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Widely Linear Estimation
and Augmented CLMS (ACLMS)

It has been shown in Chapter 12 that the full-second order statistical description of a general
complex valued process can be obtained only by using the augmented complex statistics, that
is, by considering both the covariance and pseudocovariance functions. It is therefore natural
to ask how much we can gain in terms of the performance of statistical signal processing
algorithms by doing so. To that end, this chapter addresses linear estimation for both circular
and noncircular (proper and improper) complex signals; this is achieved based on a finite
impulse response (FIR) system model and for both the second-order regression modelling
with fixed coefficients (autoregressive modelling) and for linear adaptive filters for which the
filter coefficients are adaptive. Based mainly on the work by Picinbono [239, 240] and Schreier
and Scharf [268], Sections 13.1 – 13.3 show that for general complex signals (noncircular),
the optimal linear model is the ‘widely linear’ (WL) model, which is linear both in z and z∗.
Next, based on the widely linear model, for adaptive filtering of general complex signals, the
augmented complex least mean square (ACLMS) algorithm is derived, and by comparing the
performances of ACLMS and CLMS, we highlight how much is lost by treating improper
signals in the conventional way.

13.1 Minimum Mean Square Error (MMSE) Estimation in C

The estimation of one signal from another is at the very core of statistical signal processing, and
is illustrated in Figure 13.1, where {z(k)} is the input signal, z(k) = [z(k − 1), . . . , z(k − N)]T

is the regressor vector in the filter memory, d(k) is the teaching signal, e(k) is the instantaneous
output error, y(k) is the filter output1, and h = [h1, . . . , hN ]T ∈ CN×1 is the vector of filter
coefficients.

1For prediction applications d(k) = z(k) and y(k) = ẑL(k), where the subscript ‘L’ refers to the standard
linear estimator.
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Figure 13.1 Complex linear estimators

A solution that minimises the mean squared (MS) error is linear regression [110, 113]

ẑL(k) = E[y(k)|z(k)] ⇔ y(k) = hTz(k) (13.1)

which estimates a scalar random variable y (real or complex) from an observation vector z(k),
and is linear in z if both y and z are zero mean, and jointly normal. To perform this linear
regression, we need to decide on the order N of the system model (typically a finite impulse
response (FIR) system), and also on how to measure best fit of the data (error criterion).
The estimator chooses those values of h which make z(k) closest to d(k), where closeness is
measured by an error criterion, which should be reasonably realistic for the task in hand and
it should be analytically tractable. Depending on the character of estimation, the commonly
used error criteria are:

� Deterministic error criterion, given by

J = min
h

∑
k

|e(k)|p =
N−1∑
k=0

(
d(k) − y(k)

)p (13.2)

which for p = 2 is known as the Least Squares (LS) problem, and its solution is known
as the Yule–Walker solution (the basis for autoregressive (AR) modelling in C), given by
[33]

h = R−1r (13.3)

whereR is the input correlation matrix and r = E[z(k)z∗(k)].
� Stochastic error criterion, given by

J = min
h

E{|e(k)|p} (13.4)
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For p = 2 this optimisation problem is known as the Wiener filtering problem, for which
the solution is given by Wiener–Hopf equations2

h = R−1
z,zrd,z (13.5)

where Rz,z is the tap input correlation matrix and rd,z is the cross-correlation vector
between the teaching signal and the tap input.

From (13.1) and (13.5), the output of the linear estimator is given by

y(k) = ẑL(k) =
(
R−1
z,zrd,z

)T
z(k) (13.6)

A stochastic gradient based iterative solution to this problem, which bypasses the require-
ment of piece-wise stationarity of the signal is the complex least mean square (CLMS)
algorithm [307].

13.1.1 Widely Linear Modelling in C

As shown in Chapter 12, for complete second-order statistical description of general complex
signals we need to consider the statistics of the augmented input vector (in the prediction
setting)

za(k) = [
z(k − 1), . . . , z(k − N), z∗(k − 1), . . . , z∗(k − N)

]T = [
zT(k), zH(k)

]T
(13.7)

Thus a linear estimator in C should be linear in both z and z∗, that is

ẑWL(k) = y(k) = hTz(k) + gTz∗(k) = qTza(k) (13.8)

where h and g are complex vectors of filter coefficients and q = [
hT,gT

]T
. Statistical

moments of random variable y(k) in Equation (13.8) are defined by the corresponding mo-
ments of the augmented input za(k), and the signal model (Equation 13.8) is referred to as a
wide sense linear or widely linear (WL) estimator [239, 240, 271], depicted in Figure 13.1(b).

