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Abstract—Financial markets typically undergo periods of pros-
perity followed by periods of stagnation, and this undulation makes
it challenging to maintain market efficiency. The efficient market
hypothesis (EMH) states that there exist differences in structural
complexity in security prices between regular and abnormal sit-
uations. Yet, despite a clear link between market acceleration (cf.
recession in security prices) and stress in physical systems, indices
of financial stress still have significant scope for further develop-
ment. The overarching aim of this work is therefore to determine
the characteristics of financial indices related to financial stress,
and to establish a robust metric for the extent of such ‘stress’. This
is achieved based on intrinsic multiscale analysis which quanti-
fies the so called complexity-loss hypothesis in the context of fi-
nancial stress. The multiscale sample entropy and our proposed
Assessment of Latent Index of Stress methods have successfully
assessed financial stress, and have served as a measure to establish
an analogy between transitions from ‘normal’ (relaxed) to ‘abnor-
mal’ (stressed) financial periods with the sympatho-vagal balance
in humans. Four major stock indices of the US economy over the
past 25 years are considered: (i) Dow Jones Industrial Average, (ii)
NASDAQ Composite, (iii) Standard & Poor’s 500, and (iv) Rus-
sell 2000, together with FTSE 100, CAC 40 and exchange rates.
Our findings support the EMH theory and reveal high stress for
both the periods of Internet bubble burst and sub-prime mortgage
crisis.

Index Terms—Assessment of Latent Index of Stress (ALIS)
index, complexity-loss hypothesis, determinism, financial stress,
intrinsic phase synchrony (IPS), multiscale entroypy, nonlinearity.

I. INTRODUCTION

INDICES of major stock markets are generally accepted as
indicators of the financial health and economic wellbeing

[1], [2]. Given their close link with socio-economic and
geo-political factors (here, we refer to those as ‘events’) the
latent dynamics of stock indices are also a reliable indicator of
the influence those events have on the health of the financial
system. To put this into context, in the last 25 years the US alone
have been through a number of events, including the ‘dot-com
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boom’ in the 1990s, the 9/11 terrorist attack in 2001 and the
sub-prime mortgage crisis in 2008. It is therefore natural to
ask whether a general health of the economy, seen through the
lens of stock indices, can be assessed in a way analogous to
the way we examine health of living organisms. This motivates
us to embark upon the significant body of work on human
stress in order to derive indicators of ‘stress’ of the financial
system and establish ‘biomarkers’ of characteristic events in
stock indices. To this end, we employ the so-called complexity-
loss hypothesis which states that organisms experiencing
constraints (illness, ageing, stress) exhibit lower structural
complexity of their physiological responses than healthy
organisms. Our analysis falls under this general umbrella, but
is finance-specific and employs nonparametric analyses of
the determinism (via predictability), nonlinearity, multiscale
entropy, and synchrony, within an intrinsic multivariate analysis
framework.

In technical terms, stock indices exhibit trends—local and
global ‘first order’ characteristics [3]—together with economic
and non-economic cyclical influences (e.g., the four-year pres-
idential cycle in the US) and effects of our habits, such as the
Sell in May stock trading strategy and the Christmas sales effect
[4]. Trends in financial indices are perhaps their most examined
characteristics, with both numerical and graphical methods used
for their detection. Stock market volatility, on the other hand,
reflects the degree of uncertainty in stock indices. Financial an-
alysts are therefore interested in patterns in historical data in
order to predict financial crashes—an often disputed practice
called ‘technical analysis’ [5], [6]. A very popular numerical
technical analysis method is the class of moving-average (MA)
algorithms which yield indicators of general movements of stock
prices such as: (i) price MA for raw data with trend, and (ii) rate
of change at different scales, for detrended data. The price MAs
allow investors to compare fluctuations in stocks to the trends
over time, while the rates of change are relatively faithful indi-
cators of the momentum of stocks. For example, a positive value
of the rate of change suggests enough market support to con-
tinue driving prices in the direction of the current trend, while
its negative value indicates lack of market support and tendency
for stock values to become stagnant or to reverse.

The efficient market hypothesis (EMH) is a cornerstone of
modern financial theory and states that current security prices
(the underlying value of the asset) incorporate and reflect all
relevant information that could be gathered, so that stocks al-
ways trade at fair value [7]. This implies that in ‘normal’ sit-
uations markets cannot be consistently beaten over long time;
in other words, the security prices tend to exhibit a random
walk type of behaviour, characterised by poor predictability
from their historical values and high uncertainty in the rate of
change of stock prices. However, when speculative economic
bubbles—‘abnormal’ situations—occur, the markets are often
driven by buyers who are prone to sentiment or irrational ex-
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uberance. In such scenarios, the buyers tend to overestimate
stock values while anticipating the growth of markets, which
in turn brings less uncertainty to the rate of change of future
prices. This ‘acceleration-stabilisation’ type of behaviour is not
dissimilar to the sympatho-vagal balance in humans, whereby
the sympathetic autonomous nervous system (SNS) accelerates
body functions while the parasympathetic nervous system (PNS)
slows them down [8].

In human sciences, stress is defined as a non-specific neu-
roendocrine response [9]. In the same way, we propose to define
the financial stress as a non-specific deviation from its normal
functioning. There is no agreement on a more specific defi-
nition, as episodes of financial stress often vastly differ, from
dot-com bubble through to sub-prime mortgage crisis. A risk
(stress) indicator specific to currency markets was proposed in
[10], and defines financial risk through a reduction in the num-
ber of significant factors—principal components. However, the
suggestions that a decrease in the degrees of freedom invariably
signifies the loss of complexity during an episode of crisis is
not necessarily valid; to this end, higher-order features related
to long-range couplings also need to be examined [11], for ex-
ample those manifested in long-term correlation, which is the
basis for practical structural complexity analysis. The degree
of determinism (predictability) of the signal, in addition, also
plays an important role in determining the degree of complexity
[12]. The financial stress index (FSI) proposed in [13] con-
siders the variations in the intensity and duration of financial
stress episodes through high-frequency (HF) price variables.
Based on an equal-variance weighted average, financial stress
is detected when the value of the FSI exceeds one standard de-
viation above the trend (using the Hodrick-Prescott filter); the
FSI also indicates whether an episode of financial stress is due
to stress in banking, securities, or foreign exchange sectors. The
FSI in [14] focuses on market responses in the securities, ex-
change and banking sectors. It evaluates monthly changes in the
degree of stress transmission and the stress co-movement be-
tween advanced and emerging economies [15], [16]. Financial
stress is then deemed present if the index exceeds 1.5 standard
deviations above its mean [17]; the FSI also provides estima-
tion of the type of crisis, for example, the EMPI component
was able to capture 80% of the currency crisis found in the
literature.

