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Abstract—In this paper, we consider the problem of trans-
mission delay in terms of finite coding length derived from
the random coding bound for different cooperative protocols.
Specifically, we first study the impact of cooperative transmission
on the routing decision for wireless ad-hoc networks, where a
routing optimization problem is formulated to minimize the end-
to-end delay that ensures a satisfactory error performance. The
closed-expression of the optimal solution is developed through
the optimization problem and later used as quantitative criterion
of routing decision. Furthermore, by considering the interference
impact on system performance along a multi-hop routing, we then
investigate performance gain on transmission delay for wireless
cooperative networks by using a simple multi-user detection
scheme, called overlapped transmission, in which multiple trans-
missions are allowed only when the information in the interfering
signal is known at the receiver. As a result, both analytical and
numerical results demonstrate the significant improvement on
the system performance by using cooperative transmission with
overlapping as well as the trade-off between the end-to-end delay
and network throughput.

I. INTRODUCTION

Cooperative transmission (CT) has gained much attention
as an effective technique to combat multi-path fading and en-
hance receiver reliability of wireless communication systems.
The key feature of cooperative transmission is to encourage
single-antenna devices to cooperatively share their antennas
such that a virtual antenna array can be constructed and,
hence significantly boosting reception reliability. Due to the
broadcasting nature of wireless communications, cooperative
transmission has been recognized as an effective technique to
combat multi-path fading, save energy and enhance receiver
reliability in wireless communication systems [1].

In this paper, we consider a different question in the context
of cooperative communication to analyze the performance gain
on transmission delay when using cooperative transmission. To
our best knowledge, the effect of cooperative transmission on
the delay performance is first studied in this paper. According
to the unique features of different cooperative protocols (e.g.,
amplify-forward, decode-forward and multi-hop), we use the
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error exponent model [2] to formulate the random coding
bound for each protocol. It is shown that cooperative trans-
mission can improve the quality of a wireless link and thus
significantly reduce the transmission delay without adversely
affecting the reliability.

The problem of routing optimization is then investigated in
order to study the effect of improved link cost on the routing
decision. The objective function under study is to minimize
the end-to-end delay with a constrained end-to-end reliability.
The optimal solution indicates the minimum end-to-end delay
of a route in order to satisfy the required error performance,
which is then used as a criterion to compare and select the
best protocol under different network scenarios. Meanwhile,
the developed criterion also implies that it is preferable to
choose a multiple hops route which has as many links using
cooperative transmission as possible.

Furthermore, in order to investigate the interference impact
on network performance, we propose here to further exploit
delay performance in cooperative networks by implementing
the Multi-User Detection (MUD) scheme [3] under a more
realistic network scenario which allows multi-node transmis-
sions along the same route using space time reuse scheme.
Analytical result shows that the cooperative scheduling em-
ploying overlapped transmission achieves much better delay
performance than that without employing overlapped trans-
mission. In order to obtain more insights on the relation
between the delay and other system performance parameter
(e.g., throughput), we consider here to minimize the end-to-
end delay and maximize the average throughput, respectively.
Through optimizing the block length as well as the channel
reuse factor for sending a fixed size data from the source to
the destination, the trade-off between the delay and network
throughput is also revealed by the developed analytical and
simulation results in the end.

II. SYSTEM MODEL

In this paper, we consider a wireless ad-hoc network where
nodes are assumed to be uniformly distributed. Each node
is equipped with one omnidirectional antenna element. The
Time Division Multiple Access (TDMA) scheme is used to
enable various nodes to share the same frequency band. To
evaluate average performance in the network, we employ a
propagation model to only consider distance dependent path-
loss and additive Gaussian noise [4]. The wireless link between



the nodes i and j is modelled as aij = d
−α/2
ij , where dij is the

distance between the nodes i and j, represents the large-scale
behavior of the channel gain and α is the path-loss exponent.

