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ABSTRACT

This paper develops an algorithm on finding sparse signals

from limited observations of a linear system. We assume an

adaptive Gaussian model for sparse signals. This model re-

sults in a least square problem with an iteratively reweighted

L2 penalty that approximates the L0-norm. We propose a

fast algorithm to solve the problem within a continuation

framework. In our examples, we show that the correct spar-

sity map and sparsity level are gradually learnt during the

iterations even when the number of observations is reduced,

or when observation noise is present. In addition, with the

help of sophisticated interscale signal models, the algorithm

is able to recover signal to a better accuracy with reduced

number of observations.

1. INTRODUCTION

Sparsity has been widely used as a constraint when search-

ing for feasible solutions of ill-conditioned inverse prob-

lems and underdetermined systems of linear equations.

These are known to be problems of great practical interest.

Recovering the sparsest signal x from limited observa-

tions y can be expressed as

min ‖x‖0 subject to ‖y − Φx‖2 ≤ ξ (1)

where Φ is known and of size M × N , ‖x‖0 denotes the

number of non-zero elements of x and ξ quantifies the up-
per bound of measurement noise. However, this optimiza-

tion problem is non-convex and the only known searching

method for the exact solution is an intractable combinatorial

search, which is well known to be NP-hard. Instead, people

use relaxed measures for ‖x‖0 to bring in efficient numeri-

cal methods with guaranteed performance. A popular such

relaxed measure for sparseness is the L1 norm. L1 mini-

mization produces a convex minimization problem, but its

disadvantage is poor computation speed for large problems.

The L1 penalty problem is often solved by linear program-

ming, and one popular method is the interior point method,

whose best currently attained complexity is O(M2N1.5)
[1]. An alternative approach to L1 minimization is the use

of greedy algorithms. Greedy algorithms can improve the

computation speed, but most approaches (e.g. OMP [2],

ROMP and CoSaMP [1]) require accurate knowledge of the

signal’s sparsity level, or are too complicated to implement

well [1].

The geometry of the Lp (0 < p < 1 )ball gives better ap-
proximations for sparsity. Candès et al [3] propose the itera-

tive reweighted L1 (IRL1) minimization which outperforms

the L1 minimization in the sense that substantially fewer

measurements are needed for exact recovery. Gorodnitsky

and Rao [4] propose FOCUSS, as an iteratively reweighted

least square (IRLS) minimization for finding sparse solu-

tions. At each iteration, FOCUSS solves the weighted L2

minimization with weights 1
xj

subject to y = Φx. As the

iteration proceed, the zero coefficients are identified and re-

moved from subsequent iterations, and then enforced to be

zero. Chartrand and Yin [5] introduce a regularizer ǫ into
the weights 1

xj+ǫ to avoid the artificial zero enforcement,

which improves the performance of FOCUSS to be compet-

itive with IRL1 [3]. In the same paper, they also show with

numerical experiments that IRLS minimization can enhance

the range of sparsity for which a given number of measure-

mentM can possibly lead to the perfect reconstruction. For

the case of random Gaussian measurements, Candès and

Tao [6] show that the dependence of the sufficient number of

measurementsM on the signal size N decreases as p→ 0.

Daubechies et al [7] study the convergence of IRLS and

prove local super-linear convergence when the IRLS is tai-

lored to mimic Lp minimization with 0 < p ≤ 1. Improved

numerical results are also shown to justify going to lower p.

In parallel, Baraniuk et al proposed model-based com-

pressed sensing (CS), which exploits signal structure to re-

duce the freedom of a sparse / compressible signal. Hence

it further reduces the number of measurementsM required

for stable recovery of the signal, and it can reduce recov-

ery artefacts which are not part of the model [8]; but it does

require clear structural constraints to be defined.

In this paper, we develop ideas from [4, 5, 7] and pro-

pose a fast L0-mimicking reweighted L2-norm minimiza-

tion algorithm, which is equivalent to Bayesian MAP es-

timation with an adaptive Gaussian prior. This algorithm



requires almost no parameter tuning and is simple to imple-

ment. In addition, the Gaussian model is flexible enough

to contain typical signal structure models, which help to re-

duce the number of observations. One example test on the

integration of such a signal model is presented on the Heav-

isine signal. We also exploit the geometry implications of

having regularizer ǫ in the weights, and the resulting ge-

ometry structure leads to a continuation strategy for finding

optimal sparse solutions in Section 3.

2. L0 reweighted-L2 minimization

2.1. Basic model

Consider the noisy system

y = Φx + n (2)

where we assume Φ is known, n is Gaussian noise with

zero mean and variance ν2, and the prior of x is an adaptive

Gaussian model such that p(x) ∝
√

|S| exp(− 1
2x

T Sx),
where S is a diagonal matrix, whose jth diagonal entry

Sj = 1/σ2
j .