From Equations (13.6) and (13.8), the optimum widely linear coefficient vector is given by

q = [
hT,gT]T = C−1

a rd,za (13.9)

where Ca is the augmented covariance matrix given in Equation (12.50) and rd,za is the cross-
correlation vector between the augmented input za(k) and the teaching signal d(k). The widely
linear MMSE solution can now be expressed as

y(k) = ẑWL(k) = qTza(k) =
(
C−1

a rd,za

)T
za(k) =

⎛
⎝[

C P
P∗ C∗

]−1 [
Cd,z

Pd,z

]⎞
⎠

T [
z(k)

z∗(k)

]

(13.10)

2To indicate the block nature of the solution, a piece-wise stationary segment of the data is considered.
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The widely linear signal model therefore utilises information from both the covariance C and
pseudocovariance P matrices (given in Equation 12.49) and from ordinary crosscorrelations
Cd,z and Pd,z, and as such it is suitable for the estimation of general complex signals. In the
special case when the complementary statistics vanish, that is P = 0 and Pd,z = 0, the widely
linear estimator (Equation 13.8) degenerates into the standard linear estimator (Equation 13.1).

Practical applications of wide sense linear filters are only emerging, this is due to the fact
that almost all existing applications assume circularity (explicitly or implicitly), however,
this assumption cannot be generally accepted. A stochastic gradient based iterative solution
to the widely linear estimation problem, which caters for nonstationary signals is called the
augmented CLMS (ACLMS) and is introduced in Section 13.4.

13.2 Complex White Noise

Central to the autoregressive modelling and prediction is the concept of white noise;3 a wide
sense stationary signal z(k) is said to be white if its power spectrum �(ν) is constant, or equiv-
alently, if its covariance function cz is a Dirac delta function, that is (see also Equation 12.44)

cz(m) = czδ(m) ⇔ �z(ν) = const

The concept of white noise is inherited from the analysis of real random variables, however, the
fact that the power spectrum of a wide sense stationary white noise is constant does not imply
any constraint on the pseudocovariance4 pz or spectral pseudocovariance Rz(ν) = F{pz} (see
also Equation 12.43).

It has been shown in Section 12.4.1 that spectral covariance �z(ν) and spectral pseudoco-
variance Rz(ν) of a second-order stationary complex signal z need to satisfy

�z(ν) ≥ 0

Rz(ν) = Rz(−ν)

|Rz(ν)|2 ≤ �z(ν)�z(−ν) (13.11)

In other words, for a second-order stationary white noise signal we have [239]

cz(m) = czδ(m)

|Rz(ν)|2 ≤ �z(ν)�z(−ν) = c2
z (13.12)

It is often implicitly assumed that the spectral pseudocovariance function Rz(ν) of a second-
order white signal vanishes, however, this would only mean that such white signal is circular
[239].

� A second-order circular white noise signal is characterised by a constant power spectrum
and vanishing spectral pseudocovariance function, that is, �z(ν) = const and Rz(ν) = 0.
The real and imaginary parts of circular white noise are white and uncorrelated.

3Whiteness, in terms of multicorrelations, has already been introduced in Section 12.3.1.
4It can even be nonstationary.



Autoregressive Modelling in C 173

Since the concept of whiteness is intimately related with the correlation structure of a
signal (only instantaneous relationships are allowed, that is, there is no memory in the
system), whiteness can also be defined in the time domain. One special case of a second-
order white signal, which is a direct extension of the real valued white noise, is called
doubly white noise.

� A second-order white signal is called doubly white, if

cz(m) = czδ(m)

pz(m) = pzδ(m) (13.13)

where the only condition on the pseudocovariance function is |pz| ≤ cz. The spectral
covariance and pseudocovariance functions of doubly white noise are then given by [239]

�w(ν) = cw and Rw(ν) = pw (13.14)

13.3 Autoregressive Modelling in C

The task of autoregressive (AR) modelling is, given a set of data, to find a regression of order p

which approximates the given dataset. The standard autoregressive model in C takes the same
form as the AR model for real valued signals, that is

z(k) = h1z(k − 1) + · · · + hpz(k − p) + w(k) = hTz(k), h ∈ CN×1 (13.15)

where {z(k)} is the random process to be modelled and {w(k)} is white Gaussian noise (also
called the driving noise),h = [

h1, . . . , hp

]T and z = [
z(k − 1), . . . , z(k − p)