It is assumed that each node uses a random Gaussian code1

to encode a block of L nats2 information into a time signal
of infinite duration (henceforth codeword) and transmit it.
However, the transmitter will transmit a finite time only until
the receiver successfully decodes the message, thus only a
finite length of codeword will be transmitted. From [2], [5],
[6], since the Gaussian waveform channel can be modelled as
a sequence of complex Gaussian scalar channels, if we use
the output of the first N channels to decode the transmitted
message (i.e., decoding at time N/W , where N is number
of samples used for decoding), the one hop coding bound on
block error probability Pe is

Pe ≤ exp(ρL−N(E0(ρ, SINR)) , (1)

with normalized bandwidth W = 1 for any ρ ∈ [0, 1]. SINR
is the Signal-to-Interference-Plus-Noise ratio at the receiver
and it is also assumed to be the same during the one block
transmission, and E0(ρ, SINR) is the error exponent deter-
mined by ρ and SINR. For a complex Gaussian channel with
unit bandwidth, a simple expression for the error exponent is
derived from [2]

E0(ρ, SINR) = ρ ln
(

1 +
SINR
1 + ρ

)
, (2)

Given a target block error probability Pe that the receiver
can successfully decode the message, the minimum N per hop
is bounded by

Nph ≥ ρL− ln Pe

ρ ln
(
1 + SINR

1+ρ

) . (3)

The lower bound is the minimum coding length for sending
L nats information over that hop when a target reliability
constraint is guaranteed. Given the decoding time is N/W , we
will use this lower bound as the minimum delay to evaluate
the network performance in the rest of paper. It is worth noting
that we only consider the transmission delay for the sake of
simplicity. This is a sensible assumption, we may imagine the
given flow has higher priority over other flows in the network.

III. LINK DELAY USING COOPERATIVE TRANSMISSION

We consider a cooperative link (CL), where a source node
communicates with a destination node with the help of one
relay. In the following, we characterize delay performance of
three low-complexity cooperative protocols that can be utilized
in the network, including amplify-forward, decode-forward
and classic multi-hop [7]. Each of them employs a different
type of processing technique by the relay node, as well as
different type of combining at the destination.

1The Gaussian code encoder separates the incoming binary data stream into
equal length of L binary digits each. There are total M = 2L different binary
sequences of length L and the encoder provides a codeword for each. Each
codeword is a sequence of a fixed number, N , of channel input letters. The
codewords are samples of bandlimited white Gaussian noise.

2In order to simplify notation and analysis, we use information unit nat in
this paper; 1nat = log2 e bit

A. Amplify-Forward

For amplify-forward (AF) transmission, the relay node
amplifies whatever its received subject to its power constraint
and retransmits the signals to the destination. As explained
in detail in [1], the maximum average mutual information
between the source and the destination is given by

IAF =
1
2

log(1 + SINRs,d + f(SINRs,r, SINRr,d)) , (4)

where SINR is defined as received power to noise plus
interference ratio and f(x, y) = xy

x+y+1 .
According to (3), the delay performance of amplify-forward

is derived as

DAF ≥ 2(ρL− ln Pe)

ρ ln
(
1 + SINRs,d+f(SINRs,r,SINRr,d)

1+ρ

) . (5)

Since the relay transmission requires two equal time slots, the
extra factor of 2 is added in the delay.

B. Decode-Forward

As compared with amplify-forward, decode-forward (DF)
allows the relay to decode the signals from the source, re-
encode and retransmit the signals to the destination. Specif-
ically, here we consider the Selection Decode-Forward [1]
transmission. Let ds,d, ds,r and dr,d be the respective distances
among the source, relay and destination. During the first time
slot, the destination receives yd = 1

d
α/2
s,d

xs+nd from the source

node, where xs is the transmitted signal from the source and
nd is white noise. During the second time slot, the destination
node receives

yd =





1

d
α/2
s,d

xs + nd, if R > Is,r

1

d
α/2
r,d

xr + nd, if R ≤ Is,r
(6)

