm(n) =
N∑

k=1

H(k)uk(m)uk(n). (6)

The basic form of this window, h(n), can be conveniently de-
fined in the spectral domain, for example as

H(k) = C exp(−λkτ ), (7)

where C denotes the window amplitude and τ > 0 is a constant 
which determines the window width. An example of two windows 
obtained in this way is illustrated in Fig. 2(a), (b). Observe that 
the exponential function in (7) corresponds to a Gaussian win-
dow in classical analysis (thus offering the best time-frequency 
concentration [12–14]), since graph signal processing on a circu-
lar or path graph reduces to classical signal analysis. In that case, 
the eigenvalues of the graph Laplacian, λ, may be related to the 
frequency, ω, in the classical signal analysis as λ ∼ ω2, see Ap-
pendix A.
Properties of graph window functions. The window localized at 
the vertex m, and defined by (6), satisfies the following properties:

W1: Symmetry, hm(n) = hn(m). This property follows from the 
definition in (6), for real-valued eigenvectors.

W2: A sum of all localized window coefficients, hm(n), is equal to 
H(1), since

N∑
n=1

hm(n) =
N∑

k=1

H(k)uk(m)

N∑
n=1

uk(n)

=
N∑

k=1

H(k)uk(m)δ(k − 1)
√

N = H(1),

with 
∑N

n=1 uk(n) = δ(k − 1)
√

N , by definition of the graph 
Laplacian eigenvectors, uk(n).

W3: The Parseval theorem for hm(n) has the form

N∑
n=1

|hm(n)|2 =
N∑

k=1

|H(k)uk(m)|2. (8)

These properties will be used in the sequel in the inversion analy-
sis of the LGFT.

For the window form in (6), the LGFT can be written as

S(m,k) =
N∑

n=1

x(n)hm(n) uk(n) (9)

=
N∑

n=1

N∑
p=1

x(n)H(p)up(m)up(n) uk(n). (10)

The modulated (spectral shifted) version of the window centered 
at vertex m and for spectral index k will be referred to as the 
vertex-frequency kernel, Hm,k(n), defined as

Hm,k(n)=hm(n)uk(n)=
( N∑

H(p)up(m)up(n)
)

uk(n). (11)

p=1
Using the kernel notation, it becomes obvious that the LGFT, for a 
given vertex m and spectral index k, physically represents a projec-
tion of a graph signal x(n) onto the graph kernel Hm,k(n), that is,

S(m,k) = 〈Hm,k(n), x(n)〉 =
N∑

n=1

Hm,k(n)x(n). (12)

Remark 3. The classical STFT, a basic tool in time-frequency analy-
sis, can be obtained as a special case of the GFT when the graph is 
directed and circular. For this type of graph, the adjacency matrix 
decomposition produces complex-valued eigenvectors of the form 
(see Appendix A)

uk(n)
√

N = e j2π(n−1)(k−1)/N ,

n = 1, 2, . . . , N , k = 1, 2, . . . , N . Then, having in mind the complex 
nature of eigenvectors, the value of S(m, k) in (9) becomes the 
standard STFT, that is

S(m,k) = 1

N3/2

N∑
n=1

N∑
p=1

x(n)H(p)e− j 2π
N (m−1)(p−1)

× e j 2π
N (n−1)(p−1)e− j 2π

N (n−1)(k−1)

= 1√
N

N∑
n=1

x(n)h(n − m)e− j2π(n−1)(k−1)/N , (13)

where h(n) is the inverse DFT of H(k).

Example 1. To illustrate the principle of local vertex-frequency rep-
resentation, consider the graph and the graph signal from Fig. 1. A 
graph with N = 100 vertices, randomly placed on the so called 
Swiss roll surface, is shown in Fig. 1(a). The vertices are connected 
with edges whose weights are defined as Wmn = exp(−r2

mn/α), 
where rmn is the Euclidean distance between vertices m and n, 
measured on the Swiss roll manifold, and α is a constant [5]. Small 
weight values are hard-thresholded to zero, to reduce the num-
ber of edges associated with each vertex to only a few strongest 
ones, to produce the graph as in Fig. 1(b), the two-dimensional 
presentation of which is shown in Fig. 1(c). Vertices are ordered so 
that the values of the Fiedler eigenvector, u2(n), are nondecreasing 
[5].

The signal on this graph, shown in Fig. 1(d), is composed of 
parts of three Laplacian eigenvectors. For the subset of all ver-
tices V , denoted by V1, which comprises vertices with indices 
from m = 1 to m = 40, the eigenvector with spectral index k = 72
was used. For the subset V2, with vertex indices from m = 41
to m = 70, the signal was equal to the eigenvector uk(n) with 
k = 50. The remaining vertices form the vertex subset V3, and 
the signal on this subset was equal to the eigenvector with the 
spectral index k = 6. Amplitudes of the eigenvectors were scaled 
too.

Consider now the vertex-frequency localization kernels, Hm,k(n)

= hm(n)uk(n), shown in Fig. 2. The constant eigenvector, u1(n) =
1/

√
N , is used in the panel shown in Fig. 2(a) at m = 28, with 

C = 1 and τ = 1 in (7). In this case, the localization window, 
h28(n), is presented since H28,1(n) = h28(n)/

√
N . The illustra-

tion is repeated in the panel in Fig. 2(c) for the vertex m =
94. Frequency shifted versions of these two kernels, shown in 
Figs. 2(a) and (c), are given respectively in Figs. 2(b) and (d), where 
Hm,21(n) = hm(n)u21(n) is shown for m = 28 and m = 94, respec-
tively.

The vertex-frequency representation, S(n, k), using the LGFT 
and the localization window defined in the spectral domain is 
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Fig. 1. Concept of a graph and a signal on a graph. (a) Vertices on a three-dimensional Swiss roll surface. (b) A graph representation on the Swiss roll manifold. (c) Two-
dimensional presentation of the three-dimensional graph from (b), with vertex colors defined by the graph Laplacian eigenvectors u1(n), u2(n), and u3(n). (d) A signal on 
the graph in (c), which is composed of three eigenvectors (signal components). Supports of these three components are designated by different vertex colors. The vertex-
frequency representations are then assessed based on their ability to clearly resolve and localize these three graph signal components. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)
shown in Fig. 3. From this representation, we can clearly fol-
low the three constituent signal components, within their in-
tervals of support. The marginal properties, such as the pro-
jections of S(n, k) to the vertex index and spectral index axis, 
are also clearly distinguishable. From the marginal properties 
we can conclude that the graph signal in hand is spread over 
all vertex indices, while its spectral localization is dominated 
by the three spectral indices which correspond to the three 
components of the original graph signal. In an ideal case of 
the vertex-frequency analysis, these marginals should respec-
tively be equal to |x(n)|2 and |X(k)|2, which is not the case 
here.

3.2. Spectral domain localization of the LGFT

Recall that the classical STFT admits frequency localization us-
ing a window in the spectral domain, whereby the dual form of 
STFT is obtained using the DFT of the original signal and spectral 
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Fig. 2. Illustration of localization kernels, Hm,k(n) = hm(n)uk(n), for vertex-frequency analysis based on spectral domain defined windows in the local graph Fourier transform, 
S(m, k) = ∑N

n=1 x(n)Hm,k(n). (a) Localization kernel H28,1(n) = h28(n)u1(n) ∼ h28(n), for a constant eigenvector, u1(n) = 1/
√

N , centered at the vertex m = 28. (b) The same 
localization kernel as in (a) but centered at the vertex m = 94. (c) Localization kernel, H28,21(n) = h28(n)u21(n), centered at the vertex m = 28 and frequency shifted by 
u21(n). Notice that the variations in kernel amplitude indicate the effects of modulation of the localization window hm(n). (d) The same localization kernel as in (c), but 
centered at the vertex m = 94. (e) Three-dimensional representation of kernel H35,1(n) = h35(n)u1(n), (f) Three-dimensional representation of kernel H79,1(n) = h79(n)u1(n).
domain window. For graph signals, we can also use this approach 
to perform localization in the spectral domain, whereby the LGFT 
is obtained as an inverse GFT of X(p) localized by a spectral do-
main window, H(k − p), which is centered around spectral index 
k, that is

S(m,k) =
N∑

p=1

X(p)H(k − p) up(m). (14)

Note that this form of the LGFT can be entirely implemented in 
the graph spectral domain, without a graph shift operator in the 
vertex domain.

Remark 4. The classical time-frequency analysis counterpart of 
(14) is given by [12]

S(m,k) = 1√
N

N∑
p=1

X(p)H(k − p)e j 2π
N (m−1)(p−1),

where H(k) is a frequency domain window (a band-pass function).

The spectral domain LGFT form in (14) can be implemented 
using band-pass transfer functions, Hk(λp) = H(k − p), as

S(m,k) =
N∑

X(p)Hk(λp) up(m). (15)

p=1
The elements S(m, k), m = 1, 2, . . . , N of the LGFT matrix S can 
also be written in a matrix form

sk = IGFTp{X(p)Hk(λp)} = U Hk(�)X, (16)

where Hk(�) is a diagonal matrix with elements Hk(λp), p =
1, 2, . . . , N .

Remark 5. The kernel in (11) is defined based on a low-pass trans-
fer function H(k), which is appropriately shifted in the spectral 
domain using the modulation term, uk(n). The transfer function in 
(15), Hk(λp), is centered (shifted) at a spectral index, k, by defini-
tion. Hence, in this case, the modulation term, uk(n), is not needed 
and the kernel is now of the form

Hm,k(n) =
N∑

p=1

Hk(λp)up(m)up(n). (17)

3.3. LGFT realization with band-pass functions

Consider the spectral domain localization windows in a form 
of a transfer function of a band-pass graph system, centered at an 
eigenvalue, λk , and around it, and that it is defined in the form of 
a polynomial given by

Hk(λp) = h0,k + h1,kλp + · · · + hM−1,kλ
M−1
p , (18)
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Fig. 3. Local vertex-frequency spectrum calculated using the LGFT and the vertex-
frequency localized kernels defined in the spectral domain, as in (11). From this 
representation, we can see that the graph signal consists of three components lo-
cated at spectral indices k = 72, k = 50, and k = 6, with the corresponding vertex 
indices subsets V1, V2, and V3, where V1 ∪ V2 ∪ V3 = V . The marginal (vertex 
and spectrum-wise) properties are shown in the panels right and below the vertex-
frequency representation. Observe that, while the graph signal is spread across all 
vertices, its spectral content is localized at three spectral indices which correspond 
to the constituent signal components. In an ideal case of vertex-frequency analysis, 
these marginals should be respectively equal to |x(n)|2 and |X(k)|2.

with M being the polynomial order, and k = 0, 1, . . . , K − 1, where 
K is the number of bands (see Appendix A).

The vertex-frequency transform, S(m, k), for the vertex m and 
spectral index k then assumes the form as in (17), which can be 
written in a vector form using (16) as

sk = UHk(�)X = UHk(�)UT x

= Hk(L)x =
M−1∑
p=0

hp,kLp x, (19)

where sk is the column vector with elements S(m, k), m =
1, 2, . . . , N , and the property of eigendecomposition of a matrix 
polynomial is used in the derivation (see Appendix A). In this case, 
the number of shifted windows, K , is not related to the total number of 
indices N.

Example 2. Consider the simplest decomposition into a low-pass 
and high-pass part of a graph signal, with K = 2. In this case, two 
values k = 0 and k = 1 represent the low-pass part and high-pass 
part of the graph signal. Such a decomposition can be achieved 
by using the graph Laplacian with h0,0 = 1, h0,1 = −1/λmax, and 
h1,0 = 0, h1,1 = 1/λmax, where the coefficients are chosen to form 
a simple linearly decreasing function of λp for the low-pass part, 
and a linearly increasing function of λp for the high-pass part, in 
the corresponding transfer functions. These transfer functions are 
respectively given by

H0(λp) = (1 − λp

λmax
), H1(λp) = λp

λmax
,

leading to the vertex domain implementation of the LGFT as
s0 = (I − 1

λmax
L)x, s1 = 1

λmax
L x.