]T. If the driving
noise is assumed to be doubly white, we need to find the coefficient vectorh and the covariance
and pseudocovariance of the noise which provide best fit to the data in the minimum mean
square error sense. Equivalently, in terms of the transfer function H(ν), we have (for more
detail see [239])

|H(ν)|2 = �(ν)

pwH(ν)H(−ν) = R(ν) ⇔ |R(ν)|2 = |pw|2�(ν)�(−ν) (13.16)

In autoregressive modelling, it is usually assumed that the driving noise has zero mean and unit
variance, and we can assume cw = 1, which then implies5 |pw| ≤ 1. Then, linear autoregressive
modelling (based on the deterministic error criterion, Equation 13.2) has a solution only if both
Equations (13.11) and (13.16) are satisfied. This happens, for instance, when R(ν) = 0 and
pw = 0, that is, when the driving noise is white and second-order circular, which is the usual
assumption in standard statistical signal processing literature [110, 113]. In this case, the
solution has the same form as in the real case [33], that is

h = R−1r (13.17)

whereR = E
[
z(k)zH(k)

]
and r = E

[
z(k)z∗(k)

]
.

5The pseudocovariance pw can even be a complex quantity, hence the modulus operator.
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Thus, a general complex signal cannot be modelled by a linear filter driven by doubly white
noise.

13.3.1 Widely Linear Autoregressive Modelling in C

The widely linear autoregressive (WLAR) model in C is linear in both z and z∗, that is

z(k) =
p∑

i=1

hiz(k − i) +
p∑

i=1

giz
∗(k − i) + h0w(k) + g0w

∗(k)

= hTz(k) + gTz∗(k) + [h0, g0]wa(k) (13.18)

and has more degrees of freedom and hence potentially improved performance over the standard
linear model. The gain in performance, however, depends on the degree of circularity of the
signal at hand.
Autoregressive modelling is intimately related to prediction, that is (since E[w(k)] = 0)

ẑWL(k) = E
[
hTz(k) + gTz∗(k) + [h0, g0]wa(k)

] = hTz(k) + gTz∗(k) = qTza(k) (13.19)

When the driving noise w is circular, the widely linear model has no advantage over the standard
linear model, whereas for noncircular signals we expect improvement in the performance
proportional to the degree of noncircularity within the signal.

13.3.2 Quantifying Benefits of Widely Linear Estimation

The goal of widely linear estimation is to find coefficient vectors h and g that minimise the
mean squared error E[|d(k) − y(k)|2] of the regression

ŷ = hTz+ gTz∗ (13.20)

Following the approach from [240], to find the solution, apply the principle of orthogonality
to obtain6

E[ŷ∗z] = E[y∗z], and E[ŷ∗z∗] = E[y∗z∗] (13.21)

and replace ŷ in (13.21) with its widely linear estimate (13.20), to yield7

Ch+ Pg = u (13.22)

P∗h+ C∗g = v∗ (13.23)

where C and P are defined in (12.49), u = E[y∗z], and v = E[yz].

6We have (y − ŷ) ⊥ z and (y − ŷ) ⊥ z∗, and as a consequence the orthogonality can be expressed in terms of expec-
tations, as given in Equation (13.21).
7For convenience of the derivation, in Equations (13.22) and (13.28) the expression z(k) = hTz(k) + gTz∗(k) is
replaced by z(k) = hHz(k) + gHz∗(k). This is a deterministic transformation and does not affect the generality of the
results.
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From Equations (13.22) and (13.23), the coefficient vectors that minimise the MSE of the
widely linear model (Equation 13.8) are given by

h = [C − PC−1∗P∗]−1[u− PC−1∗
v∗] (13.24)

g = [C∗ − P∗C−1P]−1[v∗ − P∗C−1u] (13.25)

and the corresponding widely linear mean square error (WLMSE) e2
WL is given by

e2
WL = E[|y|2] − (hHu+ gHv∗) (13.26)

whereas the mean square error (LMSE) e2
L obtained with standard linear estimation is given

by

e2
L = E[|y|2] − uHC−1u (13.27)

The advantage of widely linear estimation over standard linear estimation can be illustrated by
comparing the corresponding mean square estimation errors δe2 = e2

L − e2
WL, that is

δe2 = [v∗ − P∗C−1u]H[C∗ − P∗C−1P]−1[v∗ − P∗C−1u] (13.28)

Due to the positive definiteness of the term [C∗ − P∗C−1P] from Equation (13.28)

δe2 is always non-negative;

δe2 = 0 only when [v∗ − P∗C−1u] = 0.

that is, widely linear estimation outperforms standard linear estimation for general complex
signals; the two models produce identical results for circular signals.