where R = L/(2Nph ln 2) bit/s/unit hertz3 and Is,r =
1
2 log(1 + SINRs,r) can be derived from direct transmission.
As can be seen from the first condition of (6), when the link
between the source and the relay is so poor that the relay is not
able to decode, there is no performance gain can be achieved
and the source is repeating its transmission during this slot.
The second condition corresponds to the case when the relay
can decode and repeat the source transmission. As a result,
the destination receives two independent copies of the same
packets transmitted through different wireless channels, thus
obtaining the second-order diversity gain through CL.

Consider that a relay node is randomly selected, hence the
delay performance of decode-forward transmission is shown
as

DDF ≥





2 ρL−ln Pe

ρ ln
(
1+

2SINRs,d
1+ρ

) , if R > Is,r

2 ρL−ln Pe

ρ ln
(
1+

SINRs,d+SINRr,d
1+ρ

) , if R ≤ Is,r
(7)

3Since we use the information nat as the unit in this paper, the original data
rate R = L

NWτt
in nat/s/unit hertz should be converted to that in bit/s/unit

hertz. The sampling time τt at the decoder equals Nyquist rate W of 1 unit
time per symbol.



C. Classic Multi-Hop

Classic multi-hop (MH) has the source transmitting its
signals to the relay in one time slot, and then the relay
forwarding the signals to the destination in a second time
slot. In order to derive its delay performance, we formulate
an optimization problem to minimize the link delay with a
constrained block error probability Pe as is shown

min Ds,r + Dr,d (8)
s.t. 1− (1− Ps,r)(1− Pr,d) ≤ Pe

Then the delay performance of classic multi-hop can be
derived as

DMH ≥
ρL− ln

(
PeKs,r

Ks,r+Kr,d

)

ρ ln
(
1 + SINRs,r

1+ρ

) +
ρL− ln

(
PeKr,d

Ks,r+Kr,d

)

ρ ln
(
1 + SINRr,d

1+ρ

) . (9)

where Ki,j = 1

ρ ln
(
1+

SINRi,j
1+ρ

) . The development of (9) is

similar to that in the Section IV and can refer to Appendix A.

IV. ROUTE OPTIMIZATION

Based on the system model we defined in the previous
section, now we return to the problem of delay analysis by first
characterizing the minimum end-to-end delay for a multi-hop
route. A meaningful optimization problem is to minimize the
end-to-end delay in cooperative networks that ensures the end-
to-end error performance satisfied the target level (constraint).

Consider that a route has been constructed between the
source and destination. Without losing generality, the nodes
sitting on the route are denoted as S → 1... → n → D.
Different to traditional routes, cooperative transmission is used
to improve the link quality. However, it is possible that a good
helping relay is not available for some pairs of the n+1 links
of the route. In that case, direct transmission (DT) is used
instead of relying on cooperative transmission (CT). Hence
the n + 1 links involved in the route between the source
and destination nodes can be categorized into two sets. The
first set, defined as S1, includes the links using only direct
transmission and the other one, defined as S2, includes all links
using cooperative transmission. Note that |S1|+ |S2| = n + 1
since there are only n + 1 links on the route.

The problem to minimize the end-to-end delay in cooper-
ative networks using amplify-forward with the constraint on
the end-to-end reliability can be formulated as

min
P DT

ij ,P CT
ij

∑

ij∈S1

DDT
ij +

∑

ij∈S2

DCT
ij (10)

s.t. 1−
∏

ij∈S1

(1− PDT
ij )

∏

ij∈S2

(1− PCT
ij ) ≤ P

For small block error probabilities PDT
ij ¿ 1 and PCT

ij ¿
1, we can have the following approximation

1−
∏

ij∈S1

(1−PDT
ij )

∏

ij∈S2

(1−PCT
ij ) ≈

∑

ij∈S1

PDT
ij +

∑

ij∈S2

PCT
ij

(11)