This simple decomposition system is used with a normalized graph 
Laplacian in [28], eq. (7), as the key model for graph convolution 
networks (GCN), derived from the first order Chebyshev polyno-
mial approximation.

To improve the spectral resolution, we can continue with the 
same transfer function by dividing the low-pass part into its low-
pass and high-pass part. The same can be performed for the high-
pass part, to obtain

s00 =
(

I − L

λmax

)2
x, s01 = 2

(
I − L

λmax

) L

λmax
x, s11 = L2

λ2
max

x,

the factor of 2 appears in the new middle pass-band, s01, since the 
low-high-pass and the high-low-pass components are the same.

The division can be extended to a general case of K bands, cor-
responding to the terms of a binomial form(
(I − L/λmax) + L/λmax

)K−1
x,

with the transfer functions in the vertex domain given by

Hk(L) =
(

K − 1

k

)(
I − 1

λmax
L
)K−1−k( 1

λmax
L
)k

.

Example 3. The transfer functions Hk(λp), p = 1, 2, . . . , N , k =
0, 1, . . . , K − 1 in the spectral domain, corresponding to the bino-
mial form terms for K = 26, are shown in Fig. 4(a). These functions 
are used for the LGFT calculation at vertex indices m = 1, 2, . . . , N
in k = 0, 1, . . . , K − 1 bands. Since the bands are quite spread out, 
the resulting LGFT is also spread along the frequency axis. The con-
centration can be improved by reassigning the values of S(m, k) to 
the position of their maximum value along the frequency band in-
dex, k, for each vertex index, m. Such a reassigned LGFT values are 
given in Fig. 5 (a), which shows that this extremely simple vertex-
frequency representation can be quite acceptable for a rough anal-
ysis.

3.3.1. Band-pass functions of the Hann window form
Of course, any other set of band-pass functions, Hk(�), can be 

used to produce the LGFT from (16) in the form (19), to give

sk = Hk(L)x. (20)

Commonly used examples of such band-pass functions are the 
spline or raised cosine (Hann window) functions. We will next use 
the general form of the shifted raised cosine functions as the trans-
fer functions, defined by

Hk(λ)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin2
(

π
2

ak
bk−ak

( λ
ak

− 1)

)
, for ak <λ ≤bk

cos2
(

π
2

bk
ck−bk

( λ
bk

− 1)

)
, for bk <λ ≤ck

0, elsewhere,

(21)

where (ak, bk] and (bk, ck], k = 0, 1, . . . , K − 1, define the spectral 
bands for Hk(�). For uniform bands within 0 ≤ λ ≤ λmax, the in-
tervals can be defined by

ak = ak−1+ λmax

K−1
,

bk = ak+ λmax

K−1
,

ck = ak+2
λmax

K−1
(22)
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Fig. 4. Exemplar transfer functions in the spectral domain. (a) The spectral do-
main transfer functions Hk(λp), p = 1, 2, . . . , N , k = 0, 1, . . . , K − 1, which corre-
spond to the binomial form terms for K = 26. (b) The transfer functions Hk(λp), 
p = 1, 2, . . . , N , k = 0, 1, . . . , K − 1, which correspond to the half-cosine form terms 
for K = 15. (c) The spectral index-varying (wavelet-like) transfer functions Hk(λp), 
p = 1, 2, . . . , N , k = 0, 1, . . . , K − 1, which correspond to the half-cosine form terms 
for K = 11. (d) The spectral domain signal adaptive transfer functions Hk(λp), 
p = 1, 2, . . . , N , k = 0, 1, . . . , K − 1, which satisfy the condition ∑K−1

k=0 H2
k (λp) = 1, 

with K = 17. (e) Polynomial Chebyshev approximations of transfer functions from 
panel (b), P̄k,M−1(λ), k = 0, 1, . . . , K − 1, with M = 20, where dotted horizontal 
line designates ∑K−1

k=0 Hk(λ). The transfer function H9(λ) is designated by the thick 
black line for each considered domain in panels (a)–(d), while its discrete values at 
λp , H9(λp), are shown in gray in panels (b)–(d).

with a1 = 0 and limλ→0(a1/λ) = 1. The initial transfer function, 
H0(λ), is defined using only 0 = b0 ≤ λ ≤ c0 = λmax/K , while 
the last transfer function, H K−1(λ), is defined using the interval 
aK−1 < λ ≤ bK−1 = λmax in (21).

The raised cosine transfer function in (21) satisfies the follow-
ing condition

K−1∑
k=0

Hk(λp) = 1. (23)

This is a frequency domain counterpart of the well-known condi-
tion for the classical STFT inversion which requires that the lag-
window satisfies the constant overlap-add relation 

∑K−1
n=0 w(nR −

m) = 1, where R is the STFT calculation time step. Many other 
classical window forms satisfy this condition.

3.3.2. Band-pass functions of the sine window form
When the synthesis window (the same as the analysis lag-

window) is used in the signal reconstruction then the condition

K−1∑
k=0

H2
k (λp) = 1 (24)

is required. If the squares are omitted in (21), then (24) is imme-
diately satisfied. This condition is a frequency domain counterpart 
of the weighted overlap-add method in classical STFT analysis.

A simple way to construct a window (function) for the weighted 
overlap-add method is to take the square root of the constant 
overlap-add window (for, example, the sine window as the square 
root of the Hann window). In this case, the transfer functions be-
come

Hk(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin

(
π
2

(
ak

bk−ak
( λ

ak
− 1)

))
, for ak < λ ≤ bk

cos

(
π
2

(
bk

ck−bk ( λ
bk

− 1)
))

, for bk < λ ≤ ck

0, elsewhere,

(25)

with ak+1 = bk , bk+1 = ck and the initial and the last intervals de-
fined as in (22).

3.3.3. Band-pass functions of the Meyer’s wavelet form
The sine functions in (25) are not differentiable at the interval-

end points, ak , bk , and ck . This property degrades their convergence 
in the transformation domain. With the aim to make the functions 
differentiable (and to improve the convergence), the argument

ak

bk − ak
(

λ

ak
− 1) = x,

in (25) is commonly mapped as

vx(x) = x4(35 − 84x + 70x2 − 20x3), (26)

for 0 ≤ x ≤ 1, producing Meyer’s wavelet-like transfer functions 
[29]

Hk(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin

(
π
2 vx

(
ak

bk−ak
( λ

ak
− 1)

))
, for ak < λ ≤ bk

cos

(
π
2 vx

(
bk

ck−bk ( λ
bk

− 1)
))

, for bk < λ ≤ ck

0, elsewhere,

(27)

with ak+1 = bk , bk+1 = ck and the initial and the last intervals de-
fined as in (22). The functions sin( π

2 vx(x)) and cos( π
2 vx(x)) are 

continuous and differentiable at the interval-end points (x = 0 and 
x = 1). Notice that if we used vx(x) = x in (27) this would produce 
the sine functions (25).
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Fig. 5. Vertex-frequency representation of a three-component signal in Fig. 1(d). (a) The LGFT of the signal is calculated by using the transfer functions in Fig. 4(a) for 
frequency selection. The LGFT values, S(m, k), were reassigned to the position of its maximum value along the frequency band index, k, for each vertex index, m. (b) The 
LGFT of the signal from Fig. 1(d), calculated by using the transfer functions in Fig. 4(b) for frequency selection. (c) The LGFT of the signal from Fig. 1(d), calculated using the 
wavelet-like transfer functions in Fig. 4(c) for frequency selection. (d) The LGFT of signal from Fig. 1(d), using signal adaptive transfer functions from Fig. 4(c) for frequency 
selection. (e) The LGFT of signal from Fig. 1(d), calculated based on the Chebyshev approximation of band-pass transfer functions from Fig. 4(b) with M = 20, shown in Fig. 
4(e). (f) The LGFT of signal from Fig. 1(d), calculated based on the Chebyshev approximation of band-pass transfer functions from Fig. 4(b) with M = 50. LGFT from (e) and 
(f) illustrate the influence of the convergence of Chebyshev approximation on the final vertex-frequency representation.
The conditions for graph signal reconstruction from the LGFT 
will be discussed in Section 6 and both forms, (23) and (24), will 
be used.

Example 4. The experiment from Example 3 is repeated with 
the raised cosine transfer functions Hk(λp), p = 1, 2, . . . , N , k =
0, 1, . . . , K − 1, shown in Fig. 4(b) for K = 15. These functions 
are used for the LGFT calculation at vertex indices m = 1, 2, . . . , N
in k = 0, 1, . . . , K − 1 bands. The LGFT values, appropriately reas-
signed to each eigenvalue, λp , are given in Fig. 5(b). The frequency 
resolution is defined by the transfer functions width and can be 
improved if narrower transfer functions are used. However, that 
would be at the expense of the vertex resolution.

Example 5. The experiment in Example 4 is extended by consider-
ing a spectral index-varying (wavelet-like transform) form of Mey-
er’s transfer functions, Hk(λp), p = 1, 2, . . . , N , k = 0, 1, . . . , K − 1, 
as depicted in Fig. 4(c). The so-obtained LGFT values are shown in 
Fig. 5(c). In order to illustrate the change of resolution in this case, 
the LGFT values were reassigned to each corresponding eigenvalue, 
λp .

The spectral graph wavelet-like transform is just an example of 
varying spectral transfer functions in the LGFT, with the highest 
spectral resolution (the narrowest spectral wavelet functions) for 
small values of the smoothness index, λp . As expected, the low-
frequency component in Fig. 5(c) is highly concentrated in the fre-
quency domain, while the concentration is very poor for the high 
frequency component. Again, as compared to Fig. 4(b) the vertex 
resolution for the high frequency components is significantly im-
proved, and there is no vertex overlapping of the regions, which is 
significant in Fig. 4(b). Notice that the transfer functions, Hk(λp), 
in this example, satisfy the condition in (24) which will be impor-
tant for the frame-based LGFT inversion.

In general, the change of resolution may be arbitrary and signal 
adaptive; for example, the resolution may be higher for the spec-
tral intervals of λ which are rich in signal components and lower 
within the intervals where there are no signal components.

Example 6. The concept of signal adaptive intervals for transfer func-
tions of the form (25) is illustrated in Fig. 4(d), where small inter-
vals are defined around a significant spectral content of the signal, 
while wide intervals are used for λ corresponding to the less sig-
nificant signal spectral content [30,23]. In the considered case, nar-
rowest window intervals (corresponding to the high resolution in 
the vertex-frequency representation) are defined around the spec-
tral positions of three signal components, at λ = 0.36, λ = 4.30, 
and λ = 5.57. Vertex-frequency representation calculated based on 
these transfer functions is shown in Fig. 5(d), with the assigned 
eigenvalue as the spectral axis. A notably high resolution in the 
representation of the first and the third component, at λ = 0.36
and λ = 5.57, is the result of the fine interval definition for spec-
tral windows in Fig. 4(d). This particular choice of the intervals 
allowed for high spectral resolution representation with a small 
number of transfer functions, K = 15. A wider interval width for 
the second component resulted in a lower spectral resolution than 
in the case of the other two components.

3.4. Polynomial LGFT approximation

For the direct implementation of the bandpass functions, 
Hk(λ), k = 0, 1, . . . , K − 1, for the LGFT, the spectral analysis in 
(21) or (25) of the whole graph should be performed in order to 
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obtain the basis functions. For a large graph representing big data 
problems, it is desirable (sometimes even necessary) to avoid cal-
culation of any function over the whole graph. We will proceed 
to present an approach based on the polynomial approximation of 
the bandpass functions, Hk(λ), k = 0, 1, . . . , K − 1, that will allow 
vertex-frequency analysis using the local signal and graph connec-
tions only.

The bandpass LGFT functions, Hk(λ), k = 0, 1, . . . , K − 1, of the 
form (21) or (25) will be implemented using a polynomial approx-
imation of order (M − 1), P̄k,M−1(λ), k = 0, 1, . . . , K − 1. Since the 
transfer functions Hk(λ) are used at discrete points λ = λp and the 
polynomial approximation is continuous within 0 ≤ λ ≤ λmax, the 
natural choice are the so called “min-max” Chebyshev polynomi-
als whose maximal deviation from the desired transfer function is 
minimal (a review of the orthogonal polynomial approximations of 
the graph spectral functions can be found in [31]).