In addition to specific indices which capture a particular as-
pect of financial stress, composite indices include the Chicago
Fed National Activity Index and the Kansas City FSI [18], which
are calculated over a range of variables. Our approach falls be-
tween these two categories—it is composite in the sense that
it simultaneously analyses several individual market indices,
while being specific enough to examine the balance/imbalance
aspect of markets. In an analogy to the sympatho-vagal bal-
ance in human stress research, we consider the ‘biomarkers’
of financial stress to be accelerations followed by recessions in
stock indices. The market expansions are therefore interpreted
similarly to the effects of the SNS activity in humans, and are
characterised by investors’ over-excitement, over-confidence,
and heuristic approaches. Market recessions are then analogous
to the effects of the PNS, whereby the financial slow-down is
accompanied by a lack of confidence and a decrease in market
efficiency.

During a financial crisis, the term ‘systemic risk’ refers to a
series of correlated defaults among financial institutions, occur-
ring over a short time span and triggering withdrawal of liquidity
and a widespread loss of confidence in the financial system as a
whole. At the heart of the concept is the notion of ‘contagion’, a
particularly strong propagation of failures from one institution,
market, or system to another. Five different measures of sys-
tematic risk were proposed in [19], based on statistical relations
among the market returns of hedge funds, banks, brokers and
insurance companies. Using the correlations, cross-correlations,
PCA, regime-switching models, and Granger causality tests, it
was found that all the four sectors have become highly inter-
related and less liquid over the past decade, an indicator of
increased level of systemic risk in finance and insurance indus-
tries. These measures can also identify and quantify financial
crisis periods.

The absorption ratio [20] is an indicator of market fragility
and systemic risk, and is defined as the fraction of the total vari-
ance of a set of assets explained or absorbed by a finite set of
eigenvectors. A high value for the absorption ratio corresponds
to a high level of systemic risk and fragility. For example, high
values of absorption ratio of the US stock market during the
dot-com bubble and the global financial and sub-prime mort-
gage crises suggested that the market was extremely fragile and
vulnerable to negative shocks, which propagated quickly and
broadly in both periods. The absorption ratio can also be used
as a warning for investors, as on average, stock prices decreased
following one-standard-deviation spikes in the absorption ratio,
and increased after one-standard-deviation drops in the absorp-
tion ratio.

The ‘10-by-10-by-10’ approach for the assessment of sys-
temic financial risk related to stress scenarios was proposed in
[21], and involves three factors: financial institutions, a num-
ber of counterparties and stress tests. The total of gains and
losses of each stress test for each institution (also counterparty)
is calculated and then reported periodically.

This all indicates a void in the literature when it comes to the
quantification of both financial stress and systemic risk. To this
end, in an analogy to human stress (sympatho-vagal imbalance)
the signatures of which are derived from the low-frequency (LF)
and high-frequency (HF) bands within heart rate variability, we
propose the Assessment of Latent Index of Stress (ALIS) which
examines the LF and HF bands in detrended financial data.
Our rationale is that low-frequency changes (LF band), which
correspond to time spans of over 1 year, are driven by global
factors (monetary policies), whereas the more rapid changes
(HF band), over spans of 5 days to 3 months, signify abrupt
events, such as the 9/11 crisis and the Internet bubble burst.

The ALIS index therefore determines ‘crisis versus no-crisis’
episodes of the financial stress evolution through the examina-
tion of long- and short-term changes in specific stock indices,
whereas the existing FSIs in [13], [14], [18] consider several
sub-components, such as stock market returns and time-varying
stock market return volatility, which may be responsible for the
onset and development of financial stress. While the ALIS index
is not designed for specific analyses using financial market vari-
ables as potential cofounders for financial stress, it is one of the
first methods which extends beyond the second order analysis
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in [13], [14], [18] to detect the patterns of financial crises in
specific financial indices using a bio-inspired signal processing
approach.

II. SUMMARY OF MOTIVATION AND CONTRIBUTION

Inspired by the catastrophe theory [22] and the EMH theory,
we propose the ALIS index as an indicator of financial stress
during episodes of financial crises in different individual stock
indices. Following on the complexity-loss theory, financial sys-
tems are shown to exhibit lower levels of structural complexity
during financial crises, compared to normal periods [1]. We
also introduce the moving-average multivariate sample entropy
(MA-MSE) algorithm to quantify different degrees of such com-
plexity. The recurrence quantification analysis (RQA) and delay
vector variance (DVV) are then employed so as to establish the
ground truth of the deterministic (predictable) versus stochastic
(unpredictable) and the linear versus nonlinear signal modality
for stock indices. Finally, the intrinsic phase synchrony (IPS)
is used for the quantification of inter-dependencies during fi-
nancial crises, as financial systems often exhibit high levels of
systemic risk, that is, they are contagious and, to an extent,
dependent on one another.

It is almost self-evident that financial markets exhibit high
structural complexity which in turn can be quantified through
entropy, for example, using the multivariate multiscale sample
entropy (MMSE) [11], [23] algorithm. This approach examines
long-term correlations of both the trend and the detrended data.
For enhanced resolution, we introduce a novel MA-MSE al-
gorithm, described in Section III-B. Also, prior to modelling
financial indices, it is a prerequisite to establish the ground truth
for the linear versus nonlinear and deterministic versus stochas-
tic nature of the data, referred to as signal modality analysis. To
this end, we employ nonparametric analyses using the methods
of recurrence plots (RPs) [24] and DVV [25], which examine the
nature of the underlying generating mechanisms [26], a subject
of Section III-C and Section III-D.

We also examine the degree of synchrony between financial
indices and establish the extent to which IPS [27] can be used to
quantify synchronous behaviour—financial contagion leading
to systemic risk—among multiple stock indices related to the
same sector, as elaborated in Section III-E.

In the analysis, we consider four major stock indices which
indicate the state of economy of the US[1]: (i) Dow Jones Indus-
trial Average (DJIA), (ii) NASDAQ Composite, (iii) Standard
& Poor’s 500 (S&P 500), and (iv) Russell 2000. The DJIA com-
prises 30 of the largest companies in the US across a range of
industries except for transport and utilities; NASDAQ is an in-
dicator of the performance of stocks in technology and of the
growth in companies; S&P 500 consists of 500 large companies
from a vast number of industries, each having market capital-
isation of more than $5 billion; and Russell 2000 comprises a
small-cap segment of the US equity market. We also consider
four financial markets outside the US in order to assess the per-
formance of the ALIS: (i) Financial Times Stock Exchange 100
(FTSE 100), (ii) Cotation Assistée en Continu 40 (CAC 40), (iii
and iv) foreign exchange (Forex) markets for the EUR/GBP and
GBP/JPY. The FTSE 100 is a share index of the 100 companies
listed on the London Stock Exchange, the CAC 40 represents

the 40 most significant values among the highest 100 market
capitalisation of the Euronext Paris (Paris stock exchange).