So the optimization problem can be simplified as

min
P DT

ij ,P CT
ij

∑

ij∈S1

DDT
ij +

∑

ij∈S2

DCT
ij (12)

s.t.
∑

ij∈S1

PDT
ij +

∑

ij∈S2

PCT
ij ≤ P

By introducing an auxiliary variable z, (12) can be written
as

min
P DT

ij ,P CT
ij ,z

∑

ij∈S1

DDT
ij +

∑

ij∈S2

DCT
ij (13)

s.t.
∑

ij∈S1

PDT
ij ≤ z,

∑

ij∈S2

PCT
ij ≤ P − z

0 ≤ z ≤ P

Hence the optimization problem can be solved in two stages.
First we treat z as a constant and solve the following two
subproblems separately.

min
P DT

ij

∑
ij∈S1

DDT
ij min

P CT
ij

∑
ij∈S2

DCT
ij

s.t.
∑

ij∈S1
PDT

ij ≤ z, s.t.
∑

ij∈S2
PCT

ij ≤ P − z
(14)

which yields the two solutions

∑

ij∈S1

DDT
ij =

∑

ij∈S1

Kij

(
ρL− ln

(
zKij∑

ij∈S1
Kij

))
(15)

∑

ij∈S2

DCT
ij =

∑

ij∈S2

Cij

(
ρL− ln

(
Cij(P − z)∑

ij∈S2
Cij

))
(16)

where Kij = 1

ρ ln(1+
SINRij
1+ρ )

and Cij =
2

ρ ln
(
1+

SINRi,j+f(SINRi,r,SINRr,j)
1+ρ

) for AF. The development

of (15) and (16) is provided in Appendix A. Note that both∑
ij∈S1

DDT
ij and

∑
ij∈S2

DCT
ij now become functions of the

auxiliary variable z.
The second step is to solve the following optimization

problem

min
z

fz(z) =
∑

ij∈S1
Kij

(
ρL− ln

(
zKij∑

ij∈S1
Kij

))
(17)

+
∑

ij∈S2
Cij

(
ρL− ln

(
Cij(P−z)∑

ij∈S2
Cij

))

s.t. 0 ≤ z ≤ P

Note that fz(z) is a convex function for 0 ≤ z ≤ P since
d2fz(z)

d2z > 0. Hence there is only one minimum value for 0 ≤
z ≤ P when dfz(z)

dz = 0. We can derive the following

dfz(z)
dz

=
∑

ij∈S1

Kij

z
−

∑

ij∈S2

Cij

P − z
, (18)

Then the optimal error probability distribution

z∗ =
P

∑
ij∈S1

Kij∑
ij∈S1

Kij +
∑

ij∈S2
Cij

. (19)



Fig. 1. Multi-hop scheduling (K = 2) with overlapped transmission in a
five-node linear network

Finally putting z∗ into (17), we get the minimum end-to-end
delay. Also from Appendix A, the optimal error probability
distribution for each link can be shown as

PDT
ij =

z∗Kij∑
ij∈S1

Kij
, PCT

ij =
Cij(P − z∗)∑

ij∈S2
Cij

(20)

It is worth noting that above results can also be used in
both decode-forward and multi-hop transmissions only with
a different Cij in each protocol.

V. DELAY ANALYSIS WITH INTERFERENCE SUBTRACTION

In order to further investigate the interference impact on
network performance, we consider a more realistic network
scenario which allows multi-node transmissions along the
same route using space time reuse scheme. To tackle the
interference, the information of the sets of transmitters in each
time slot is needed. In order to simplify the problem and
get more meaningful results, here we use a linear network
topology in which infinite nodes are regularly placed and each
node on the route always has data to send. Therefore, given
any transmission schedule, each node along the route will
experience the same SINR. Specifically, the distance between
adjacent nodes is normalized as 1 and the number of hops
between the source and the destination is H .