The Chebyshev polynomials are defined by

T0(z) = 1,

T1(z) = z,

...

Tm(z) = 2zTm−1(z) − Tm−2(z),

for m ≥ 2 and −1 ≤ z ≤ 1.
We will use the finite (M − 1)-order of the Chebyshev polyno-

mials approximation

P̄k,M−1(λ) = ck,0

2
+

M−1∑
m=1

ck,m T̄m(λ), (28)

where

T̄m(λ) = Tm(2λ/λmax − 1)

is used in order to map the argument from the interval 0 ≤ λ ≤
λmax to the interval from −1 to 1. The polynomial coefficients 
are calculated using the Chebyshev polynomial inversion property, 
given by

ck,m = 2

π

1∫
−1

Hk((z + 1)λmax/2)Tm(z)
dz√

1 − z2
.

This leads to the vertex domain implementation of the spectral 
LGFT form in (19), given by

sk = P̄k,M−1(L)x,

for k = 0, 1, . . . , K − 1, with

P̄k,M−1(L) = ck,0

2
+

M−1∑
m=1

ck,m T̄m(L), (29)

= h0,kI + h1,kL + h2,kL2 + · · · + h(M−1),kLM−1.

The polynomial form in (29) uses only the (M − 1)-neigh-borhood 
in the calculation of the LGFT for each considered vertex, without 
the need for eigendecomposition analysis, thus significantly reduc-
ing the computational cost.

This implementation is of special interest when the graph rep-
resents big data. In that case, it is possible to perform vertex-
frequency analysis without even storing the whole graph Laplacian 
into computer memory. For vertex-frequency analysis at a vertex 
n, the calculation of the largest power of the Laplacian LM−1 in-
cludes only the M neighborhood of the vertex n. Thus, to calculate 
Table 2
Coefficients, hi,k , i = 0, 1, . . . , M − 1, k = 0, 1, . . . , K − 1, for the polynomial calcula-
tion of the LGFT, sk , of a signal, x, in various spectral bands, k, for (M − 1) = 5 and 
K = 10.

sk = (h0,kI + h1,kL + h2,kL2 + h3,kL3 + h4,kL4 + h5,kL5)x

k h0,k h1,k h2,k h3,k h4,k h5,k

0 1.079 −1.867 1.101 −0.2885 0.03458 −0.001548
1 −0.053 1.983 −1.798 0.5744 −0.07722 0.003723
2 −0.134 0.763 −0.310 0.0222 0.00422 −0.000460
3 0.050 −0.608 0.900 −0.3551 0.05348 −0.002762
4 0.096 −0.726 0.768 −0.2475 0.03172 −0.001424
5 0.016 −0.013 −0.128 0.1047 −0.02231 0.001424
6 −0.073 0.616 −0.779 0.3228 −0.05135 0.002762
7 −0.051 0.351 −0.356 0.1146 −0.01323 0.000460
8 0.084 −0.687 0.871 −0.3751 0.06409 −0.003723
9 −0.021 0.183 −0.251 0.1172 −0.02196 0.001419

the vertex-frequency representation at a vertex n, it is sufficient to 
store a very reduced set of data related to the M neighborhood of 
the considered vertex, both for the signal and the graph Laplacian.

Example 7. Consider the shifted transfer functions, Hk(λ), k =
0, 1, . . . , K − 1, defined by (21) and (22), shown in Fig. 4(b), for 
K = 15. Functions Hk(λ) satisfy 

∑K−1
k=0 Hk(λ) = 1. Every individ-

ual transfer function, Hk(λ), is approximated by P̄k,M−1(λ), M ≥ 2, 
of the form (28). Two orders of the polynomial are considered: 
M = 20 and M = 40. The Chebyshev polynomial approximations of 
the band-pass functions from Fig. 4(b) are shown in Fig. 4(e), for 
M = 20. For convenience, the summation 

∑K−1
k=0 P̄k,M−1(λ) is also 

calculated. As designated by the horizontal dotted line in Fig. 4(e), 
the summation values are close to 1, thus indicating the stable in-
vertibility of the LGFT.

The approximations of transfer functions, Hk(λ), obtained in 
this way, are used for the LGFT based vertex-frequency analysis 
of the three-component signal from Fig. 1(d). The absolute LGFT 
values are presented in Fig. 5(e) for M = 20 and in Fig. 5(f) for 
M = 50 (almost the same as in Fig. 5(b)). The lower component 
concentration in Fig. 5(d) than in Fig. 5(e) is related to the less 
precise approximation of the spectral transfer functions for M = 20
than for M = 50. Notice that high values of the polynomial order, 
(M − 1), increase calculation complexity and require a wide vertex 
neighborhood in the calculation of the LGFT. For a large order, M , 
the advantage of local neighborhood calculation is almost lost.

Note that this expansion is very sensitive to the coefficient pre-
cision (important to emphasize for possible hardware realizations 
with finite length registers). The number of four significant deci-
mal places in the presented coefficients were chosen such that the 
approximation error with these coefficients was M S E = −20 dB. 
In hardware realization, four significant decimal places correspond 
to 12 bits in the register required for mantissa and its sign. Con-
sidering also the exponent, we can conclude that at least 16-bit 
registers should be used.

Example 8. Chebyshev polynomial approximation of order (M −
1) = 5 is calculated for the band-pass transfer functions, Hk(λ),

k = 0, 1, . . . , K − 1, of the raised cosine form (21), with K = 10. 
The corresponding coefficients, hi,k for the vertex-domain imple-
mentation (19), are given in Table 2. The number of functions, K , 
is directly related to the desired frequency domain resolution, as 
can be seen from Fig. 4(b). An increase in the number of trans-
fer functions, K , makes these functions more concentrated. On the 
other hand, more concentrated functions, Hk(λ), require an in-
creased number of terms M for their approximation. The study of 
the approximation error for a given frequency resolution, defined 
by K , as a function of the number of approximation terms, M , is 
performed and results are given in Table 3. The mean squared er-
ror (MSE) is calculated from the difference of the desired, Hk(λ), 
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Table 3
Mean squared error (MSE) in the calculation of the Chebychev polynomial approx-
imation of band-pass transfer functions Hk(λ), k = 0, 1, . . . , K − 1, of the raised 
cosine form (21), calculated for various resolutions, K and approximation order, M . 
The MSE is shown in dB.

M K = 10 K = 15 K = 20 K = 30 K = 45 K = 60

5 −4.59 −3.23 −2.66 −2.14 −1.82 −1.66
10 −9.34 −6.13 −4.67 −3.33 −2.55 −2.19
15 −15.79 −9.45 −6.69 −4.60 −3.36 −2.77
20 −24.89 −12.93 −9.12 −5.96 −4.14 −3.35
30 −35.37 −23.80 −15.40 −9.02 −5.89 −4.58
50 −39.65 −36.31 −32.31 −17.24 −10.07 −7.34
75 −40.13 −39.69 −38.13 −31.82 −16.99 −11.56

and approximated transfer functions, P̄k,M−1(λ). Notice that for the 
transfer functions in Fig. 4(b) and their approximations in Fig. 4(d), 
calculated for K = 15 and M = 20, the MSE was equal to −12.93
[dB]. In this case, the approximation does not follow well the origi-
nal transfer function. From the analysis of the original and approx-
imated forms we concluded that the MSE of at most −15 [dB] is 
required. For example, for K = 15 the number of approximation 
terms (from the set presented in the table) is M = 30.

Note that in the case of the wavelet-like spectral domain trans-
fer functions or signal adaptive transfer functions, the narrow 
transfer functions require a large number of terms, M . For ex-
ample, the transfer function corresponding to the resolution for 
K = 45 requires at least M = 75.

Calculation complexity. If the number of nonzero elements in the 
graph Laplacian, L, is NL , then the number of arithmetic opera-
tions (additions) to calculate Lx is of the order of NL . The same 
number of operations is required to calculate L2x = L(Lx) using the 
available Lx. This means that the total number of arithmetic oper-
ations (additions) to calculate all Lx, L2x,. . . , LM−1x is of the order 
MNL . Adding these terms requires additional MNL arithmetic op-
erations (additions), while the calculation of all terms of the form 
cmLmx requires an order of MNL multiplications by constants cm , 
m = 0, 1, . . . , M − 1. Therefore, to calculate the output graph sig-
nal, y = P̄ M−1(L)x, an order of 2MNL additions and MNL mul-
tiplications is needed. Notice that the eigenanalysis of the graph 
Laplacian, L, requires an order of N3 arithmetic operations. For 
large graphs, the advantage in calculation complexity of the vertex 
domain realization with the polynomial transfer function approxi-
mation, y = P̄ M−1(L)x, is obvious. Moreover, the calculation is pos-
sible for every specific vertex of interest using its M-neighborhood 
only. An average number of operations for each vertex is obtained 
if the previous total numbers of arithmetic operations are divided 
by N .

3.5. The LGFT and the graph wavelet transform

The classic wavelet analysis is based on defining the “mother 
wavelet” and using its dilatated and translated versions to create 
signal decomposition kernels. A direct extension of this concept 
is not possible on graphs as irregular signal domains, since the 
operations of dilatation and translation are not possible in the 
same way as in the case of simple regularly sampled line as the 
signal domain. Several attempts have been made to extend the 
classical wavelet analysis to general graph signals, some of which 
were performed on specific tree graphs, [32,33]. The most signifi-
cant attempts to define the wavelet transform on general graphs 
have been: a lifting-based approach for multi-scale representa-
tion of graph signals [34–36], diffusion-based wavelets and dif-
fusion based polynomial frames [37,38], and separable filter-bank 
wavelets [39]. The wavelet definition that can be directly related to 
the presented spectral domain local graph Fourier transform, and 
has been commonly used in the graph signal analysis, is based on 
the extension of the spectral domain form of the classical wavelet 
transform and its polynomial approximations, and was introduced 
in [21].

In classical signal processing theory, time-frequency analysis 
has many common goals with the wavelet transform (and its gen-
eralization in the form of time-scale analysis). However, these two 
areas are usually considered separately. The main goals of the 
wavelet analysis are in performing multi-resolution signal analy-
sis, compression, and signal processing, including the wavelet do-
main sparsity-driven signal denoising. The main goals in classical 
time-frequency analysis are in the spectral and signal parame-
ter estimation (like, for example, the instantaneous frequency), 
joint time-frequency domain processing, detection, and denoising 
of nonstationary signals.

Since the same relation between these two signal processing ar-
eas can be assumed for the graph signal processing, we shall con-
sider only the spectral wavelet transform, which is directly related 
to the frequency-varying LGFT and can be considered as a spe-
cial case of the frequency-varying vertex-frequency analysis, rather 
than a transform aimed at the graph signal compression and its 
wavelet-like multi-resolution analysis.

As in classical signal processing, wavelet coefficients can be de-
fined as a projection of a graph signal onto the wavelet kernel functions. 
Assume that the basic form for the wavelet definition in the spec-
tral domain is H(λp). The wavelet in spectral domain then repre-
sents a scaled version of H(λp) in the scale si , i = 1, 2, . . . , K − 1, 
and is denoted by [22,23,40,36,41,42]

Hsi (λp) = H(siλp).