Exploitation of widely linear modelling promises several benefits, including:

� identical performance for circular signals and improved performance for noncircular
signals;

� in blind source separation we may be able to deal with more sources than observations;
� improved signal recovery in communications modulation schemes (BPSK, GMSK);
� different and more realistic bounds on minimum variance unbiased (MVU) estimation;
� improved ‘direction of arrival’ estimation in augmented array signal processing;
� the analysis of augmented signal processing algorithms benefits from special matrix struc-

tures which do not exist in standard complex valued signal processing.

13.4 The Augmented Complex LMS (ACLMS) Algorithm

We now consider the extent to which widely linear mean square estimation has advantages over
standard linear mean square estimation in the context of linear adaptive prediction. To answer
this question, consider a widely linear adaptive prediction model for which the tap input z(k)
to a finite impulse response filter of length N at the time instant k is given by

z(k) = [z(k − 1), z(k − 2), . . . , z(k − N)]T (13.29)
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Within widely linear regression, the augmented tap input delay vector za(k) = [zT(k),
zH(k)]T is ‘widely linearly’ combined with the adjustable filter weights h(k) and g(k) to
form the output8

y(k) =
N∑

n=1

[
hn(k)z(k − n) + gn(k)z∗(k − n)

] ⇐⇒ y(k) = hT(k)z(k) + gT(k)z∗(k)

(13.30)

where h(k) and g(k) are the N × 1 column vectors comprising the filter weights at time instant
k, and y(k) is the estimate of the desired signal d(k).

For adaptive filtering applications,9 similarly to the derivation of the standard complex least
mean square (CLMS) algorithms, we need to minimise the cost function [113, 307]

J(k) = 1
2 |e(k)|2 = 1

2

[
e2
r (k) + e2

i (k)
]
, with e(k) = d(k) − y(k) (13.31)

where er(k) and ei(k) are the respectively the real and imaginary part of the instantaneous
output error e(k). For simplicity, consider a generic weight update in the form10

�wn(k) = −μ∇wnJ(k) = −μ
∂J(k)

∂wn(k)
= −μ

(
∂J(k)

∂wr
n(k)

+ j
∂J(k)

∂wi
n(k)

)
(13.32)

where wn(k) = wr
n(k) + jwi

n(k) is a complex weight and μ is the learning rate, a small positive
constant. The real and imaginary parts of the gradient ∇wnJ(k) can be expressed respectively
as

∂J(k)

∂wr
n(k)

= er(k)
∂er(k)

∂wr
n(k)

+ ei(k)
∂ei(k)

∂wr
n(k)

= −er(k)
∂yr(k)

∂wr
n(k)

− ei(k)
∂yi(k)

∂wr
n(k)

(13.33)

∂J(k)

∂wi
n(k)

= er(k)
∂er(k)

∂wi
n(k)

+ ei(k)
∂ei(k)

∂wi
n(k)

= −er(k)
∂yr(k)

∂wi
n(k)

− ei(k)
∂yi(k)

∂wi
n(k)

. (13.34)

Similarly to Equations (13.33) and (13.34), the error gradients with respect to the elements of
the weight vectors h(k) and g(k) of the widely linear variant of CLMS can be calculated as

8For consistent notation, we follow the original derivation of the complex LMS from [307].
9The widely linear LMS (WLLMS) and widely linear blind LMS (WLBLMS) algorithms for multiple access inter-
ference supression in DS-CDMA communications were derived in [262].
10We here provide a step by step derivation of ACLMS. The CR calculus (see Chapter 5) will be used in Chapter 15
to simplify the derivations for feedback and nonlinear architectures.
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∂J(k)

∂hr
n(k)

= −er(k)
∂yr(k)

∂hr
n(k)

− ei(k)
∂yi(k)

∂hr
n(k)

= −er(k)zr(k − n) − ei(k)zi(k − n) (13.35)

∂J(k)

∂hi
n(k)

= −er(k)
∂yr(k)

∂hi
n(k)

− ei(k)
∂yi(k)

∂hi
n(k)