We assume all nodes along the route transmit in the same
frequency band and employ a regular TDM-schedule of length
K-hops so that in time slot t, the nodes iK + (t mod K) are
allowed to transmit, for i = ... − 1, 0, 1.... It is still assumed
that the data is transmitted from the source to the destination
via multi-hop transmission without queuing delay.

A. Interference Subtraction

Consider in a four-hop linear network illustrated in Fig. 1, it
is assumed that the source transmits a set of data packets one
by one to the destination in multi-hop manner, we observe
that in time slot T3, node C forwards packet m2, which is
received by node B in T2, to node D. Node B can actually
keep a copy of the transmitted message m2 locally, thus it
knows the message being transmitted by node C in T3 and can
apply MUD with the stored prior information m2 to mitigate
the interference caused by node C, while node A is allowed
to transmit another packet m3 at the same time.

According to the system model assumed at the beginning
of this section, the received SINR at each node is derived as

SINR =
w

N0 +
∑∞

i=1(iK + 1)−αw +
∑∞

i=1(iK − 1)−αw
,

(21)
where K is the channel reuse factor and w is the transmission
power. After we implement the overlapped transmission, the
received SINR can be improved as

SINR′ =
w

N0 +
∑∞

i=1(iK + 1)−αw
. (22)

In the case of Fig. 1, we can derive that SINR′(K =
2) = SINR(K = 4), which means that employing MUD [3]
in wireless networks can help increase spatial reuse without
losing system performance (e.g., delay). Motivated by the fact
that prior information available at the receiver can be utilized
to achieve perfect interference subtraction by using MUD
scheme and therefore invite more simultaneous transmissions
along a multi-hop routing, we propose here to further exploit
delay performance in cooperative networks by employing
MUD scheme.

Theorem 1: For a regular linear network scenario, the
performance gain g, which is defined as the ratio of delay per-
formance under multi-hop scheduling employing overlapped
transmission and that without employing overlapped transmis-
sion, is bounded by

A

D
< g <

B

C
< 1 .

where A = ln
(
1 + Kα(K−1)α

(1+ρ)(Kα+(K−1)α)zeta[α]

)
, B =

ln
(
1 + Kα(K+1)α

(1+ρ)(Kα+(K+1)α)zeta[α]

)
, C = ln

(
1 + Kα

(1+ρ)zeta[α]

)
,

D = ln
(
1 + (K+1)α

(1+ρ)zeta[α]

)
, C 6= 0, D 6= 0, K is the channel

reuse factor, α is the path loss exponent, zeta[2] = π2

6 ,
zeta[3] = 1.202 and zeta[4] = π4

90 .
Proof : See Appendix B.
In general, theorem 1 tells us the multi-hop scheduling

employing overlapped transmission can achieve much better
delay performance than that without employing overlapped
transmission. For example, for the case where reuse factor
K = 3 and path loss exponent α = 3, the upper bound
performance of gap ratio g is 0.41, which means up to
58.67% transmission time can be saved when using overlapped
transmission.

B. End-to-end Delay Analysis
We assume that L nats of data are transmitted in m equal

size packets through a multi-hop route using space time reuse
scheme. Without considering the additional overheads in each
packet, the end-to-end (ETE) delay in channel reuse is

DETE = (H + (m− 1)K)Dph , (23)

where H is total number of hops between the source and the
destination and Dph is the delay per hop. Here, by using the
results in Section IV, the optimal end-to-end delay of different
cooperative protocols with a constrained end-to-end reliability
P are the followings:
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Fig. 2. End-to-end delay performance when using overlapped transmission

1) For amplify-forward: the end-to-end delay is derived as

DAF
ETE ≥ (H + (m− 1)K)(ρ L

m − ln ( 2P
mH ))

ρ ln
(
1 + SINRs,d+f(SINRs,r,SINRr,d)