It is arguable whether increased local variances may already
signify financial crises, without assistance of sophisticated
numerical methods. The studied nonparametric methods, how-
ever, are independent of signal variance which being only a 2nd
order moment may not effectively reveal major financial crises.
Indeed, we show how such crises can be precisely determined
through changes in the intrinsic characteristics of financial
data, such as their determinism, linearity, and complexity. The
purpose of this study is therefore to quantify these time-varying
characteristics in order to simultaneously characterise, in a full
multivariate way, the financial stress through the complexity-
loss hypothesis (systems under stress exhibit greater regularity
and less freedom.) [28]–[30] and systemic risk (the markets are
contagious and behave in the same way during financial crises).
This is achieved by examining in stock trends intrinsic and
inter-channel dependencies together with their nonlinear and
stochastic properties. The detrended stock indices (the rate of
change) of the market indices over the last 25 years (between 1st
January 1991 and 31st August 2015) were analysed using the
following nonparametric methods: (i) MMSE, (ii) MA-MSE,
(iii) RQA, (iv) DVV, (v) ALIS, and (vi) IPS. Methods (ii),
(v), and (vi) are novel and are derived specifically for financial
data. The analysis is verified over several case studies which
support the complexity-loss hypothesis for financial markets, a
robust framework to understand financial stress, and is expected
to be beneficial to those interested in middle- and long-term
investments.

III. ALGORITHM AND BACKGROUND

We shall first briefly describe the algorithms used in this study.

A. MA Algorithm for the Multivariate Case

This standard approach considers a multivariate signal
xorg ,k ,i , k = 1, 2, . . . , p, i = 1, . . . , N , with p being the num-
ber of data channels, τ time lag, and N the total number of
sample points. The MA filter removes the trend, sk,j , from the
original xorg ,k ,i , using the following functional form

sε
k,j =

1
ε

j+ε/2−1∑

i=j−ε/2−1

xorg ,k ,i , 1 ≤ j ≤ N − τ + 1, (1)

where ε is a pre-defined scale factor (data window size). The
detrended data, zk,j , is then obtained as

zε
k,j = xorg ,k ,i − sε

k,j , i = 1, 2, . . . , N − 1. (2)

Observe that long window sizes will remove short trends.

B. Multivariate Multiscale Sample Entropy (MMSE) &
Moving-Average Multivariate Sample Entropy (MA-MSE)

The sample entropy (SampEn) method calculates empirical
estimates of entropy [31] based on the probability of similarity
between the delay vectors (patterns) in data. The SampEn is a
single-scale measure, however, the interpretation of complexity
estimated via entropy requires multiple scales. To this end,
the multiscale sample entropy (MSE) algorithm [32] employs
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pre-determined scales, constructed using the coarse graining
process (CGP). Such scales do not match intrinsic properties in
the data, and in addition the number of data points for a given
scale, ε, Nε = N

ε , decreases linearly in the scale factor. For
better resolution, the modified multiscale entropy (Mod-MSE)
[33] algorithm replaces GCP by a MA scale definition process.
Both the MSE and the Mod-MSE are, however, univariate
algorithms, not capable of accounting for cross-channel
dependencies. To cater for multivariate cases, the multivariate
MSE (MMSE) [11], [23], reveals both the intrinsic- and
cross-complexities through a multivariate embedding process.
We here introduce its variate, termed MA-MSE, to quantify
multivariate complexity of both the trend and the detrended
data, a procedure referred to as the MA-MSE, outlined in
Algorithm 1. By virtue of MA-MSE, pre-defined and physically
meaningful scales are generated to match periods of interest
(finance-specific scales) in financial data, such as short-term
trading (1–5 days), and short- (less than a month), medium-
(1–3 months) and long-term (over a year) trends [6].

Within either the MMSE or the MA-MSE, first the embedding
dimension m and time lag τ of each variate are calculated to
construct a composite multivariate delay vector, given by

Xm (i) = [x1,i , x1,i+τ1 , . . . , x1,i+(m 1 −1)τ1 ,

x2,i , x2,i+τ2 , . . . , x2,i+(m 2 −1)τ2 , . . . ,

xp,i , xp,i+τp
, . . . , xp,i+(mp −1)τp

], (3)

where M = [m1 ,m2 , . . . ,mp ] ∈ Rp is the embedding dimen-
sion vector, τ = [τ1 , τ2 , . . . , τp ] denotes the time lag vector, p is
the number of variates, and Xm (i) ∈ Rm .

The CGP within the MMSE creates scale factors by averaging
the adjacent sample points within non-overlapping windows of
increasing length ε (scale factor). The resulting data, denoted
by yε

k,j , represent a coarse-grained scale ε and is obtained as

yε
k,j =

1
ε

jε∑

i=(j−1)ε+1

xk,i , 1 ≤ j ≤ N

ε
. (4)

The proposed MA-MSE replaces the CGP by MA-based scale
generation, whereby both the trend, sε

k,j , and the detrended data,
zε
k,j , are combined as wε

k,j = [sε
k,j , z

ε
k,j ] and are used as pre-

defined scales (input) for the algorithm.
Before computing the MMSE and the MA-MSE, a tolerance

parameter, r, is defined and is used to search for similar patterns
(delay vectors) by comparing the scalar distance between all
pairs of delay vectors in Eq. (3), but without self-comparison.
If the difference in the distance of a pair of delay vectors is less
than r, the event of a similar pattern has occurred.

C. Recurrence Quantification Analysis (RQA)

The RP method [24], outlined in Algorithm 2, was introduced
to visualise the dynamics of phase space trajectories. Using the
Takens embedding theorem [34], for a given univariate time
series x(n), the phase space can be reconstructed by embedding
the time series as follows:

Xm,τ (i) = [xi, xi+τ , . . . , xi+(m−1)τ ]

i = 1, . . . , N − (m − 1)τ, (5)

Algorithm 1: Multivariate multiscale sample entropy
(MMSE) & Moving-average multivariate sample entropy
(MA-MSE).
For each scale: yε

k,j (MMSE), or wε
k,j (MA-MSE):

1) Construct a composite delay vector based on the scale
yε

k,j (MMSE) or wε
k,j (MA-MSE).

2) Search for similar patterns in every data channel of the
composite delay vector. If the difference in the pair-
wise distance is less than or equal to the defined
tolerance ||Xm (i) − Xm (j)|| ≤ r, j �= i, the event of
similarity, denoted by Pm , is counted.

3) Calculate the probability Bm (r) =
1
N

Pm , where N is

the total number of searches in composite delay vector.
4) Repeat Steps 1 to 3 for the (m + 1)-dimensional

composite delay vector.
5) Calculate the MMSE or the MA-MSE using

SampEn(m, τ, r) = − ln
[
Bm+1r

Bm r

]
(6)

Algorithm 2: Recurrence quantification analysis (RQA).