= er(k)zi(k − n) − ei(k)zr(k − n) (13.36)

∂J(k)

∂gr
n(k)

= −er(k)
∂yr(k)

∂gr
n(k)

− ei(k)
∂yi(k)

∂gr
n(k)

= −er(k)zr(k − n) + ei(k)zi(k − n) (13.37)

∂J(k)

∂gi
n(k)

= −er(k)
∂yr(k)

∂gi
n(k)

− ei(k)
∂yi(k)

∂gi
n(k)

= −er(k)zi(k − n) − ei(k)zr(k − n) (13.38)

giving the updates

�hn(k) = −μ
∂J(k)

∂hn(k)
= −μ

(
∂J(k)

∂hr
n(k)

+ j
∂J(k)

∂hi
n(k)

)

= μ
[(

er(k)zr(k − n) + ei(k)zi(k − n)
) + j

(
ei(k)zr(k − n) − er(k)zi(k − n)

)]
= μe(k)z∗(k) (13.39)

�gn(k) = −μ
∂J(k)

∂gn(k)
= −μ

(
∂J(k)

∂gr
n(k)

+ j
∂J(k)

∂gi
n(k)

)

= μ
[(

er(k)zr(k − n) − ei(k)zi(k − n)
) + j

(
er(k)zi(k − n) + ei(k)zr(k − n)

)]
= μe(k)z(k) (13.40)

These weight updates can we written in vector form as

h(k + 1) = h(k) + μe(k)z∗(k) (13.41)

g(k + 1) = g(k) + μe(k)z(k) (13.42)

To further simplify the notation, we can introduce an augmented weight vector wa(k) =[
hT(k),gT(k)

]T
, and rewrite the ACLMS in its compact form as [132, 194]

wa(k + 1) = wa(k) + μe(k)za∗(k) (13.43)

where the ‘augmented’ instantaneous error11 is e(k) = d(k) − zaT(k)wa(k). This completes
the derivation of the augmented CLMS (ACLMS) algorithm, a widely linear extension of
standard CLMS.

The ACLMS algorithm has the same generic form as the standard CLMS, it is simple to
implement, yet it takes into account the full available second-order statistics of complex valued
inputs (noncircularity).

11The output error itself is not augmented, but it is calculated based on the linear combination of the augmented input
and weight vectors.
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13.5 Adaptive Prediction Based on ACLMS

Simulations were performed for a 4-tap (4 taps of h and 4 taps of g) FIR filter trained with
ACLMS and the performances were compared to those of standard CLMS for a range of both
synthetic and real world data, denoted by DS1 – DS4. The synthetic benchmark signals were
a linear circular complex AR(4) process and two noncircular chaotic series,12 whereas wind
was used as a real world dataset.

DS1 Linear AR(4) process (‘AR4’), given by [180]

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k) (13.44)

where n(k) is a complex, white Gaussian noise with variance σ2 = 1.
DS2 Wind (‘wind’), containing wind speed and direction data averaged over one minute.13

DS3 Lorenz Attractor (‘lorenz’), is a nonlinear, three-dimensional, deterministic system given
by the coupled differential equations [173]

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz (13.45)

where (typically) σ = 10, β = 8/3, ρ = 28.
DS4 Ikeda Map (‘ikeda’), described by [104]

x(k + 1) = 1 + u (x(k) cos[t(k)] − y(k) sin[t(k)])

y(k + 1) = u (x(k) sin[t(k)] + y(k) cos[t(k)]) (13.46)

where u is a parameter (typically u = 0.8) and

t(k) = 0.4 − 6

1 + x2(k) + y2(k)
. (13.47)

Both batch14 and online15 learning scenarios were considered, and the standard prediction gain

Rp = 10 log
σ2

y

σ2
e

was used as a quantitative measure of performance.