Additionally, a low-pass scale (father wavelet) function G(λp), 
plays the role of low-pass function, H0(λp), in the LGFT. There-
fore, a set of discrete scales for the wavelet calculation, denoted 
by s ∈ {s1, s2, . . . , sK−1}, is assumed with the corresponding spec-
tral transfer functions, Hi(λp) and G(λp). Now, in the same way 
as in the case of the kernel form of the LGFT in (12), the graph 
wavelet transform is defined using the band-pass scaled wavelet 
kernel, ψm,si (n), instead of the LGFT kernel, Hm,k(n), in (17). This 
yields

ψm,si (n) =
N∑

p=1

H(siλp)up(m)up(n), (30)

with the wavelet coefficients given by

W (m, si) =
N∑

n=1

ψm,si (n)x(n)

=
N∑

n=1

N∑
p=1

H(siλp)x(n)up(m)up(n)

=
N∑

p=1

H(siλp)X(p)up(m) (31)

what is the counterpart of the LGFT defined by (15).
The Meyer wavelet-like transfer functions in the spectral do-

main, H(siλp), are defined as in (27)

H(s1λ) =
⎧⎨
⎩sin

(
π
2 vx

(
q(s1λ − 1)

))
, for 1 < s1λ ≤ M,

0, elsewhere.
(32)

For 2 ≤ i ≤ K − 1 the Meyer-like graph wavelet is given by
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H(siλ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin

(
π
2 vx

(
q(siλ − 1)

))
, for 1 < siλ ≤ M

cos

(
π
2 vx

(
q(

siλ
M − 1)

))
, for M < siλ ≤ M2

0, elsewhere,

(33)

where q = 1/(M − 1). The argument vx(q(siλ − 1)) is defined by 
(26) and the scales are related as

si = si−1M = s1Mi−1 = Mi/λmax.

To handle the low-pass spectral components (the interval for λ
closest to λ = 0), the low-pass type scale function, G(λ)), is added 
in the form

G(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1, for 0 ≤ λ ≤ M/sK = λmax/M K−1

cos

(
π
2 vx

(
q( sK λ

M − 1)
))

, for M < sK λ ≤ M2

0, elsewhere.

(34)

The form of the spectral wavelet transfer function is as in 
Fig. 4(c), with the vertex-frequency representation explained in Ex-
ample 5.

Remark 6. The number of wavelet transfer functions, K , does not 
depend on the other wavelet parameters. A large value of K will 
only increase the number of intervals and the resolution (pro-
ducing smaller width of the first interval defined by λmax/M K−1) 
toward λ → 0.

Remark 7. The wavelet transfer functions, H(siλ), defined in (32)
and (33) including the low-pass scale function, G(λ), defined in 
(34), satisfy the relation

K−1∑
i=1

H2(siλ) + G2(λ) = 1.

The associated spectral wavelet transfer function, H(s1λ) = H1(λ), 
corresponds to the highest frequency band. The wavelet transfer 
function in the scale, sK−1, H(sK−1λ) = H K−1(λ), is associated 
with the lowest wavelet frequency band. The notation for the spec-
tral scale function (low-pass transfer function complementary to 
H(sK−1λ) within the lowest spectral interval) is G(λ). In the LGFT, 
the spectral scale function, G(λ), plays the role of low-pass transfer 
function with spectral index 0. Therefore, (K − 1) spectral wavelet 
transfer functions H(siλ), i = 1, 2, . . . , K − 1, along with the scale 
function G(λ), cover exactly K spectral bands, as in the LGFT case.

According to (19), the wavelet transform (31) can be written as

wi = Hi(L)x, (35)

where wi is a column vector with elements W (m, si), m =
1, 2, . . . , N .

In implementations, we can use the vertex domain localized 
polynomial approximations of the spectral wavelet functions, in 
the same way as described in Section 3.4. If Hi(λ) = H(siλ) is ap-
proximated by an (M − 1)-order Chebyshev polynomial in λ,

Hi(λ) ≈ P̄ i,M−1(λ),

then the relation

wi ≈ P̄ i,M−1(L)x, (36)

follows, where P̄ i,M−1(L) is a polynomial in the graph Laplacian 
(Section 3.4).
3.6. Windows defined using the vertex neighborhood

The window, hm(n), localized at a vertex m can also be defined 
using the vertex neighborhood. Recall that the distance between 
vertices m and n, dmn , is equal to the length of the shortest walk 
from vertex m to vertex n, and that dmn are integers. Then, the 
window function can be defined as

hm(n) = g(dmn),

where g(d) corresponds to any basic window function in classi-
cal signal processing. For example, the Hann window can be used, 
which is defined as

hm(n) = 1

2
(1 + cos(πdmn/D)), for 0 ≤ dmn < D,

where D is the assumed window width.
For convenience, window functions for every vertex can be cal-

culated in a matrix form as follows:

• The vertices for which the distance is dmn = 1 are defined 
with an adjacency (neighborhood one) matrix A1 = A. The ver-
tices which belong to the one-neighborhood of a vertex, m, are 
indicated by the unit-value elements in the mth row of the ad-
jacency matrix A (in unweighted graphs). In weighed graphs, 
the corresponding adjacency matrix A can be obtained from 
the weighting matrix W as A = sign(W).

• Vertices m and n, for which the distance is dmn = 2 are defined 
by the following matrix

A2 = (A � A1) ◦ (1 − A1) ◦ (1 − I),

where � is the logical (Boolean) matrix product, ◦ is the 
Hadamard (element-by-element) product, and 1 is a matrix 
with all elements equal to 1. The mth row of matrix A � A1
gives information about all vertices that are connected to the 
vertex m with walks of length K = 2 or lower. It should 
be mentioned that the element-by-element multiplication of 
A �A1 by matrix (1 −A1) removes the vertices connected with 
walks of length 1, while the multiplication by (1 − I) removes 
its diagonal elements.

• For dmn = d ≥ 2, we arrive at a recursive relation for the cal-
culation of a matrix which will give the information about the 
vertices separated by distance d. Such a matrix has the form

Ad = (A � Ad−1) ◦ (1 − Ad−1) ◦ (1 − I). (37)

The window matrix for an assumed graph window width, D , 
can now be defined as

PD = g(0)I + g(1)A1 + · · · + g(D − 1)AD−1,

so that a graph signal, localized around vertex m, may be formed 
based on this matrix, as

xm(n) = hm(n)x(n) = P D(n,m)x(n).

The LGFT representation of a graph signal, x(n), then becomes

S(m,k) =
N∑

n=1

x(n)hm(n) uk(n) =
N∑

n=1

x(n)P D(n,m) uk(n), (38)

with the vertex-frequency kernel given by

Hm,k(n) = hm(n)uk(n) = P D(n,m)uk(n). (39)

This allows us to arrive at the matrix form of the LGFT, given by



L. Stanković et al. / Digital Signal Processing 107 (2020) 102802 13

Fig. 6. Localization kernels for vertex-frequency analysis, Hm,k(n) = hm(n)uk(n), for the case of vertex domain defined windows in the local graph Fourier transform, S(m, k) =∑N
n=1 x(n)Hm,k(n). (a) Localization kernel H28,1(n) = h28(n)u1(n) ∼ h28(n), for a constant eigenvector, u1(n) = 1/

√
N , centered at the vertex m = 28. (b) The same localization 

kernel as in (a), but centered at the vertex m = 94. (c) Localization kernel, H28,21(n) = h28(n)u21(n), centered at the vertex m = 28 and frequency shifted by u21(n). Observe 
kernel amplitude variations, which indicate modulation of the localization window, hm(n). (d) The same localization kernel as in (c), but centered at the vertex m = 94. (e) 
Three-dimensional representation of the kernel H35,1(n) = h35(n)u1(n). (f) Three-dimensional representation of the kernel H79,1(n) = h79(n)u1(n).
S = UT (PD ◦ [x, x, . . . , x]), (40)

where [x, x, . . . , x] is an N × N matrix, the columns of which are 
the signal vector x.

For a rectangular function, g(d) = 1, and for any d < D , the 
LGFT can be calculated recursively with respect to the window 
width, D , as

SD = SD−1 + UT (AD−1 ◦ [x, x, . . . , x]). (41)

Example 9. Consider the local vertex-frequency representation of 
the signal from Fig. 1, using vertex domain defined windows. The 
localization kernels, Hm,k(n) = hm(n)uk(n), are shown in Fig. 6 for 
two vertices and two spectral indices. Observe that for the spectral 
index k = 1, the localization kernel is proportional to the localiza-
tion function, hm(n), given in Figs. 6(a) and 6(c) for the vertices 
m = 28 and m = 94. Frequency modulated forms of these local-
ization functions are shown in Figs. 6(b) and 6(d), for the same 
vertices and k = 21.

The vertex domain window is next used to analyze the graph 
signal from Fig. 1. The vertex-frequency representation, S(n, k), ob-
tained with the LGFT and the vertex domain localization window 
is given in Fig. 7. Again, we can observe three graph signal com-
ponents in three vertex regions. The marginals of S(n, k) are also 
shown in the right and bottom panels.
4. Window parameter optimization

The concentration of local vertex spectrum representation can 
be measured using the normalized norm-one [43], as

M = 1

F

N∑
m=1

N∑
k=1

|S(m,k)| = 1

F
‖S‖1, (42)

where F = ‖S‖F =
√∑N

m=1
∑N

k=1 |S(m,k)|2 is the Frobenius norm 
of matrix S. Any other norm ‖S‖p

p with 0 ≤ p ≤ 1 can be used 
instead of ‖S‖1. Recall that norms with p close to 0 are noise sen-
sitive, while the norm with p = 1 is the only convex norm, thus 
allowing for gradient based optimization [43].

Example 10. The concentration measure M(τ ) = ‖S‖1/‖S‖F for 
the signal from Fig. 1 and the window given in (7), and over a 
range τ is shown in Fig. 8, along with the optimal vertex frequency 
representation. This representation is similar that shown in Fig. 3, 
where an empirical value of τ = 3 was used, with the same local-
ization window and kernel form.

The optimal τ can be obtained in only a few steps through the 
iteration

τk = τk−1 − α(M(τk−1) −M(τk−2)),

with α as a step-size parameter.
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Fig. 7. Local vertex-frequency spectrum calculated using the LGFT and the vertex 
neighborhood windows, as in (39). This representation shows that the graph signal 
consists of three components located at spectral indices k = 72, k = 50, and k = 6, 
with the corresponding vertex indices in their respective vertex subsets V1, V2, and 
V3, where V1 ∪V2 ∪V3 = V . Marginal properties are also given in the panels to the 
right and below the vertex-frequency representation, and they differ from ideal ones 
given respectively by |x(n)|2 and |X(k)|2.

The optimization of parameter τ can also be achieved using 
graph uncertainty principle based techniques [44–46].

5. Uncertainty principle of graph signals

In the classical signal analysis, the purpose of a window func-
tion is to enhance signal localization in the joint time-frequency 
domain. However, the uncertainty principle prevents an ideal lo-
calization in both time and frequency. Various forms of the un-
certainty principle in the signal analysis have been defined, with 
surveys in [47,48]. These forms are closely related to the concen-
tration measures in time-frequency distributions, whose review is 
given in [43]. While the common uncertainty principle form in 
time-frequency analysis is the one which establishes the lower 
bound for the product of effective signal widths (variances) in the 
time and the frequency domain [13,49] (whose quantum mechan-
ical form is called the Robertson-Schrödinger inequality), here we 
will use a form of the sparsity support measure [43,47] as the one 
which clearly and simply shows a significant difference in classical 
Fourier based analysis and graph signal transforms with respect to 
the expected concentration in the joint vertex-frequency domain.

The sparsity support uncertainty principle for a discrete-time 
signal, x, and its DFT, X, states that

‖x‖0‖X‖0 ≥ N, (43)

or in other words, that the product of the number of nonzero sig-
nal values, ‖x‖0, and the number of its nonzero DFT coefficients, 
‖X‖0, is greater or equal than the total number of signal samples 
N; they cannot simultaneously assume small values.

To arrive at the support uncertainty principle for graph signals, 
consider a graph signal, x, and its spectral transform, X, in a do-
main of orthonormal basis functions, uk(n). Then, the uncertainty 
principle states that [47,44–46,50]

‖x‖0‖X‖0 ≥ 1

max {|u (m)|2} . (44)

k,m k
Fig. 8. Principle of the optimization of localization window. (a) Measure of the con-
centration of graph spectrogram for a varying spectral domain window parameter τ
with the minimum at τ = 5. (b) The corresponding optimal vertex-frequency repre-
sentation, calculated with τ = 5, together with the marginals.

This form of the support uncertainty principle is generic, 
and indeed when the basis functions are defined as uk(n) =

1√
N

exp( j2π(n − 1)(k − 1)/N), the standard DFT uncertainty prin-

ciple form (43) follows. A simple derivation of the support uncer-
tainty principle shall be given in Section 7.3, [51].