Input: Discrete time series x(n).
1) Given the optimal embedding parameters, m and τ ,

generate the delay vectors (DVs), as in Eq. (5).
2) Compute the RPs matrix, which summarises all

pairwise Euclidean distances between DVs, as

RPi,j =Θ
(
ε − ||X(i) − X(j)||

)
, i, j = 1, . . . , Ns,

(7)

where Ns is the number of considered states in X ,
ε a threshold distance (60% of the mean Euclidean
distance of the DVs), || · || the Euclidean distance,
and Θ(·) the Heaviside function.

3) The percentage of recurrence points which form
diagonal lines measures the degree of predictability,
and is computed as:

DET =

∑Ns

j=jm in
j · P (j)

∑Ns

j=1 j · P (j)
, (8)

where P (j) is the number of diagonal lines of length
j, and jmin the minimum number of points to be
considered as a diagonal line (in this work, jmin = 2).

where N is the total number of points, τ the delay between
consecutive points of the time series, and m the embedding
dimension. A common approach to determining the time lag τ
is based on the mutual information algorithm [35], while the
selection of the minimum embedding dimension m is based on
the false nearest neighbours method [36]. A joint calculation of
the optimal τ and m has been proposed in [37].

The quantification of the number and duration of the re-
currences allows us to study the degree of determinism [38],
whereas the length of a diagonal line in RP reflects the num-
ber of consecutive states in which the two trajectory segments
exhibit similar evolution.
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Algorithm 3: Delay vector variance (DVV).
1) Given the optimal embedding parameters, m and τ ,

generate the delay vectors (DVs) based on
Eq. (5). Every DV , X(i), has a corresponding target,
xi+(m−1)τ +1 .

2) The mean, μd , and the standard deviation, σd , are
computed over all pairwise Euclidean distances
between DVs, ||X(i) − X(j)||(i �= j).

3) The sets Ωk (rd) are generated such that
ωk (rd) = {x(i)||x(k) − x(i)|| ≤ rd}, i.e., sets which
consist of all DVs that lie closer to x(k) than a certain
distance rd , taken from the interval
[max {0, μd − ndσd}], e.g., Ntv uniformly spaced
distances, where nd is a parameter which controls the
span over which the DVV analysis is performed.

4) For every set Ωk (rd), the variance of the
corresponding targets, σ2

k (rd), is computed. The
average over all sets ωk (rd), normalised by the
variance of the time series, σk , yields the target
variance, σ∗2(rd):

σ∗2 =
1
N

∑N
k=1 σ2

k (rd)
σ2

x

, (9)

where N denotes the total number of sets Ωk (rd).
5: Repeat Steps 1 to 4 for the Ns surrogates.

A time series x(n) is considered deterministic if its trajectory
in the phase space is smooth and can be modelled as a continuous
function. This results in an RP matrix where almost every state is
recurrent and forms long diagonal lines, where the DET value is
close to unity. On the other hand, if a time series is stochastic, the
DET values are close to zero. The intermediate case corresponds
to a signal which comprises both deterministic and stochastic
components.

D. Delay Vector Variance (DVV)

The DVV method [25] is a phase space technique which
examines the deterministic versus stochastic nature of a time
series, and when combined with the method of surrogate data
[25], it also provides information about its linear versus non-
linear behaviour. Most statistical signal nonlinearity analyses,
including the surrogate data method, are based on the Monte-
Carlo approach [39], whereby an ensemble of surrogate data is
constructed to represent linearised versions of the original data.
A statistical measure (test statistics) is then computed for both
the original time series and the surrogates; if these are signifi-
cantly different, the data at hand are deemed not to be generated
by a linear process.

The standard definition of a linear signal is that it is gener-
ated by a Gaussian linear stochastic process. Based on this ‘null
hypothesis’, constrained surrogates are commonly generated by
the iterative amplitude adjusted Fourier transform (iAAFT) [40],
and its refined version, the maximal overlap discrete wavelet
transform (MODWT), where the original iAAFT-procedure is
applied to each set of wavelet coefficients (WiAAFT). The
WiAAFT retains not only the signal distribution and amplitude
spectrum of the original time series but also the local mean and

the variance of the original time series [41]. The DVV method
is summarised in Algorithm 3.

Due to the standardisation of the intervals of rd , the deter-
minism/nonlinearity analysis by DVV can be illustrated in a
scatter diagram where the horizontal axis corresponds to mea-
sured variances of the original signal, and the vertical axis to
that of the average of the surrogates. If the surrogates exhibit
similar behaviour to the original signal, the DVV graph will lie
on the bisector line and the original signal is considered to be
linear; any deviation from the bisector line indicates a nonlinear
signal. Moreover, the minimum target variance for the original
signal is a measure of the amount of uncertainty present in the
time series.

E. Intrinsic Phase Synchrony (IPS)

The degree of phase synchronisation between data channels
can be measured through phase synchrony, which quantifies only
the phase relationship between two signals without accounting
for amplitude information, and is defined in terms of the devia-
tion from perfect synchrony via the phase synchronisation index
(PSI).

The IPS was originally proposed in the so called intrinsic
multiscale analysis framework in [27] and generalises standard
phase synchrony by equipping it with the ability to operate at
the intrinsic scale level. It employs multivariate empirical mode
decomposition (MEMD) [42] to decompose a given multivariate
signal into its narrowband intrinsic oscillations (IMFs), which
makes it possible to quantify the temporal locking of the phase
information in IMFs using the standard phase synchronisation
index (PSI), as outlined in Algorithm 4.

Financial time series contain different degrees of volatility,
or in other words power imbalances among the signal channels;
therefore in the intrinsic multiscale analysis we use the noise-
assisted adaptive-projection intrinsically-transformed MEMD
(NA-APIT-MEMD) which accounts for the different dynamics
in multivariate data (see [43] for more detail). By virtue of
NA-APIT-MEMD, these intrinsic scales physically represent
short-term trading, and short-, medium-, and long-term trends.
Standard phase synchrony can then be employed to characterise
scale-wise dependencies in stock indices.

F. Assessment of Latent Index of Stress (ALIS)

We shall now introduce the ALIS to quantify ‘stress level of
a financial organism’ by considering the detrended data, zk,j ,
as the input, followed by aggregating the normalised financial
time series of the low (0–0.0042 Hz, LF) and high (0.0167–
0.2 Hz, HF) frequency bands. The LF band was chosen so as
to correspond to long-term trends (over a year), while the HF
band is related to short-term trading (5 days), short-term trends
(less than a month) and medium-term trends (3 months). Given
the sampling frequency, fs , of 1 Hz (the close stock value for
each day), and f = fs

N0
, where f is the frequency and N0 the

number of data points, a simple period-frequency conversion
maps the periods of one year (240 sample points), 3 months (60
sample points), and 5 days (5 sample points) to the correspond-
ing frequencies of 0.0042 Hz (f = fs

N0
= 1

240 = 0.0042 Hz),

0.0167 Hz (f = fs

N0
= 1

60 = 0.0167 Hz) and 0.2 Hz (f =
fs

N0
= 1

5 = 0.2 Hz) in detrended financial time series. These
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Algorithm 4: Intrinsic phase synchrony (IPS).