Batch learning scenario. Learning curves for the batch learning scenario are shown in the
left-hand part of Figure 13.2. The dotted lines correspond to the learning curves of the CLMS
algorithm, whereas the solid lines correspond to those of the ACLMS algorithm. For ‘AR4’

12The two chaotic time series are generated by coupled difference equations, and were made complex by ‘convenience
of representation’, that is, by taking the x and y components from Equations (13.45) and (13.46) and building a complex
signal z(k) = x(k) + jy(k).
13The data used are from AWOS (Automated Weather Observing System) sensors obtained from the Iowa Department
of Transportation. The Washington (AWG) station was chosen, and the dataset analysed corresponds to the wind speed
and direction observed in January 2004. This dataset is publicly available from http://mesonet.agron.iastate.edu/
request/awos/1min.php.
14For 1000 epochs with μ = 0.001 and for 1000 data samples; for more detail on batch learning see Appendix G.
15With μ = 0.01 and for 1000 samples of DS1 – DS4.
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signal (strictly circular) and ‘wind’ signal (almost circular for the given averaging interval and
data length), there was almost no difference in performances of CLMS and ACLMS. A com-
pletely different situation occurred for the strongly noncircular ‘lorenz’ (see also Figure 12.2)
and ‘ikeda’ signals. After the training, the prediction gains for the ACLMS algorithm were
respectively about 3.36 (for ‘lorenz’) and 2.24 (for ‘ikeda’) times bigger than those of the cor-
responding CLMS algorithm. These results are perfectly in line with the background theory,
that is, for noncircular signals, the minimum mean square error solution is based on augmented
complex statistics.
Online learning scenario. Learning curves for adaptive one step ahead prediction are shown
in Figure 13.2 (right), where the solid line corresponds to the real part of the original ‘lorenz’
signal, the dotted line represents the prediction based on CLMS, and the dashed line corresponds
to the ACLMS based prediction. For the same filter setting, ACLMS was able to track the
desired signal more accurately than CLMS.

Figure 13.2 also shows that the more noncircular the signal in question, the greater
the performance advantage of ACLMS over CLMS, which conforms with the analysis in
Section 13.3.2.
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Figure 13.2 Comparison of the ACLMS and standard CLMS. Left: Prediction gains Rp for signals
DS1 – DS4. Right: Tracking performance for the Lorenz signal; solid line represents the original signal,
dotted line the CLMS based prediction, and dashed line the ACLMS based prediction
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(a) Prediction using CLMS
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(b) Prediction using ACLMS

Figure 13.3 The original signal (solid line) and one step ahead prediction (dashed line)

13.5.1 Wind Forecasting Using Augmented Statistics

In the first experiment, adaptive one step ahead prediction of the original wind signal16

was performed for a N = 10 tap FIR filter trained with CLMS and ACLMS. The time wave-
forms of the original and predicted signal are shown in Figure 13.3, indicating that the ACLMS
was better suited to the statistics of the wind signal considered. A segment from Figure 13.3
is enlarged in Figure 13.4, showing the ACLMS being able to track the changes in wind
dynamics more accurately than CLMS.
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(a) Prediction using CLMS
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(b) Prediction using ACLMS

Figure 13.4 The original signal (solid line) and one step ahead prediction (dashed line)

16IOWA wind data averaged over 3 hours (see Footnote 13), which facilitates Gaussianity and widely linear modelling.
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(b) Prediction for different wind regimes

Figure 13.5 Performance of CLMS and ACLMS for different wind regimes. Thick lines correspond to
ACLMS and thin lines to CLMS

In the second experiment, tracking performances of CLMS and ACLMS were investigated
over a long period of time. Figure 13.5 shows the modulus of complex wind measurements
recorded over one day at a sampling frequency of 50 Hz, and the performances of CLMS and
ACLMS for the wind regimes denoted (according to the wind dynamics) by ‘low’, ‘medium’
and ‘high’. The prediction was performed on the raw data, and also on the data averaged over
2 and 10 seconds, and in all the cases, due to the noncircular nature of the considered wind
data, the widely linear ACLMS outperformed standard CLMS.

To summarise:

� For nonlinear and noncircular signals (chaotic Lorenz and Ikeda maps), and signals with
a large variation in the dynamics (‘high’ wind from Figure 13.5), the augmented statistics
based modelling exhibited significant advantages over standard modelling for both the
batch and online learning paradigms;

� For signals with relatively mild dynamics (linear ‘AR4’, heavily averaged wind from
Figure 13.3, and the ‘medium’ and ‘low’ regions from Figure 13.5), the widely linear
model outperformed the standard complex model; the improvement in the performance,
however, varied depending on the degree of circularity within the signal;

� In practical applications, the pseudocovariance matrix is estimated from short segments
of data in the filter memory and in the presence of noise; such estimate will be nonzero
even for circular sources, and widely linear models are a natural choice.

It is therefore natural to ask whether it is possible to design a rigorous statistical testing
framework which would reveal the second-order circularity properties of the ‘complex by
convenience’ class of signals, a subject of Chapter 18.