1+ρ

) . (24)

where SINRs,d = w2−α

N0+
∑∞

i=1(iK+2)−αw and SINRs,r =
SINRr,d = w

N0+
∑∞

i=1(iK+1)−αw .
2) For decode-forward: the end-to-end delay is

DDF
ETE ≥





(H+(m−1)K)(ρ L
m−ln ( 2P

mH ))

ρ ln
(
1+

2SINRs,d
1+ρ

) , if R > I

(H+(m−1)K)(ρ L
m−ln ( 2P

mH ))

ρ ln
(
1+

SINRs,d+SINRr,d
1+ρ

) , if R ≤ I
(25)

where R = L/(2mNph ln 2) bit/s/unit hertz and the channel
capacity I = 1

2 log(1 + SINRs,r).
3) For multi-hop: the end-to-end delay is

DMH
ETE ≥ (H + (m− 1)K)(ρ L

m − ln ( P
mH ))

ρ ln
(
1 + SINRs,r

1+ρ

) . (26)

where SINRs,r = w
N0+

∑∞
i=1(iK+1)−αw . It is worth noting that

the cooperative protocols are applicable when channel reuse
factor K > 2, since each cooperative transmission requires
two receivers along the route. When K ≤ 2, only multi-hop
transmission is applicable.

The end-to-end delay performance of different cooperative
protocols is shown in Fig. 2 as a function of channel reuse
factor. It is assumed that total size of 4× 104 nats of data are
transmitted via a 6 hops route, the transmission power to noise
ratio γ = 10dB, path loss exponent is set as α = 3, ρ = 0.9
and the prefixed end-to-end reliability is P = 0.001. It is of
interesting to observe that choosing a larger block number m
leads to a better end-to-end delay performance. In other words,
the original data divided in smaller block size is preferable to
minimize delay. In addition, as the reuse factor increases, the
whole transmission will experience a longer delay. There are
two reasons that can explain this. First, according to (26), when
L is large, the numerator can be simplified as ρ(KL(m−1

m ) +
HL
m ), in which K will increase with a higher order than that
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Fig. 3. Average throughput performance when using overlapped transmission

in the denominator. Second, since we are interested in low
SNR cases, which means the interference will not domain the
performance even when the reuse factor is small. Furthermore,
when reuse factor approaches its maximum (K = H), the end-
to-end delay will not be affected by the block number m as
it corresponds to the interference free scenario.

C. Throughput Analysis

In order to find more insights on the relation between
the delay and any other system performance parameter (e.g.,
throughput), we are interested in addressing another relevant
problem of maximizing the end-to-end throughput under the
same network scenario. The average throughput can be ex-
pressed as

R =
L

mKNph
. (27)

where Nph equals Dph is the coding length per hop. Under the
same system setup, it is clear in Fig. 3 that the original data
divided in larger block size can help achieve larger throughput.
To gain some insights, we consider the optimal m and K in
low SNR region, for example, using amplify-forward, it yields

R ≤
L
m

L
m − 1

ρ ln ( 2P
mH )

︸ ︷︷ ︸
S1

ln
(
1 + SINRs,d+f(SINRs,r,SINRr,d)

1+ρ

)

K︸ ︷︷ ︸
S2

.

(28)
The upper bound performance of throughput is divided into S1

and S2, respectively. In order to achieve the maximum value
in (28), both S1 and S2 should be maximized. It is easy to
verify that S1 is maximized when m is as small as possible.
In S2, since the numerator closes to 0 when SNR remains at
a low level, the optimal K at the denominator should be the
smallest as well.

A careful reader might notice that in fact there is a trade-off
between the end-to-end delay and the network throughput. As
block size of the original data decreases, the end-to-end delay
is reduced correspondingly. However, the network throughput
is adversely affected by small block size. Meanwhile, the



channel reuse factor also plays an important role in system
performance. Based on the power level that system selects,
the optimal K would be varied by other system parameters.