Input: Discrete time series x1(n), x2(n).
1) Obtain IMFs via the NA-APIT-MEMD, c1,i and c2,i ,

i = 1, . . . , M .
2) Calculate the instantaneous phases for the IMFs and

the phase difference φi(n).
3) Phase synchrony is then defined in terms of the

deviation from perfect synchrony via the phase
synchronisation index (PSI) [44], given by

ρ(n) =
Smax − S

Smax
, (10)

where S = −
∑M

m=1 pm ln pm is the Shannon entropy
of the distribution of phase differences
φi(n − W

2 : n + W
2 ) within a window of length W , M

is the number of bins within the distribution of phase
differences, and pm is the probability of
φi(n − W

2 : n + W
2 ) within the mth bin. The

maximum entropy Smax is given by

Smax = 0.626 + 0.4 ln(W − 1). (11)

Algorithm 5: Assessment of Latent Index of Stress (ALIS).
Input: Generate the detrended data, zk,j , using the MA

algorithm with a pre-defined scale factor (window size) of
the length 1 year.

1) Construct the two time series corresponding to the LF
and HF frequency bands, LF (d) and HF (d), where
symbol d denotes a month.

2) Normalise the LF and HF time series by subtracting
the mean and dividing by standard deviation in order
to alleviate the problem of scaling.

3) Remove the offset in both the LF (d) and HF (d).
4) The ALIS is given by ALIS(d) = LF (d) + HF (d).
5) Use the median in the ALIS(d) as a threshold for

stress in the market.

frequencies were used as cut-off frequencies for the LF and
HF bands. A threshold which determines whether the market is
judged ‘stressed’ or ‘normal’ is derived based on the median, as
summarised in Algorithm 5.

IV. ANALYSIS AND RESULTS

We applied our methodology to four stock market indices
which represent the US economy over the last 25 years, be-
tween 1st January 1991 and 31st August 2015. Five consecutive
periods of different natures were identified, based on our inter-
pretation of key geopolitical and socio-economic events which
affected the US and world economies [1], as follows:

1) Period 1: 1-JAN-1991 to 31-DEC-1999. Economic boom,
followed the ‘dot-com’ boom from 1997 to December
1999.

2) Period 2: 1-JAN-2000 to 31-DEC-2003. Uncertainty, high
volatility, and Internet bubble burst; the economy crisis
further deteriorated due to the 9/11 terrorist attack and its
aftermaths.

3) Period 3: 1-JAN-2004 to 31-DEC-2007. Recovery due to
huge investment in undervalued stocks.

4) Period 4: 1-JAN-2008 to 31-DEC-2011. Sub-prime mort-
gage and debt crises.

5) Period 5: 1-JAN-2012 to 31-AUG-2015. Weak growth and
recovery owing to the uncertainty in fiscal policy (‘fiscal
cliff’), increases in tax, and a slowdown in the housing
sector.

A. Analytical Framework

Fig. 1 shows the framework of the data analysis using the al-
gorithms presented in Section III. In the MA-MSE analysis, MA
filters with different window sizes, ε, were first employed in or-
der both to extract the trends in the four stocks (as a multivariate
variable) and to produce the detrended data. The multivariate
complexities of both the trends and the detrended data were
then estimated using multivariate SE given in Algorithm 1. The
detrended data of univariate variables of the four stocks were
then generated using an MA filter with the window size, ε, of
5 days for the RQA and DVV analyses, given in Algorithms 2
and 3, so as to quantify the determinism and linearity. An MA
filter with the window size, ε, of 1 year was next used to extract
univariate detrended data of the four stocks for the ALIS index.
This algorithm, given in Algorithm 5, was employed in order to
determine the stress level for each stock index. Finally, depen-
dencies between the stock indices were estimated using the IPS
outlined in Algorithm 4.

B. MA Algorithm

For the MA-MSE analysis, six scale factors of 5 days (short-
term trading), 10 day, 1 month (short-term trends), 2 months,
3 months (medium-term trends) and 1 year (long-term trends)
were employed in the MA algorithm, in order to obtain trends
within the original daily-adjusted closing prices of the four fi-
nancial indices and the detrended data. For the RQA and DVV
analyses, a scale factor of 5 days was used in the MA algorithm,
while for the ALIS index, a scale factor of 1 year was used in the
MA algorithm. The trends and the detrended data of the DJIA,
NASDAQ, Russell 2000, and S&P 500 were estimated using a
scale factor of 5 days, and the results are shown in Fig. 2(a)–(d).

C. Multivariate Multiscale Sample Entropy &
Moving-Average Multivariate Sample Entropy

Financial data were considered as an output of a low noise
system. This is natural as they represent actual values of the
stock indices, and therefore m = 2 was used. A unit time lag
τ = 1 was chosen as there exist short-term correlations in the
sliding windows.1 Four-year sliding windows with 3 years and
11 months overlap (1 month increment) were used.

1The appropriate selection of m and τ relies on the underlying dynamics of
a given multivariate time series. Pincus suggested that the values m = 2 or 3
[45] are sufficient for a low-dimensional system under low noise. Kaffashi et al.
[46] recommended that τ = 1 is sufficient for the estimation of complexity of
a system which has a relatively short-term correlation, and the tolerance r is
typically set between 10–20% of the standard deviation (SD) for robustness
to noise. We have therefore selected the middle value, 15% of the SD, for the
MMSE and MA-MSE algorithms.
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Fig. 1. Analytical framework. Framework of the data analysis using MA-MSE, RQA, DVV, ALIS, and IPS.

Fig. 2. Stock market indices (DJIA, NASDAQ, Russell 2000 and S&P 500) and their detrended versions. Upper panels: Original data and their trends for a
5-day scale. Lower panels: Detrended data. (a) The DJIA over 1991–2015. (b) The NASDAQ over 1991–2015. (c) The Russell 2000 over 1991–2015. (d) The S&P
500 over 1991–2015.
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Fig. 3. Structural complexity of trends in compound stock indices. The MA-
MSE values which represent the structural complexity for the trends of the four
financial indices in different economic periods. The trends were generated using
the MA algorithm with six pre-defined scale factors (5 days, 10 days, 1 month,
2 months, 3 months and 1 year).

The long- and short-term correlations in data were found via
the MA filter with different pre-defined scale factors, ε. We con-
sidered six pre-defined scale factors which match the periods of
interest in financial data (short-term trading, short-, medium-,
and long-term trends), for which the scale factors were respec-
tively 5 days (5 sample points), 10 days (10 sample points),
1 month (20 sample points), 2 months (40 sample points), 3
months (60 sample points), and 1 year (240 sample points).