Note that in graph signal processing, the eigenvectors/basis 
functions can assume quite different forms than in the DFT case. 
For example, when one vertex is loosely connected with other ver-
tices, then max{|uk(m)|2} → 1, and even ‖x‖0‖X‖0 ≥ 1 is possible 
for the condition in (44). This means that a graph signal can be 
well localized in both the vertex and the spectral domains.

Example 11. For the graph shown in Fig. 1, we have

max
k,m

{|uk(m)|2} = 0.8565

which indicates that even ‖x‖0‖X‖0 ≥ 1.1675 is possible. In other 
words, a graph signal for which the number of nonzero samples, 
x(n), in the vertex domain is just two, will not violate the un-
certainty principle even if it has just one nonzero GFT coefficient, 
X(k).

6. Inversion of the LGFT

The inversion relation of the LGFT, calculated using any of the 
presented localization (window) forms, can be considered in a uni-
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fied way. Two approaches for the LGFT inversion are presented 
next.

6.1. Inversion by summation of the LGFT

The reconstruction of a signal, x(n), from its local spectrum, 
S(m, k), can be performed through an inverse GFT of (9), for the 
graph windowed signal, x(n)hm(n), as

x(n)hm(n) =
N∑

k=1

S(m,k) uk(n) (45)

followed by a summation over all vertices, m, to yield constant 
overlap-add relation

x(n) = 1∑N
m=1 hm(n)

N∑
m=1

N∑
k=1

S(m,k)uk(n). (46)

Remark 8. If the graph windows, hm(n), for every vertex, n, satisfy 
the condition

N∑
m=1

hm(n) = 1,

then the reconstruction does not depend on the vertex index, n, 
that is, the reconstruction is vertex independent. In that case

x(n) =
N∑

m=1

N∑
k=1

S(m,k)uk(n) =
N∑

k=1

X(k)uk(n), (47)

where X(k) = ∑N
m=1 S(m, k) is a projection of the LGFT onto the 

spectral index axis.
For windows obtained using the generalized graph shift in (37), 

this condition is always satisfied since H(1) = 1.

The condition 
∑N

m=1 hm(n) = 1 can be enforced by normalizing 
the elements of the matrix Ad , d = 1, 2, . . . , D − 1 in (37), prior to 
the calculation of matrix PD in such a way that the sum for each 
column is equal to 1, to arrive at

N∑
m=1

hm(n) =
N∑

m=1

P D(n,m) =
D−1∑
d=1

g(d) = const.

In general, the local vertex spectrum, S(m, k), can be calculated 
over a reduced set of vertices, m ∈ M ⊂ V . In this case, the sum-
mation over m in the reconstruction formula should be executed 
over only the vertices m ∈ M, while vertex-independent recon-
struction is achieved if 

∑
m∈M hm(n) = 1.

6.2. Inversion of the LGFT with band-pass functions

For the LGFT, defined in (19) as sk = ∑M−1
p=0 hp,kLpx, the inver-

sion is obtained by a summation over all spectral index shifts, k, 
that is
K−1∑
k=0

sk =
K−1∑
k=0

M−1∑
p=0

hp,kLpx =
K−1∑
k=0

Hk(L)x = x, (48)

if 
∑K−1

k=0 Hk(L) = I. This condition is equivalent to the following 
spectral domain condition

K−1∑
Hk(�) = I
k=0
since U 
∑K−1

k=0 Hk(�)UT = I and UT U = I. This condition is used to 
define the transfer functions in Fig. 4(a) and its element-wise form 
is given by (23).

6.3. Kernel-based LGFT inversion

Another approach to the inversion of the local vertex spectrum, 
S(m, k), follows the Gabor expansion frameworks [12], whereby 
the local vertex spectrum, S(m, k), is projected back to the vertex-
frequency localized kernels, Hm,k(n). The inversion for two forms 
of the LGFT, defined as in (10) and (15), will be next analyzed.
(a) For the LGFT defined in (10), the sum of all of its projections 
to the localized kernels, Hm,k(n), is

N∑
m=1

N∑
k=1

S(m,k)Hm,k(n) =
N∑

m=1

( N∑
k=1

S(m,k)hm(n)uk(n)

)

=
N∑

m=1

( N∑
i=1

IGFT
k→i

{S(m,k)}IGFT
k→i

{hm(n)uk(n)}
)

=
N∑

m=1

N∑
i=1

[x(i)hm(i)][hm(n)δ(n − i)]

=
N∑

m=1

x(n)h2
m(n) = x(n)

N∑
m=1

h2
m(n), (49)

where IGFT denotes the inverse GFT transform, while Parseval’s 
theorem for graph signals 

∑N
n=1 x(n)y(n) = ∑N

k=1 X(k)Y (k) was 
used in the derivation.

The inversion formula for the local vertex spectrum, S(m, k), 
which yields the original graph signal, x(n), then becomes

x(n) = 1∑N
m=1 h2

m(n)

N∑
m=1

N∑
k=1

S(m,k)hm(n)uk(n). (50)

Remark 9. This kind of inversion is vertex-invariant if the sum over 
all vertices m is n invariant and equal to 1, that is

N∑
m=1

h2
m(n) = 1. (51)

If the local vertex spectrum, S(m, k), is calculated over a re-
duced set of vertices, m ∈ M ⊂ V , then the vertex independent 
reconstruction condition becomes 

∑
m∈M h2

m(n) = 1.

(b) For the LGFT with spectral shifted spectral windows, defined 
by (15) and (17), the kernel based inversion is given by

x(n) =
N∑

m=1

K−1∑
k=0

S(m,k)Hm,k(n) (52)

if the following condition, given in (24),

K−1∑
k=0

H2
k (λp) = 1 (53)

is satisfied for all λp , p = 1, 2, . . . , N .
The inversion formula in (52), with the condition in (53), fol-

lows from

N∑ K−1∑
S(m,k)Hm,k(n) (54)
m=1 k=0
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=
N∑

m=1

K−1∑
k=0

N∑
p=1

X(p)Hk(λp)up(m)

N∑
l=1

Hk(λl)ul(m)ul(n).

Since 
∑N

m=1 up(m)ul(m) = δ(p − l), the last expression reduces to 
the graph signal, x(n), that is

K−1∑
k=0

N∑
p=1

X(p)Hk(λp)Hk(λp)up(n) = x(n), (55)

if the transfer functions, Hk(λp), k = 0, 1, . . . , K − 1, satisfy the 
condition in (53) for all λp .

6.4. The wavelet inversion

The wavelet inversion formula

x(n) =
N∑

n=1

K−1∑
i=0

ψ(n, si)W (n, si) (56)

can be derived in the same way as in (52), with the condition in 
(53) assuming the wavelet transform form

G2(λp) +
K−1∑
i=1

H2(siλp) = 1, (57)

where a set of discrete scales for the wavelet calculation, denoted 
by s ∈ {s1, s2, . . . , sK−1}, is assumed with corresponding spectral 
transfer functions H(siλp), i = 1, 2, . . . , K − 1, and a low-pass scale 
(father wavelet) function G(λp), playing the role of the low-pass 
function, H0(λp), in the LGFT.

Since the number of wavelet transform coefficients, W (n, si), 
is greater than the number of signal samples N , this representa-
tion is redundant, and this redundancy allows us to implement 
the transform through a fast algorithm, rather than using the ex-
plicit computation of all wavelet coefficients [22,23,29]. Indeed, for 
large graphs, it can be computationally too complex to compute 
the full eigendecomposition of the graph Laplacian. A common way 
to avoid this computational burden for large graphs and big data is 
to use a polynomial approximation schemes for H(siλ). One such 
approach is through the truncated Chebyshev polynomial approx-
imations, which admit order recursive calculation, as showed in 
Section 3.4 and (36). Note that this form corresponds to the LGFT 
form in (19) and (20).

6.5. Vertex-varying filtering

The filtering in the vertex-frequency domain can be imple-
mented using the vertex-frequency support function B(m, k). The 
filtered local vertex spectrum is then given by

S f (m,k) = S(m,k)B(m,k)

and the filtered signal, x f (n), is obtained by the inversion of 
S f (m, k) using the above mentioned inversion methods. The fil-
tering support function, B(m, k), can be obtained, for example, by 
thresholding noisy values of the local vertex spectrum, S(m, k).

Example 12. The inversion relation for the case of band-pass trans-
fer functions and the vertex-varying filtering are verified for the 
case of signal x(n), from Fig. 1(d). This graph signal is corrupted 
by additive white Gaussian noise, at the signal-to-noise ratio of 
S N Rin = 5.5 dB. The LGFT of the noisy graph signal, S(m, k), is 
calculated based on shifted band-pass spectral transfer functions, 
Hk(λp), k = 0, 1, . . . , K − 1, p = 1, 2, . . . , N , of the form defined 
(25), so that the inversion condition in (53) holds. The total num-
ber of K = 25 frequency shifted transfer functions, Hk(λp), of the 
Fig. 9. Vertex-varying filtering of a graph signal. (a) The original graph signal, x(n), 
from Fig. 1(d). (b) The graph signal, x(n), corrupted by an additive white Gaussian 
noise, at SN Rin = 5.5 dB. (c) The resulting graph signal, x f (n), obtained based on 
vertex-varying filtering. Filtering is implemented by thresholding the LGFT of noisy 
graph signal, S(m, k), to produce SN Rout = 8.94 dB.

form as in Fig. 4(b) are used. A simple thresholding-based filter-
ing support function B(m, k) = 1 if |S(m, k)| ≥ T , and B(m, k) = 0
elsewhere, is used as the basis for the vertex-varying filtering, 
S f (m, k) = S(m, k)B(m, k), for m = 1, 2, . . . , N , k = 0, 1, . . . , K − 1. 
The threshold value T = 0.078 was set empirically. The output 
graph signal, x f (n), is obtained using the inversion relation in 
(52) for the filtered LGFT, S f (m, k). The achieved output SNR was 
S N Rout = 8.94 dB. (See Fig. 9.)

A filtering framework for time-varying graph signals may be 
found in [52].

7. Vertex-frequency energy distributions

Like in time-frequency analysis, the distribution of graph sig-
nal energy, as a function of the vertex and spectral indices, is an 
alternative way to approach vertex-frequency analysis without lo-
calization windows. A graph form of the Rihaczek distribution is 
used as the basic distribution to introduce the concepts of the 
vertex-frequency domain energy parameters, such as local smooth-
ness and the marginal properties. The graph Rihaczek distribution 
is then used to derive the support uncertainty principle and to de-
fine a class of the reduced interference vertex-frequency energy 
distributions which satisfy the graph signal marginal properties.

7.1. Graph Rihaczek distribution definition

The energy of a general signal is usually defined as

E =
N∑

x2(n) =
N∑

x(n)

N∑
X(k)uk(n).
n=1 n=1 k=1
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This expression can be rearranged as

E =
N∑

n=1

N∑
k=1

x(n)X(k)uk(n) =
N∑

n=1

N∑
k=1

E(n,k),

where for each vertex, the vertex-frequency energy distribution, 
E(n, k), is defined by [53,54]

E(n,k)=x(n)X(k)uk(n)=
N∑

m=1

x(n)x(m)uk(m)uk(n). (58)

Remark 10. The definition in (58) corresponds to the Rihaczek dis-
tribution in classical time-frequency analysis [12–14]. Observe that 
based on the Rihaczek distribution and the expression in (58), we 
may obtain a vertex-frequency representation even without a lo-
calization window. This very important property is also the main 
advantage (along with the concentration improvement) of classical 
time-frequency distributions with respect to the spectrogram and 
STFT based time-frequency representations.

The marginal properties of the vertex-frequency energy distribu-
tion, E(n, k), are defined as its projections onto the spectral index 
axis, k, and the vertex index axis, m, to give

N∑
n=1

E(n,k) = |X(k)|2 and
N∑

k=1

E(n,k) = x2(n).

These correspond respectively to the squared spectra, |X(k)|2, and 
the signal power, x2(n), of the graph signal, x(n).