VI. CONCLUSION

In this paper, we have investigated the transmission delay
in terms of finite coding length derived from the random
coding bound for different cooperative protocols. Moreover,
by considering the interference impact on system performance,
we have investigated performance gain on transmission delay
for wireless cooperative networks by using overlapped trans-
mission. Both analytical and numerical results are developed to
show the significant improvement on the system performance
by using cooperative transmission with overlapping as well
as the trade-off between the end-to-end delay and network
throughput.

APPENDIX

A. Proof for (15) and (16)
Define xn = PDT

ij and Kn = 1

ρ ln(1+
SINRn

ij
1+ρ )

, where n ∈
[1, · · · , |S1|]. The first optimization problem in (14) can be
written as

min
∑|S1|

n=1 Kn(ρL− ln xn), s.t.
∑|S1|

n=1 xn ≤ z. (29)

According to the Kuhn-Tucker condition, the inequality
constraints can be converted to the equality constrains, and
the optimal solution of xn can be found from [8]

−K|S1|
x|S1|

+ λ = 0, λ



|S1|∑
n=1

xn − z


 = 0 (30)

Hence the Lagrange multiple and the optimal solutions of xn

should be

λ =
1
z

|S1|∑
n=1

Kn, xn =
zKn∑|S1|
n=1 Kn

(31)

Hence the total delay consumed by the links in the set, S1,
will be

∑

ij∈S1

DDT
ij =

|S1|∑
n=1

Kn(ρL− ln xn) (32)

=
∑

ij∈S1

Kij

(
ρL− ln

(
zKij∑

ij∈S1
Kij

))

where the solution in (15) is obtained. Using the similar
method, we can solve the second optimization problem. ¥
B. Proof for Theorem 1

Consider the network scenario that multi-node transmissions
are enabled along the same route using space time reuse
scheme. The minimum delay per hop using non-overlapped
transmission is

Dno =
ρL− ln Pph

ρ ln
(
1 + w

(1+ρ)(N0+
∑∞

i=1(iK+1)−αw+
∑∞

i=1(iK−1)−αw)

)

(33)

and the minimum delay per hop using overlapped transmission
is

Do =
ρL− ln Pph

ρ ln
(
1 + w

(1+ρ)(N0+
∑∞

i=1(iK+1)−αw)

) , (34)

Assuming the system is in interference limited region, in which
white noise power N0 ¿ w, the delay performance gain is

g =
D1

D2
=

ln
(
1 + 1

(1+ρ)(
∑∞

i=1(iK+1)−α+
∑∞

i=1(iK−1)−α)

)

ln
(
1 + 1

(1+ρ)(
∑∞

i=1(iK+1)−α)

)

(35)
1) D1: ⇒ ln(1+ 1

(1+ρ)(

∞∑

i=1

(iK + 1)−α

︸ ︷︷ ︸
β1

+

∞∑

i=1

(iK − 1)−α

︸ ︷︷ ︸
β2

)

)

Then we have the following bounds

(1 + K)−α
∞∑

i=1

i−α < β1 < K−α
∞∑

i=1

i−α (36)

Since
∑∞

i=1 i−α is converged when α > 1, we can directly
get the result from zeta function [9]. Therefore, β1 is bounded
by two finite boundaries.

We can derive the similar result for β2, which is

K−αzeta[α] < β2 < (K − 1)−αzeta[α] (37)

2) D2: ⇒ ln(1 + 1

(1+ρ)(

∞∑

i=1

(iK + 1)−α

︸ ︷︷ ︸
β3

)

)

We can derive the following

0 < (1 + K)−αzeta[α] < β3 < K−αzeta[α] (38)

Hence the bound performance of D2 is

ln
(

1 +
Kα

(1 + ρ)zeta[α]

)
< D2 < ln

(
1 +

(K + 1)α

(1 + ρ)zeta[α]

)

Finally, the bound performance of D1
D2

can be directly
derived from above. ¥
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