Fig. 3 shows the multivariate complexity of the trends (price
moving average) estimated using the MA-MSE with the six
pre-defined scale factors. Observe that in each economic period
the multivariate complexities in all the scales exhibited similar
sample entropy values. The MA-MSE suggested substantially
higher multivariate complexity during the dot-com bubble and
the Internet bubble burst, the periods of uncertainty and high
volatility. During the sub-prime mortgage crisis, the MA-MSE
revealed higher entropy values than the ‘normal’ periods – the
economic-boom, economic-recovery, and weak-growth periods.
Note that high multivariate complexities of the trends estimated
using the MA-MSE revealed the presence of the crises, as fi-
nancial trends show the tendencies of the markets to change in
a particular way over time [3].

The multivariate complexities of the original data of the four
financial indices and the trends were estimated respectively us-
ing the MMSE and the MA-MSE, and are shown in Figs. 9 and
10. Observe that the multivariate complexity quantified using
the MA-MSE had no aliasing at large scales, a major improve-
ment of the MA-MSE in scale generation.

Fig. 4 validates our complexity-loss hypothesis by exam-
ining the multivariate complexity of the detrended data (rate
of change) estimated using the MA-MSE with six pre-defined
scales. It suggests high complexity between 2000 and 2004, the
period of uncertainty and high volatility. Observe in both the
figures a high variation in complexity among different scales
from 2004 to 2008 (the economic recovery period)—highly
pronounced in the 5-day pre-defined scale, which indicates en-
hanced short-term dependencies in data. Also, during the ‘dot-
com bubble’ between 1997 and 2000, long-term correlations—

more regularity—were observed. These findings are supported
by the RQA analysis in Section IV-D. Note that while the occur-
rences of the crises were detected using the MA-MSE applied to
the financial trends, stress in the financial markets was observed
using the MA-MSE applied to the detrended data.

D. Recurrence Quantification Analysis

Fig. 5 shows the degree of determinism of the detrended data
of individual stock indices, calculated by applying the RQA to
detrended data. A 4-year sliding windows with 3 years and 11
months overlap (1 month increment), was used in order to cap-
ture economic changes over a small number of economic cycles.
From 1994 to 1996 (period of economic stability), the RQA in-
dicated very low determinism—high uncertainty—for all the
indices. This conforms with the EMH, which states that during
‘normal’ situations stock prices behave in a random (uncertain)
way.

During the ‘dot-com bubble’ between 1997 and 2000, ex-
ceptional levels of growth in technological companies were re-
flected in an increase in the levels of determinism of the NAS-
DAQ (stock market for technological companies), together with
the Russell 2000. Both the growth in the stock indices and the
degrees of determinism of both the NASDAQ and the Russell
2000 peaked simultaneously in 2000. This also conforms with
the EMH hypothesis, whereby speculative economic bubbles are
reflected in overestimation in stock prices—high determinism—
particularly in the DJIA and the S&P.

The degrees of determinism in all the four indices dropped
again in 2000, for the duration of the Internet bubble burst, until
2004. Observe that during this crisis the DJIA and the S&P500
were very uncertain (low determinism). The NASDAQ and the
Russell 2000 also showed significant decrease in determinism,
with a short boost of NASDAQ by the Internet bubble burst in
2003.

During the economic recovery period from 2004 to 2008, the
degrees of determinism of all the four indices were very low
(lower than 0.1)—low determinism in ‘normal’ situations. The
investors began to buy undervalued stocks which in turn drove
sub-prime mortgage crisis in the mid-2008, as indicated by an
increase in determinism for the DJIA and the S&P 500—high
determinism during speculative economic bubbles. The NAS-
DAQ and Russell 2000 were less affected, as housing investment
bear no relevance for these indices. Finally, from 2011 to date
the markets weakly recovered, and the degrees of determinism
were as low as those in the healthy periods (2004–2008)—low
determinism in normal situations.

Observe that both markets for ‘large’ business companies
(DJIA and S&P 500) exhibited pronounced synchrony within
the considered 25 years, and the degrees of determinism of the
four financial indices were inversely related to the multivariate
complexity of the detrended data quantified by the MA-MSE
(see Fig. 4).

E. Delay Vector Variance

The DVV method examined linearity and uncertainty in the
detrended data. Fig. 6 analyses the four detrended indices based
on 99 surrogates generated by the WiAAFT, where the cho-
sen parameters were: the maximum span nd = 3, subset size
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Fig. 4. Structural complexity of detrended compound stock indices. The MA-MSE values which represent the structural complexity for the detrended data of
the four financial indices. These values were estimated using 4-year sliding windows with 3 years and 11 months overlap (1 month increment). The trends were
generated using the MA algorithm with six pre-defined scale factors (5 days, 10 days, 1 month, 2 months, 3 months and 1 year).

Fig. 5. Determinism in individual stock indices estimated using RQA. The degree of determinism for the 5-day MA detrended financial data of the DJIA (solid
thick line), the NASDAQ (broken thin line), the Russel 2000 (solid thin line), and the S&P 500 (broken thick line). The degrees were estimated using the RQA.
Four-year sliding windows with 3 years and 11 months overlap (1 month increment) were employed in the analysis using the embedding parameters obtained via
mutual information (τ ) and Cao’s method (m).

Nsub = 200 points, and 20 uniformly spaced distances in the
horizontal axes. A variance measurement was considered valid
if the set of points was within a certain Euclidean distance, rd ,
and contained at least 30 delay vectors (DVs). Based on Fig. 6,
five sub-periods of two-year length, with both low and high
degrees of determinism, were chosen for the analysis and the
local predictability of the original signals and the surrogates was
assessed in order to detect the presence of nonlinearity.

Fig. 6(a) shows that between 1993 and 1995 (period of eco-
nomic stability) the four indices exhibited strictly random and
linear behaviour. In Fig. 6(b), each of the four indices shows
clear deviations from the bisector lines in the period 1998–
2000, indicating the presence of nonlinear dynamics during the
dot-com bubble. Between 2005 and 2007 (see Fig. 6(c)), the
economy recovered (low determinism in Fig. 5), as exempli-
fied by a relative linearity and low predictability (lower distance
of DVV plots from the vertical axis) except for the NASDAQ
which still suffered from the consequences of technological

boom in the late 1990s. The sub-prime mortgage crisis be-
tween 2008 and 2010 and global recession were reflected in the
deterministic and nonlinear behaviour of financial data (see
Fig. 6(d)), as indicated by a large deviation from the bisector
line. Finally, recent weak growth in the economy was reflected
in random and linear behaviour of the indices (see Fig. 6(e)),
similar to the first and third sub-periods.

The DVV analysis therefore complements the RQA analysis
and suggests that during financially stable periods, stock market
indices exhibit random and linear behaviour, while any abnor-
mal events (bubbles or crises) cause a more predictable (less
stochastic) and nonlinear behaviour.