The Rihaczek energy condition is

N∑
n=1

N∑
k=1

E(n,k) =
N∑

k=1

|X(k)|2 =
N∑

n=1

x2(n) = Ex = 1, (59)

where the unit energy of the signal, Ex = 1, may be assumed with-
out loss of generality,

Example 13. Fig. 10 shows the vertex-frequency distribution, 
E(n, k), of the graph signal from Fig. 1, together with its marginal 
properties. The marginal properties are satisfied up to the com-
puter precision, and show that the localization of energy is better 
than in the cases obtained with the localization windows in Figs. 3, 
7, and 8. Importantly, the distribution, E(n, k), does not use a lo-
calization window.

7.2. Smoothness index and local smoothness

The smoothness index in graph signal processing plays the role 
of frequency in classical spectral analysis, and is defined as the 
Rayleigh quotient of matrix L and vector x, that is

l = xT Lx

xT x
≥ 0. (60)

Remark 11. The expression in (60) indicates that the smoothness 
index can be considered as a measure of the rate of change of a 
graph signal. Faster changing signals (corresponding to high-frequency 
signals) have larger values of the smoothness index. Therefore, the 
maximally smooth graph signal is a constant signal, x(n) = c, for 
which the smoothness index is l = 0.

In the mathematics literature, the inverse of the smoothness 
index is known as the curvature (curvature ∼ 1/l). While larger 
values of the smoothness index correspond to graph signals with 
larges rates of change (less smooth graph signals), the larger values 
of curvature would indicate smoother graph signals.
Fig. 10. Vertex-frequency energy distribution for a signal whose vertex-frequency 
representation is given in Fig. 3. No localization window was used here.

The smoothness index for an eigenvector, uk , of the graph 
Laplacian, L, is equal to its corresponding eigenvalue, λk , that is

uT
k Luk

uT
k uk

= λk, (61)

since by definition Luk = λkuk .

Remark 12. If the above eigenvectors are the classical Fourier 
transform basis functions, then the smoothness index corresponds 
to the squared frequency of the considered basis function, λk ∼ ω2

k , 
while the curvature corresponds to the squared period in harmonic 
signals.

This makes it possible to define the local smoothness index, 
λ(n), for a vertex n, in analogy with the standard instantaneous 
frequency, ω(t), at an instant t , as [55]

λ(n) = Lx(n)

x(n)
, (62)

where it was assumed that x(n) �= 0 and Lx(n) are the elements of 
the vector Lx.

The properties of the local smoothness index include:

1. The local smoothness index, λ(n), for a monocomponent signal

x(n) = αuk(n),

is vertex independent, and is equal to the global smoothness 
index, λk , since

Lx(n) = αLuk (n) = αλkuk(n).

In the time-domain signal analysis, this property means that 
the instantaneous frequency of a sinusoidal signal is equal to 
its global frequency.

2. Assume a piece-wise monocomponent signal

x(n) = αiuk (n) for n ∈ Vi, i = 1,2, . . . , M,
i
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where Vi ⊂ V are the subsets of the vertices such that Vi ∩V j =
∅ for i �= j, V1 ∪V2 ∪ · · · ∪VM = V , that is, every vertex belongs 
to only one subset Vi . Given the monocomponent nature of the 
signal, within each subset, the considered signal is proportional 
to the eigenvector uki (n).

Then, for each interior vertex n ∈ Vi , i.e., a vertex whose 
neighborhood lies in the same set Vi , the local smoothness in-
dex is given by

λ(n) = αiLuki
(n)

αiuki (n)
= λki . (63)

3. An ideally concentrated vertex-frequency distribution (ideal dis-
tribution) can be defined as

I(n,k) ∼ |x(n)|2δ
(
λk − [λ(n)]

)
,

whereby it was assumed that the local smoothness index is 
rounded to the nearest eigenvalue.

This distribution can also be used as a local smoothness 
estimator, since for each vertex, n, the maximum of I(n, k) is 
positioned at the nearest eigenvalue, λk = [λ(n)]. The index of 
the eigenvalue, k̂, that corresponds to the local smoothness in-
dex is then obtained as

k̂(n) = arg max
k

{I(n,k)},

so that the estimated local smoothness becomes λ̂(n) = λk̂(n)
. 

This estimator is quite common and is widely used in classic 
time-frequency analysis [12–14].

4. The vertex-frequency distribution, E(n, k), satisfies the local 
smoothness property if∑N

k=1 λk E(n,k)∑N
k=1 E(n,k)

= λ(n). (64)

In that case, the center of masses of vertex-frequency distri-
bution along the spectral index axis, k, should be exactly at 
λ = λ(n), and it can be used as an unbiased estimator of this 
graph signal parameter.

Example 14. The vertex-frequency distribution defined by E(n, k) =
x(n)X(k)uk(n) satisfies the local smoothness property in (64), since∑N

k=1λk E(n,k)∑N
k=1 E(n,k)

=
∑N

k=1λkx(n)X(k)uk(n)∑N
k=1x(n)X(k)uk(n)

= Lx(n)

x(n)
= λ(n).

The above relation follows from the fact that 
∑N

k=1 λk X(k)uk(n) are 
the elements of the IGFT of λk X(k). Upon employing the matrix 
form of the IGFT of �X, we get

U�X = U�(UT U)X = (U�UT )(UX) = Lx.

With the notation, Lx(n), for the elements of Lx, we obtain

N∑
k=1

λk X(k)uk(n) = Lx(n).

The local smoothness index for the graph signal from Fig. 1 is 
presented in Fig. 11.

7.3. Support uncertainty principle derivation [51]

From the Rihaczek distribution energy condition (59), with the 
unit energy, follows
Fig. 11. Local smoothness index, λ(n), of graph signal from Fig. 1.

1 ≤
N−1∑
n=0

N−1∑
k=0

|E(n,k). (65)

Assume, as in [50], that the support M of the signal x(n) is fi-
nite, M = {n1, n2, . . . , nM}, meaning that x(n) �= 0 for n ∈ M and 
x(n) = 0 for n /∈ M, while the support of the graph Fourier trans-
form X(k) is K = {k1, k2, . . . , kK }, where X(k) �= 0 for k ∈ K and 
X(k) = 0 for k /∈K. By definition, we can write the relations

||x||0 = card{M} = M and ||X||0 = card{K} = K . (66)

Applying the Schwartz inequality to (65) squared, we get

1=
(∑

n∈M

∑
k∈K

E(n,k)
)2≤

( ∑
n∈M

∑
k∈K

|x(n)| |X(k)| |uk(n)|
)2

=
( ∑

n∈M

∑
k∈K

(
√|uk(n)||x(n)|) (

√|uk(n)|X(k)|)
)2

(67)

≤
∑

n∈M

∑
k∈K

|uk(n)||x(n)|2
∑

n∈M

∑
k∈K

|uk(n)||X(k)|2 (68)

≤ max
n,k

{|uk(n)|2}K M = max
n,k

{|uk(n)|2}||x||0||X||0, (69)

since the unit energy of the graph signal is assumed, that is, ∑
n∈M |x(n)|2 = ∑

k∈K |X(k)|2 = 1.
The inequality in (69) results in the support uncertainty princi-

ple [50]

||x||0||X||0 ≥ 1

max
n,k

{|uk(n)|2} . (70)

An improved bound of the support uncertainty principle is re-
cently derived in [51] using the same relations.

7.4. Reduced interference distributions (RID) on graphs

In order to emphasize the relations and the resemblance to the 
classical time-frequency analysis, in this subsection we will use the 
complex-sensitive notation for eigenvectors and spectral vectors. 
The frequency domain definition of the energy distribution in (58)
is given by

E(n,k) = x(n)X∗(k)u∗
k (n) =

N∑
p=1

X(p)X∗(k)up(n)u∗
k (n).

Remark 13. In classical time-frequency analysis the Wigner distri-
bution is used to derive the generalized Cohen class of distribu-
tions. Since the Wigner distribution is not appropriate in graph 
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spectral analysis, the Cohen class of distribution with the Rihaczek 
distribution,

R(t,ω) = x(t)X∗(ω)e− jωt ,

as the basic distribution will be used [12–14]. Its ambiguity do-
main form (a two-dimensional Fourier transform of R(t, ω) over t
and ω) is

A(θ, τ ) = 1

2π

∫
u

X(u)X∗(u − θ)e j(u−θ)τ du.

The Cohen class of distributions, with the Rihaczek distribution 
as the basic distribution, is defined by

C(t,ω) = 1

2π

∫
θ

∫
τ

A(θ, τ )c(θ, τ )e− jωτ e jθtdτdθ,

where c(θ, τ ) is the kernel function. Using the defined ambiguity 
domain form of the Rihaczek distribution A(θ, τ ) we get

C(t,ω) = 1

4π2

∫
u

∫
v

X(u)X∗(v)e jute− jvt

×
∫
τ

c(u − v, τ )e− jτωe jτ vdτdudv. (71)

The frequency-frequency domain form of the Cohen class of distri-
butions is

C(t,ω) =
∫
u

∫
v

X(u)X∗(v)e jute− jvtφ(u − v,ω − u)
dudv

4π2
, (72)

where

φ(u − v,ω − u) =
∫
τ

c(u − v, τ )e− jτωe jτ vdτ .

The Rihaczek distribution is then obtained with φ(u − v, ω − u) =
2πδ(v − ω) or c(u − v, τ ) = 1.

The marginal properties are met if the kernel, c(θ, τ ), satisfies 
the conditions c(θ, 0) = 1 and c(0, τ ) = 1.

In analogy with the classical Cohen class of distributions in 
(72), the general form of graph distribution can be defined through 
introducing a kernel, φ(p, k, q), as [56]

G(n,k) =
N∑

p=1

N∑
q=1

X(p)X∗(q)up(n)u∗
q(n)φ(p,k,q). (73)

Observe that for φ(p, k, q) = δ(q − k), the graph Rihaczek distribu-
tion in (58) follows.

The so obtained distribution G(n, k) may also satisfy the vertex 
and frequency marginal properties, as elaborated next.

• The vertex marginal property is satisfied if

N∑
k=1

φ(p,k,q) = 1.

This is obvious from

N∑
G(n,k) =

N∑ N∑
X(p)X∗(q)up(n)u∗

q(n) = |x(n)|2.

k=1 p=1 q=1
Fig. 12. The sinc kernel of the reduced interference vertex-frequency distribution in 
the frequency domain.

• The frequency marginal property is satisfied if

φ(p,k, p) = δ(p − k).

Then, the sum over vertex indices produces

N∑
n=1

G(n,k) =
N∑

p=1

|X(p)|2φ(p,k, p) = |X(k)|2,

since 
∑N

n=1 up(n)u∗
q(n) = δ(p − q), that is, the eigenvectors are 

orthonormal.

7.5. Reduced interference distribution kernels

A straightforward extension of classical time-frequency kernels 
to graph signal processing would naturally be based on exploit-
ing the relation λ ∼ ω2, together with an appropriate exponential 
kernel normalization.

The simplest reduced interference kernel in the frequency-
frequency shift domain, which would satisfy the marginal prop-
erties, is the sinc kernel, given by

φ(p,k,q) =
{

1
1+2|p−q| , for |k − p| ≤ |p − q|,
0, otherwise

and shown in Fig. 12 at the frequency shift corresponding to k =
50.

Example 15. The sinc kernel was used for a vertex-frequency rep-
resentation of the signal from Fig. 1(d), with the results shown in 
Fig. 13. This representation is a smoothed version of the energy 
vertex-frequency distribution in Fig. 10, whereby both (vertex and 
frequency) marginals are preserved.

Remark 14. Graph spectrogram and marginal properties. The gen-
eral vertex-frequency distribution can be written for the vertex-
vertex shift domain as a dual form of (73), and has the form

G(n,k) =
N∑

m=1

N∑
l=1

x(m)x∗(l)uk(m)u∗
k (l)ϕ(m,n, l), (74)

where ϕ(m, n, l) is the kernel in this domain (the same mathemat-
ical form as for the frequency-frequency shift domain kernel). The 
frequency marginal is satisfied if 

∑N
n=1 ϕ(m, n, l) = 1 holds, while 

the vertex marginal is met if ϕ(m, n, m) = δ(m −n). The relation of 
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Fig. 13. Reduced interference vertex-frequency distribution of a signal whose vertex-
frequency representation is given in Fig. 3. The marginal properties are given in the 
panels to the right and below the vertex-frequency representation, and are equal to 
their corresponding ideal forms given by |x(n)|2 and |X(k)|2.

this distribution with the vertex domain spectrogram (3) is simple, 
and given by

ϕ(m,n, l) = hn(m)h∗
n(l).