F. Intrinsic Phase Synchrony

Multivariate data exhibit inter-channel dependencies, and in
order to assess synchronous behaviour among stock indices in
different economic periods in a full multivariate way, we anal-
ysed the synchrony between stock indices using IPS. The four
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Fig. 6. Nonlinearity in individual stock indices. The DVV analysis with 99 WiAAFT surrogates was performed on the four stock market indices using the
embedding parameters obtained via the mutual information algorithm (τ ) and Cao’s method (m). First row: the DJIA. Second row: the NASDAQ. Third row: the
S&P 500. Fourth row: Russell 2000. The columns correspond to the subperiods: (a) 1993–1995, (b) 1998–2000, (c) 2005–2007, (d) 2008–2010, and (e) 2013–2015.

financial time series were combined into a single quadrivariate
signal, for which the intrinsic, data-adaptive, scales were de-
termined using the NA-APIT-MEMD with ten adjacent noise
channels, and the α value for the NA-APIT-MEMD was 1,
to cater for power imbalances among the four data channels
(see [43] for more detail). The PSIs between pairs of the data
channels at every IMF index were then calculated from 50 re-
alisations of NA-APIT-MEMD, and the confidence intervals at
each IMF index were calculated by benchmarking against the
PSIs between pairs of noise channels (no synchrony). The PSI
values between the financial time series within these confidence
intervals were adjudged spurious.

Fig. 7 shows the PSI values between all pairs of stock indices
at different IMF indices, estimated from 50 realisations of NA-
APIT-MEMD. Observe that PSI values at IMF indices 6 and 7,
which represent the periods of 1 and 2 years (long-term trends),
in all the five periods were always higher than 0.8, indicating

that all the stock indices exhibited prominent synchrony in their
long-term trends.

In all the five periods, the DJIA and the S&P 500 were also
highly synchronised in: (i) short-term trading (periods of 1–5
days, represented by IMFs 1–2); (ii) short-term trends (peri-
ods of less than a month, represented by IMFs 3–4); and (iii)
medium-term trends (periods of 1–3 months, represented by
IMF 5). This finding is also supported by Fig. 2(a) and (d), and
the RQA analysis.

Notice from Fig. 7 that all the PSI values at IMFs 1-2 (short-
term trading) during the dot-com bubble (1997–2000, the first
period) and the Internet bubble burst (2000–2004, the second
period) (except for the DJIA - S&P 500) were relatively low
(lower than 0.6). These periods are exemplified by: (i) rela-
tively low short-term dependencies (see Fig. 4), (ii) high vari-
ations in the degree of determinism (see Figs. 5 and 6(b)),
and (iii) relatively high levels of stress of the four financial
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Fig. 7. Intrinsic synchrony between individual stock indices. The graphs show phase synchrony (PSI) between stock indices across different time scales (IMF
index) for the five periods considered (black line), and the upper- and lower-bounds of confidence intervals (red lines). The IMFs [1, 2], [3, 4], 5, 6, 7 correspond
respectively to the time scales of 1–5 days, 1 month, 1–3 months, 1 year, and 2 years. (a) DJIA against NASDAQ. (b) DJIA against Russell 2000. (c) DJIA against
S&P 500. (d) NASDAQ against Russell 2000. (e) NASDAQ against S&P 500. (f) Russell 2000 against S&P 500. The PSI values outside the confidence intervals
were statistically relevant estimates of synchronisation. The PSI values at IMF index 7 of the fifth period could not be estimated as they were monotonic functions.

indices as indicated by ALIS in the next section (see Fig. 8(a)
and (d)).

However, during the third period (2004–2007), with low
variations in the determinism and low levels of stress (see
Section IV-G), all of the stock pairs exhibited higher synchrony
in short-term trading (IMFs 1-2) (all the PSI values were higher
than 0.6). This indicates pronounced short-term dependencies,
which were also detected using the MA-MSE analysis (see
Fig. 4).

Observe that during the sub-prime mortgage crisis (2008–
2011, the fourth period) all the PSI values (except for the DJIA
- S&P 500) were, on the average, higher than those for the
recovery and weak growth periods (the third and fifth periods,
2004–2007 and 2012–2015). This also indicates the presence of
systemic risk, where the markets are contagious and behave in
the same way during the financial crisis.

G. Assessment of Latent Index of Stress

The wellbeing of the ‘economic organism’ was next exam-
ined through the complexity-loss hypothesis, whereby the low

complexity (high ‘stress’ level) is indicated by high values of the
proposed ALIS index applied to the detrended data. Four-year
sliding windows with 3 years and 11 months overlap (1 month
increment) were used. Fig. 8(a)–(d) show the stress levels for
the DJIA, NASDAQ, Russell 200 and S&P 500. Observe that
the stress levels of the DJIA and the S&P 500 (markets for big
companies) were above the thresholds during the two crises: the
Internet bubble burst and the sub-prime mortgage crisis, where
the NASDAQ (market for IT companies) exhibited substantially
higher level of stress during the dot-com bubble and the Internet
bubble burst. Although the sub-prime mortgage crisis primarily
affected the housing sector and non-IT companies, it also im-
pacted on IT companies, as indicated by an excess stress level
of the NASDAQ in 2011. The Russell 2000 also exhibited high
stress level during the sub-prime mortgage crisis and the re-
cent weak growth period. However, as it comprises a small-cap
segment of the US equity market, it was less affected by the
Internet bubble burst. Observe that both the markets for ‘large’
business companies (DJIA and S&P 500) exhibited pronounced
synchrony within the 25 years considered. This finding is also
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Fig. 8. Financial stress evolution through the proposed ALIS index. Observe
the perfect match in ALIS for the DJIA, Russell 2000 and S&P 500 for both
the Internet burst and sub-prime mortgage abnormalities. The NASDAQ com-
prises only IT companies and thus reacted more strongly to the Internet bubble
burst and less strongly for the housing crisis. (a) Evolution of ALIS for DJIA.
(b) Evolution of ALIS for NASDAQ. (c) Evolution of ALIS for Russell 2000.
(d) Evolution of ALIS for S&P 500.

supported by the RQA analysis (in Fig. 5) and the IPS analysis
(in Fig. 7).

V. CONCLUSION

We have examined the financial market from the point of
view of complexity science and have analysed the constraints

it exhibits in its responses to major socio-economic and geo-
political events. This has been achieved for four major stock
markets over a period of 25 years. The MSE based multivariate
MA-MSE algorithm has been shown to provide both a composite
estimate of complexity for financial indices and an estimate
of systemic risk. In addition, the univariate RQA and DVV
approaches have shown that irregularities in the market, such as
the Internet bubble burst, the 9/11 crisis or sub-prime mortgage
crisis, are reflected in an increase in the determinism in stock
indices (via RQA), the corresponding reduction in complexity
(via MA-MSE), and increase in nonlinearity (via DVV).