However, this kernel cannot satisfy both marginal properties, while 
the unbiased energy condition 

∑N
n=1 ϕ(m, n, m) = 1 reduces to 

(51).

Remark 15. Classical time-frequency analysis follows as a spe-
cial case from the general form of graph distributions in (73), if 
the considered graph is a directed circular graph. This becomes 
obvious upon recalling that eigendecomposition of the adjacency 
matrix produces complex-valued eigenvectors of the form uk(n) =
exp( j2π(n − 1)(k − 1)/N)/

√
N in (73), and the classical (Rihaczek 

based) Cohen class of distributions follows.

8. Comparison of the presented methods

A summary of all the presented methods, together with their 
main properties, is as follows.

• The LGFT with a spectrum domain window function, presented 
in Section 3.1, is defined using the graph shift and modula-
tion based on the basis functions. This is a pure graph form, 
with a direct link to the classical time-frequency analysis. Both 
shifts of the kernel are performed by multiplying a predefined 
frequency domain low-pass function by the basis functions in 
frequency domain (vertex shift) and in the vertex domain (fre-
quency shift). Although this kernel definition is the most gen-
eral, it does not guarantee that the kernel is strictly bounded 
in either the vertex or the spectral domain. In addition, the 
complete set of basis functions is required for the implemen-
tation. This form cannot satisfy the tight frame condition for 
the kernel-based inversion.

• A spectral shifted form of the kernel using a band-pass type 
function in the spectral domain is defined in Section 3.2. In-
stead of the spectral shift by modulation in the vertex domain, 
the shift is here performed by directly shifting the spectral do-
main function. Notice that direct shifts do not account for the 
nonlinear nature of the eigenvalues, while for a high resolu-
tion a very narrow spectral functions are required. This form 
can satisfy both reconstruction conditions using the constant 
overlap-add relation and weighted overlap-add relation, mean-
ing that it can be a tight frame. This form also allows for 
polynomial approximations and realizations using polynomials 
in vertex domain, without basis function calculation. However, 
for high frequency resolution, the order of polynomials be-
comes rather high so that a wide neighborhood is used in the 
vertex domain calculation and the accuracy of the coefficients 
is crucial.

• The spectral varying forms of the spectral shifted kernels, as 
in the spectral graph wavelet transform or a signal adaptive 
kernel, are reviewed in Section 3.5. The property of the previ-
ous class of vertex-frequency representations that they do not 
follow the nonlinear nature of eigenvalues can be alleviated 
by using signal adaptive functions, including frequency-varying 
forms that correspond to the spectral graph wavelet transform. 
This form can provide a good signal-tailored representation, 
however it is highly dependent on the expected signal form.

• Pure vertex domain forms and graph shifts of the window are 
elaborated in Section 3.6. This approach relies on the clas-
sical window definition using the adjacency matrix. This re-
alization is vertex limited and uses only the considered ver-
tex neighborhood. However, it requires partial basis functions 
calculation, although only around the considered vertex and 
frequency index, and can be defined in such a way that the 
constant overlap-add inversion condition is satisfied.

• Quadratic vertex-frequency distribution of the Rihaczek type, 
addressed in Section 7, does not use a localization window, 
and as such has big advantage and high resolution. However, 
in this case inversion is not straightforward like in the case of 
the linear signal vertex-frequency representations. Cross-terms 
may also appear in the case of quadratic distributions. This 
distribution satisfies the vertex and frequency marginal prop-
erties, as well as the local smoothness property.

• Reduced interference quadratic vertex-frequency distributions, 
in Section 7.4, can keep high resolution as in the case of the 
Rihaczek type distribution, but with smoothed interferences in 
the spectral domain using kernels, like in the standard time-
frequency domain. These kernels can be defined is a such way 
that the vertex and the frequency marginal property are pre-
served. Here, the inversion is even more difficult than in the 
Rihaczek type distribution and these kinds of distributions are 
used mainly for the analysis purposes, including graph signal 
parameters estimation, like in classical analysis.

9. Conclusion

This article has reviewed vertex-frequency analysis, as an ap-
proach to the localized analysis of graph signals. Traditional ap-
proaches for graph analysis, clustering and segmentation are based 
only on the graph topology and spectral properties of graphs them-
selves. However, when dealing with signals on graphs, localized 
analyzes should be focused on data on graphs, while incorporating 
the graph topology. This unified approach to define and implement 
graph signal localization methods, which takes into account both 
the data on graph and the corresponding graph topology, is at the 
core of vertex-frequency analysis. Like in classical time-frequency 
analysis, the main research efforts have been devoted to the graph 
signal linear representations which include a localization window. 
Several methods for the definition of localization widows in the 
spectral and vertex domain have been presented in this review. 
Optimization of the window parameters, uncertainty principle, and 
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inversion methods have also been discussed. Following the clas-
sical time-frequency analysis, energy forms of vertex-frequency 
energy and reduced interference distributions, which do not use 
localization windows, have been considered in the second part of 
the paper. Their role as local smoothness index estimator is pre-
sented.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Classical signal processing and graph signal 
processing framework

Consider a simple classical discrete-time finite impulse re-
sponse (FIR) system, whose input-output relation is

y(n) = h0x(n) + h1x(n − 1) + h2x(n − 2) + · · · + hM x(n − M).

In a classical system, the signal values are given at a well-ordered 
signal domain, defined by the instants n = 1, n = 2, . . . , n = N . If 
we assume a periodic form of the signal (necessary for the DFT 
analysis) and N = 8 then the signal domain and an arbitrary signal 
are shown in Fig. 14(a).

Notice that the previous input-output relation can be written in 
the matrix form as

y = h0x + h1Ax + h2A2x + · · · + hM AM x = H(A)x. (75)

where

y=

⎡
⎢⎢⎢⎢⎢⎣

y(1)

y(2)

y(3)
...

y(N)

⎤
⎥⎥⎥⎥⎥⎦, x=

⎡
⎢⎢⎢⎢⎢⎣

x(1)

x(2)

x(3)
...

x(N)

⎤
⎥⎥⎥⎥⎥⎦, A=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦.

The adjacency matrix A is an instant (vertex) connectivity ma-
trix for the signal domain, with elements Amn = 1 if the vertex 
m is connected (predecessor, in this case) to the vertex n, and 
Amn = 0 otherwise, as shown in Fig. 14. The element-wise form 
of y = Ax is y(n) = x(n − 1), as expected.

If the eigendecomposition of the square matrix A is performed 
according to the definition

Auk = λkuk

or in the matrix form

AU = U� or A = U�U−1

where U is the matrix of eigenvectors, uk , as its columns and � is 
a diagonal matrix with the eigenvalues λk on its diagonal, then we 
can write the input-output relation (75) in the form

y = h0x + h1U�U−1x + · · · + hM U�M U−1x,

where the eigendecomposition property

AM = U�M U−1

is used. Now, by left-multiplication by U−1 we can write

U−1y = h0U−1x + h1�U−1x + · · · + hM�M U−1x,

or
Fig. 14. Graph, graph signal, and a shift operator on a directed graph (classical cir-
cular shift). (a) Elements of a signal, x, shown as red lines on a directed circular 
graph. (b) The shifted version, Ax, of the graph signal from (a).

Y = (h0 + h1� + h2�
2 + · · · + hM�M)X = H(�)X,

where

Y = U−1y and X = U−1x

are the DFTs of the input and output signal and H(�) is a diago-
nal transfer function. Indeed, this is the case since the eigenvalue 
relation for the adjacency matrix A is

det(A − λI) = 0,

and (A − λI) is a super-diagonal matrix for which we get

det(A − λI) = λN − 1 = 0.

Since 1 = e− j2π(k−1) , the solutions are

λk = e− j2π(k−1)/N with uk(n) = 1√
N

e j2π(k−1)(n−1)/N ,

for k = 1, 2, . . . , N , producing exactly the DFT transformation ma-
trix U−1 = UH , with normalized columns (so that their energy is 
unity) and indexing n = 1, 2, . . . , N . We can easily see that

H(�) = (h0 + h1� + h2�
2 + · · · + hM�M)

is the DFT of the FIR system coefficients, producing the well-known 
element-wise relation

Y (k) = H(k)X(k)

H(k) = h0 + h1λk + h2λ
2
k + · · · + hMλM

k .

For an irregular graph domain of a general form, the graph shift
is not so simple, and several graph operators (listed in Table 1 and 
denoted by using a unified operator S instead of A) are used to 
produce the system on the graph

y = h0x + h1Sx + h2S2x + · · · + hM SM x = H(S)x,

with the corresponding GFT form
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Table 4
Time-frequency to vertex-frequency analysis correspondences.

Time-frequency analysis Vertex-frequency analysis

S(m,k) = 1√
N

N∑
n=1

x(n)h(n − m) e− j2π(k−1)(n−1)/N S(m,k) =
N∑

n=1

x(n)hm(n) u∗
k (n)

hm(n) = h(n − m) = 1√
N

N∑
k=1

H(k)e− j 2π
N (m−1)(k−1)e j 2π

N (n−1)(k−1) hm(n) = ∑N
k=1 H(k)u∗

k (m)uk(n)

Hm,k(n) = 1√
N

h(n − m)e− j 2π
N (n−1)(k−1) Hm,k(n) = hm(n)u∗

k (n)

S(m,k) = 〈Hm,k(n), x(n)〉 =
N∑

n=1

Hm,k(n)x(n) S(m,k) = 〈Hm,k(n), x(n)〉 =
N∑

n=1

Hm,k(n)x(n)

S(m,k) = 1√
N

N∑
p=1

X(p)H(p − k)e j 2π
N (m−1)(p−1) S(m,k) =

N∑
p=1

X(p)Hk(p) up(m)

Polynomial approximation and implementation of H(p − k) sk = UHk(�)X = UHk(�)U−1x = Hk(L)x ≈ P̄k,M−1(L)x
is not widely used in classical time-frequency analysis P̄k,M−1(L) = h0,kI + h1,kL + · · · + h(M−1),kLM−1

R D(n,k) = 1√
N

x(n)X∗(k)e− j 2π
N (n−1)(k−1) E(n,k) = x(n)X∗(k)u∗

k (n)

‖x‖0‖X‖0 ≥ N ‖x‖0‖X‖0 ≥ 1
maxk,m{|uk(m)|2}

Frequency ωk = 2π(k − 1)/N , frequency index, k Smoothness, λk , smoothness index, k
of the basis function exp( j2π(k − 1)(n − 1))/

√
N of the Laplacian basis function uk(n)

∫
t

ωR D(t,ω)dω

∫
t

R D(t,ω)dω
= φ′(t) = ωi(t)

N∑
k=1

λk E(n,k)

N∑
k=1

E(n,k)

= Lx(n)
x(n)

= λ(n)

C(t,ω) =
∫
u

∫
v

X(u)X∗(v)e jut e− jvtφ(u − v,ω − u)
dudv

4π2
G(n,k) =

N∑
p=1

N∑
q=1

X(p)X∗(q)up(n)u∗
q(n)φ(p,k,q)

Time marginal condition, c(θ,0) = 1, 1
2π

∫
u

φ(u − v,ω − u)dω = 1 Vertex marginal condition,
N∑

k=1

φ(p,k,q) = 1

Frequency marginal, c(0, τ ) = 1, φ(u − v,ω − u) = δ(u − ω) Frequency marginal condition, φ(p,k, p) = δ(p − k)

It has been assumed that U−1 = UH . For symmetric matrices (like, the commonly used graph Laplacian) U−1 = UT and 
u∗

k (n) = uk(n).
Y = (h0 + h1� + h2�
2 + · · · + hM�M)X = H(�)X,

H(�) = (h0 + h1� + h2�
2 + · · · + hM�M)

where

Y = U−1y and X = U−1x

are the GFTs with the transformation matrix, U, and eigen-
value matrix, �, is obtained using the corresponding defini-
tions in Table 1. The element-wise form of the GFT is given 
in (1).

It is important to note that in the same way as the cal-
culation of AM x on directed circular graph requires the sig-
nal neighbors at a distance M from the considered instant, n, 
defined by (n − M), the calculation of the term, SM x, in the 
presented graph shift operators from Table 1, requires only M-
neighborhood of the considered vertex, n. This fact is of great 
importance for large graphs and processing of big data on these 
graphs.

Undirected circular graph. If the circular graph in Fig. 14 were not 
directed, then every vertex n would be connected to both neigh-
boring vertices, n − 1 and n + 1, to produce the adjacency matrix, 
A = W, and the graph Laplacian, L = D − W, of the form
W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigendecomposition relation for the graph Laplacian of this 
graph, Luk = λkuk , admits a simple element-wise form

−uk(n − 1) + 2uk(n) − uk(n + 1) = λkuk(n). (76)

The solution to the second-order difference equation in (76) is

uk(n) = cos
(2π(k − 1)(n − 1) + φk

)

N
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Fig. 15. Brain atlas (top) and its graph, with vertex coloring based on three 
smoothest generalized eigenvectors, u1, u2, and u3, of graph Laplacian, with the 
spectral vector, qn = [u1(n), u2(n), u3(n)], employed as coordinates for the RGB col-
oring scheme (bottom), [57,58].

with

λk = 2
(

1 − cos
(2π(k − 1)

N

))

= 4 sin2
(1

2

2π(k − 1)

N

)
= 4 sin2

(1

2
ωk

)
.

Obviously, for every eigenvalue, λk (except for λ1 and for the last 
eigenvalue, λN , for an even N), there exist two orthogonal eigen-
vectors with, for example, φk = 0 and φk = π/2. The individual 
eigenvectors, uk , correspond to the standard harmonic basis func-
tions, cos( 2π(k−1)(n−1)

N ) and sin(
2π(k−1)(n−1)

N ), and the standard 
Fourier series analysis of real-valued signals follows. Notice that 
for small frequency, ω2

k , we can write

λk = 4 sin2(
1

2
ωk) ≈ ω2

k

meaning that the smoothness index, λk , of an graph Laplacian 
eigenvector, uk , is related to the squared frequency, ω2

k , of the cor-
responding harmonic in classical analysis (see also Table 4).
Appendix B. Brain connectivity graph

The human brain activity signals can be mapped on a graph 
where each vertex corresponds to a brain region. The edge weights 
are considered to be known a priori and represent the structural 
connectivity or the functional coherence between brain regions. 
The graph signal processing and vertex-frequency analysis can be 
used to analyze the brain activity signal. It is known that, for 
example, slow-varying spectral content in the graph brain signal 
represents similar activities in regions that are highly connected 
in the functional brain graphs, while high frequencies denote very 
different activities in such brain regions [2].

Fig. 15 shows the benchmark Brain Atlas connectivity graph 
[57,58], where the data is given in two matrices: “Coactivation 
matrix”, Ŵ, and “Coordinate matrix”. The “Coordinate matrix” con-
tains the vertex coordinates in a three-dimensional Euclidean 
space, whereby the coordinate of a vertex n is defined by the n-th 
row of the “Coordinate matrix”, that is, [xn, yn, zn].

In our analysis, the graph weight matrix, W, was formed by:
(i) Thresholding the “Coactivation matrix”, Ŵ, to preserve only 

the strongest connections within this brain atlas, for example, 
those greater than 0.1 max{Ŵmn}, as recommended in [58];

(ii) Only the edges between the vertices m and n, whose Eu-
clidean distance satisfies dmn ≤ 20 are kept in the graph represen-
tation.

The elements, Wmn , of the brain graph weight matrix, W, are 
therefore obtained from the corresponding elements, Ŵmn , of the 
“Coactivation matrix” as

Wmn =
{

Ŵmn, if Ŵmn > 0.1 max{Ŵmn} and dmn ≤ 20

0, elsewhere.
(77)

The brain connectivity graph with the so defined weight matrix, 
W, is shown in Fig. 15 (bottom).

Vertex-frequency kernels for the brain graph analysis are pre-
sented for two vertices, n = 300 and n = 100. Two frequency in-
dices are also considered, k = 1 and k = 31. Kernels at the vertex 
n = 300 and frequency index k = 1 and k = 31 are presented with 
wider and narrower vertex domain support function, as shown in 
Fig. 16. These kernels enable localized vertex-frequency analysis of 
brain signals, using different resolutions.

Appendix C. Sensor network graphs

One of the most natural and straightforward applications of 
graph signal processing is in the context of sensor networks, for 
example a temperature sensor network, described in [1]. A graph 
in these examples represents relative positions of sensors in the 
environment, and the application areas include denoising, recon-
struction, or distributed processing of sensor data.

To this end, consider a multi-sensor setup, shown in Fig. 17, for 
measuring temperature field in a known geographical region. The 
temperature sensing locations are chosen according to the signif-
icance of a particular geographic area to local users. The weight 
Wnm indicates the strength of the coupling between signal val-
ues at the sensing points n and m; it has the value Wnm = 0 if 
the points n and m are not related or if n = m. Each edge has an 
associated weight, Wnm , which adds a “mutual sensor relevance” 
information to the already established “spatial awareness” mod-
eled by the edges. This equips graph signal models with additional 
flexibility.

Spectral analysis of the graph is performed using the graph 
Laplacian L = D − W. The kernels for the vertex-frequency analysis 
presented in this paper may be used for denoising or compression. 
The kernels for the vertex n = 39 and the frequency indices k = 1
and k = 7 are shown in Fig. 17, for two different kernel widths.
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Fig. 16. Vertex-frequency kernels for the brain graph analysis. (Top) Kernels at the vertex n = 300 and frequency index k = 1 and k = 31 and its graph. (Middle) Kernels at 
the vertex n = 100 and frequency index k = 1 and k = 31 and its graph. (Bottom) Kernels at the vertex n = 300 and frequency index k = 1 and k = 31 and its graph with a 
narrower vertex domain support function.
The sensing network for the benchmark Minnesota road graph
is shown in Fig. 18 for the kernels obtained by shifting the spec-
tral domain band-pass functions of the raised cosine form. Two 
widths of these functions are considered: (i) one when the whole 
spectral domain from λ0 to λmax is covered by K = 21 overlapping 
band-pass functions, as in Fig. 4(b), and (ii) the other when there 
are K = 121 functions within the whole spectral range. In general, 
wider spectral domain functions (K = 21) correspond to higher 
vertex domain resolution, while the narrower band-pass functions 
(K = 121) produce higher spectral domain resolution. The vertex 
m = 800 is used as the central position for all considered vertex-
frequency kernels. In this example, the generalized graph Laplacian 
eigenvectors, Luk = λkDuk , are used as the basis functions, uk , in 
the kernel calculation. These functions provide basis for localized 
graph signal analysis and processing, with the conditions for signal 
reconstruction over the entire graph.

Appendix D. Graph spectrogram and frames

The graph spectrogram is defined, based on (9), as

|S(m,k)|2 =
∣∣∣ N∑

n=1

x(n)hm(n) uk(n)

∣∣∣2
. (78)

Then, according to Parseval’s theorem, the vertex marginal prop-
erty, which is a projection of |S(m, k)|2 onto the vertex index axis, 
is given by
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Fig. 17. Vertex-frequency kernels for the sensing network analysis. (Top) Kernels at the vertex n = 300 and frequency index k = 1 and k = 31 and its graph. (Bottom) Kernels 
at the vertex n = 300 and frequency index k = 1 and k = 31 and its graph with a narrower vertex domain support function.
N∑
k=1

|S(m,k)|2 =
N∑

k=1

S(m,k)

N∑
n=1

x(n)hm(n) uk(n)

=
N∑

n=1

|x(n)hm(n)|2,

which would be equal to the signal power, |x(m)|2, at the vertex m, 
if hm(n) = δ(m − n). Since this is not the case, the vertex marginal 
property of the graph spectrogram is equal to the power of the 
graph signal in hand, smoothed by the window, hm(n).
Energy of graph spectrogram. For the total energy of vertex spec-
trogram, we consequently have

N∑
m=1

N∑
k=1

|S(m,k)|2 =
N∑

n=1

(
|x(n)|2

N∑
m=1

|hm(n)|2
)
. (79)

If 
∑N

m=1 |hm(n)|2 = 1 for all n, then the spectrogram on the graph 
is energy unbiased (statistically consistent with respect to the en-
ergy), that is
N∑
m=1

N∑
k=1

|S(m,k)|2 =
N∑

n=1

|x(n)|2 = ||x||2 = Ex. (80)

The LGFT viewed as a frame. A set of functions, S(m, k), is called a 
frame for the expansion of a graph signal, x, if [30]

A||x||2 ≤
N∑

m=1

|S(m,k)|2 ≤ B||x||2,

where A and B are positive constants. The constants A and B gov-
ern the numerical stability of recovering the original signal, x, from 
the coefficients, S(m, k).

If A = B , the frame is termed Parseval’s tight frame and the sig-
nal can be recovered as

x(n) = 1

A

N∑
m=1

N∑
k=1

S(m,k)hm(n)uk(n).

The LGFT defined in (15) is Parseval’s tight frame if
K−1∑
k=0

N∑
m=1

|S(m,k)|2 =
K−1∑
k=0

N∑
p=1

|X(p)Hk(λp)|2 = Ex, (81)
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Fig. 18. Vertex-frequency kernels for the Minnesota road map graph as the sensing network domain. (Top) Kernels at the vertex n = 800 and the spectral band positions at 
k = 0 and k = 13, with the whole spectral domain covered by K = 21 overlapping band-pass functions of the raised cosine type. (Bottom) Kernels at the vertex n = 800 and 
the spectral band positions at k = 0 and k = 3, with the whole spectral domain covered by K = 121 overlapping band-pass functions of the raised cosine type.
where Parseval’s theorem for the S(m, k) as the GFT of X(p)Hk(λp)

is used to yield

N∑
m=1

|S(m,k)|2 =
N∑

p=1

|X(p)Hk(λp)|2.

This means that the LGFT in (15) is a tight frame if the condition 
in (53) holds. This condition is used to define transfer functions in 
Fig. 4(b) and 4(c).

In general, form (81), it is easy to conclude that the graph spec-
trogram energy is bounded with

AEx ≤
K−1∑
k=0

N∑
m=1

|S(m,k)|2 ≤ B Ex, (82)

where A and B are respectively the minimum and the maximum 
value of

g(λp) =
K−1∑
k=0

|Hk(λp)|2.

In the same way as in the LGFT case, it can be shown that the 
wavelet transform also represents a frame with [22,23]
A||x||2 ≤
N∑

n=1

K−1∑
i=0

|W (n, si)|2 ≤ B||x||2, (83)

where i = 0 stands for the coefficient obtained for the scale func-
tion and

A = min
λp

g(λp),

B = max
λp

g(λp), and

g(λp) = G2(λp) +
K−1∑
i=1

|H(siλp)|2. (84)

The low-pass scale function, G(λp), is added in the reconstruc-
tion formula, ψ(n, s0) → ψ(n, s0) + φ(n, s0), since all H(siλ) = 0
for λ = 0. It should be mentioned that the spectral functions of 
the wavelet transform, H(siλp), form Parseval’s frame if g(λp) = 1, 
that is relation (57) holds, when A = B = 1.

If a continuous (polynomial) approximation of the transfer 
functions is used, G2(λ) ≈ P̄0,M−1(λ) and H(siλ) ≈ P̄ i,M−1(λ), i =
1, 2, . . . , K − 1, then an approximation of the constants A and 
B is obtained by finding the respective minimum and maximum 
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of the continuous approximation g(λ) in (84), within the interval 
0 ≤ λ ≤ λmax.
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[54] L. Stanković, M. Daković, E. Sejdić, Vertex-frequency energy distributions, in: 
Vertex-Frequency Analysis of Graph Signals, Springer, 2019, pp. 377–415.
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