The novel IPS [27] has been employed to quantify scale-wise
couplings in financial indices, and has indicated pronounced
and physically meaningful synchronisation in the DJIA and the
S&P 500, across the scales. Higher degrees of synchrony have
also been found in short-term dependencies during the periods
with low market stress and low variations in the determinism.
Conversely, the short-term synchrony decreased with high stress
and high variations in the determinism in the markets. Systemic
risk has further been identified by increased levels of average
synchrony between the markets.

Finally, we have introduced a new metric, referred to as the
ALIS, which measures the degree of financial stress based on
the physically meaningful scales which reflect common trad-
ing principles. The ALIS has strongly indicated financial stress
during the Internet and mortgage bubble crises.

This work has conclusively demonstrated the utility of poste-
rior complexity science approaches in the assessment of finan-
cial stress. Our future studies will focus on incorporating these
approaches within machine learning algorithms in predictive
scenarios.

APPENDIX

A. Multivariate Multiscale Sample Entropy (MMSE) &
Moving-Average Multivariate Sample Entropy (MA-MSE)

As an economic cycle typically lasts for approximately a
year, and in order to capture economic changes over a small
number of economic cycles, 4-year sliding windows with 3
years and 11 months overlap (1 month increment) were applied.
Fig. 9 illustrates the multivariate complexity of the original four
financial indices estimated using the MMSE. The maximum
duration of coarse graining scales was set to 1 year for which
the six pre-defined scale factors can be selected. However, only
the entropies of five scales (5 days, 10 days, 1 month, 2 months
and 3 months) could be computed, as the entropy estimated
using the 1-year scale diverged. Notice the effect of aliasing
caused by poor resolution of CGP in the 2- and 3-month scales,
which implies that MMSE may not be suitable for large scales
in financial data.

Fig. 10 shows the multivariate complexity of the trends (price
moving average) estimated using MA-MSE with the six pre-
defined scale factors. Observe that the multivariate complexities
in all the scales exhibited similar sample entropy values and
no aliasing, except for the 1-year scale which showed a lower
entropy, but similar variation as the other scales. The MA-MSE
suggested high multivariate complexity during 2000 and 2004,
the period of uncertainty and high volatility.
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Fig. 9. Structural complexity of trends in compound stock indices estimated
using MMSE. The values were estimated using 4-year sliding windows with
3 years and 11 months overlap (1 month increment). The scale factors were
5 days, 10 days, 1 month, 2 months. For the 1-year scale, the entropy values
diverged, and are excluded from the graph.

Fig. 10. Structural complexity of trends in compound stock indices estimated
using MA-MSE. The values were estimated using 4-year sliding windows with
3 years and 11 months overlap (1 month increment). The trends were generated
using the MA algorithm with six pre-defined scale factors (5 days, 10 days,
1 month, 2 months, 3 months and 1 year).

B. Application of the ALIS to Non-US Financial Markets

The ALIS index was additionally applied to following finan-
cial markets outside the US: (i) Financial Times Stock Exchange
100 (FTSE 100), (ii) Cotation Assistée en Continu 40 (CAC 40),
(iii and iv) foreign exchange (Forex) markets for the EUR/GBP
and GBP/JPY. The data for the Euro was taken from 1-JAN-1999
to 31-Aug-2015, as the electronic version of the Euro has ex-
isted since 1-JAN-1999 although the Euro was officially issued
in 2002.

Fig. 11(a)–(d) show the ALIS stress levels for the FTSE 100,
CAC 400, and EUR/GBP and GBP/JPY Forex markets. Observe
that the stress levels for the FTSE 100 and CAC 40 (markets for
big companies in the UK and France) were above the threshold
during the two crises. As expected, the EUR/GBP Forex market
was not affected by the Internet bubble burst, but was severely
impacted by the sub-prime mortgage crisis, while the GBP/JPY
Forex market exhibited high stress level during both of the crises.

C. Volatility Index

Volatility index (VIX) is a financial measure for predicting
fear or stress in stock markets in the future. The classic VIX, so
called historical VIX, is represented by the standard deviation
of the returns (the logarithm of the ratio between the current and
previous prices) over a specific period of time, and is typically
expressed in percentages. A large percentage means the major-
ity of investors realise a significant risk in the movement of the
market, in other words, it implies high stress in the system. The
VIX was first estimated for the S&P 100 to observe projected

Fig. 11. Financial stress evolution of non-US financial markets through the
ALIS index. (a) The FTSE 100. (b) The CAC 40. (c) EUR/GBP. (d) GBP/JPY.
Observe a perfect match in ALIS for the FTSE 100, CAC 40 and GBP/JPY
exchange rate for both the Internet burst and sub-prime mortgage abnormali-
ties. The ALIS for the EUR/GBP exchange rate indicates that it was severely
impacted by the sub-prime mortage crisis, but not by the Internet burst.

Fig. 12. VIX of the compound stock indices. (a) The FTSE 100. (b) The CAC
40. (c) EUR/GBP. (d) GBP/JPY. The typical monthly and annually periods are
selected as the periods for calculating the VIX, for a fair comparison with the
RQA and ALIS.

fear of investors over the upcoming 30 days. A modern method
for calculating the VIX with capability to monitor volatility in
real time was proposed and performed by Chicago Board Op-
tions Exchange (CBOE) [47]. The CBOE also provides different
names of the VIX for individual stock index, such as VIX (S&P
500), VXN (NASDAQ), VXD (Dow jones) and RVX (Russel
2000).

Fig. 12(a)–(d) illustrate the VIX of the individual stock in-
dices monthly and annually. Observe that the highest percentage
point of the VIX occurs in the sub-prime mortgage crisis for the
DJIA, Russel 2000 and S&P 500 (for the NASDAQ, it is the
second highest peaks), which matches the results obtained by
the ALIS index. Comparing with the RQA, however, only the
DJIA and S&P 500 exhibited similar peaks during the crisis. The
second highest percentage of the VIX can be observed during
the Internet bubble burst, while the ALIS and RQA indicate the
most prominent peak of the crisis only in NASDAQ, and less
significant one in Russel 2000. Considering the trend cycles of
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the MA-MSE result, the highest peak is located in the Internet
bubble burst and the second highest one is in the sub-prime
mortgage crisis. This means that the rank orders of the peaks
resulting from the MA-MSE are swapped, compared to the VIX
results. This consequently implies that the MA-MSE could be
affected by only one market (NASDAQ).

Our proposed algorithms exhibit slightly different levels of
magnitudes during the two important crises, as they use de-
trended data with pre-defined scales. Since such data are less
sensitive to immediate changes in the events of the markets,
our proposed algorithms provide more information of particular
trend-cycles for the individual stock indices (via RQA, DVV
and ALIS) and a correlated trend-cycle for the compound stock
indices (via MA-MSE).
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