We further assume an independent prior exp(−ǫ2/σ2
j ) for

each σj . Then we obtain the log MAP function:

J(x,S) = ν2



xT Sx − ln |S| + ǫ2
∑

j

Sj



+ ‖y−Φx‖2

(3)

This results in the following iteration rules:

x = arg min
x

J(x,S) = (ΦT Φ + ν2S)−1ΦT y

σ2
j = arg min

σ2

j

J(x,S) = |xj |
2 + ǫ2

Sj =
1

σ2
j

=
1

|xj |2 + ǫ2
∀ j
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(4)

Because limσ2→0 exp(−ǫ2/σ2) = 0, prior exp(−ǫ2/σ2
j )

actually prevents σ2 getting too small to avoid numerically

instability. Meanwhile, exp(−ǫ2/σ2) → 1 rapidly with in-

creasing σ2. Therefore, this prior can be regarded as an ap-

proximation to the lower bounded uniform priorU(ǫ2,+∞)
and ǫ2 may be regarded as a stabilizer to avoid infinity at

this point to keep the argument simple, although we show

in section 3 that ǫ2 has a more fundamental meaning.

The iteration rule eq(4) is effectively reweighted least

squares minimization, which promotes sparsity by mimick-

ing the L0 norm. It can be viewed as a relaxation of the

IRLS studied by Chartran and Yin [5] and Daubechies et al

[7], whose iteration rule is

x = S− 1

2 (ΦS− 1

2 )†y, Sj =
1

|xj |2 + ǫ2
∀ j (5)

where † denotes the pseudo inverse. This is because

S− 1

2 (ΦS− 1

2 )† = S− 1

2 lim
ν2→0

(S− 1

2 ΦT ΦS− 1

2 + ν2I)−1S− 1

2 ΦT

= lim
ν2→0

(ΦT Φ + ν2S)−1ΦT

if S is diagonal and Φ has full rank, which is typical in com-

pressive sensing [7].

2.2. Fast algorithm: L0RL2

The iteration rule eq(4) requires the inversion of matrix (ΦT

Φ + ν2S) with dimensions N × N , which is compu-

tationally demanding in the context of an iterative algo-

rithm, particularly if N is large such as for an image or

3-D dataset. In this section, we develop a fast algorithm

for eq(4), which we call L0 reweighted-L2 minimization

and denote as L0RL2 . This involves the application of

a majorization-minimization (MM) technique [9], together

with recent subband-adaptive MM, proposed by Vonesch

and Unser in [10] and further generalized in [11, 12].

We apply theMM principle to cut down the computation

complexity of eq(4); and hence we introduce

J̄(x,S, z) = J(x,S)+α(x−z)T (x−z)−‖Φ(x−z)‖2 (6)

where α must be no less than the radius of ΦT Φ to ensure

J̄(x,S, z) ≥ J(x,S) ∀ z,x. By setting ∂J̄
∂x

= 0, ∂J̄
∂z

= 0

and ∂J̄
∂σ2

j

= 0, we have the following iteration rules:

xn+1 =(αI + ν2Sn)−1
[

(αI − ΦT Φ)zn + ΦT y
]

zn+1 =arg min
z

J̄(xn+1,Sn, z) = xn+1

Sn+1 =diag(

[

1

|xj,n+1|2 + ǫ2

]

j=1,··· ,N

)


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(7)

The above rules are simple and have complexity of only

O(MN), or much less if Φ has a fast implementation. If

ψ =
(

αI + ν2S
)−1

(αI − ΦT Φ), it can be shown that the

convergence rate (in a fixed-point sense) of J̄(x,S, z) to

J(x,S) is fast if the eigenvalues of ψ is close to zero.

By using a subspace/subband-dependent MM algo-

rithm, Vonesch and Unser [10] developed the Shannon-

wavelet-based subband adaptive shrinkage algorithm,

which accelerates the convergence of L0RL2 ’s analogue,

the L1-based iterative shrinkage/thresholding algorithm

(ISTA). This work is generalized in [12] for the dual-

tree complex wavelet frame and in [11] for arbitrary tight

wavelet frames. We follow the notation in [11] and intro-

duce the vector α = [α1 . . . αK ] and the diagonal operator

Λα that multiplies the kth subspace / subband by αk:

(Λαx)k = αkxk for k = 1 · · ·K

where xk is a masked version of x with non-zeros only in

the subspace / subband k. Now we have the new auxiliary

function



Jα(x,S, z) = J(x,S)+(x−z)T Λα(x−z)−‖Φ(x−z)‖2

(8)
where αk may be optimized independently for each sub-

space / subband to be the minimum such that

αkx
T
k xk ≥ ‖Φxk‖

2 for any k and x.

This is equivalent to requiring that Λα − ΦT Φ is positive

semi-definite1. Minimizing Jα(x,S, z) in eq(8) then results
in the following iteration rules:

xn+1 = (Λα + ν2Sn)−1
[

(Λα − ΦT Φ)zn + ΦT y
]

zn+1 = arg min
z

Jα(xn+1,Sn, z) = xn+1

}

(9a)

Sn+1 = diag(

[

1

|xj,n+1|2 + ǫ2

]

j=1,··· ,N

) (9b)

We call this the L0RL2 algorithm.

Remark 1. If desired, S can be updated in eq(9b) only after

several iterations of eq(9a), which makes the rules of eq(9)

approximate the rules of eq(4) better while still monotoni-

cally reducing the cost function Jα in eq(8).

3. CONTINUATION STRATEGY

Our algorithm solves the minimization of J(x,S) in eq(3),

which involves parameters ν and ǫ. To obtain a good sparse
solution, ν must be chosen to be neither too small to impose

sparsity nor too big to fit the solution to the observations

after a reasonable number of iterations. For example, when

ν → 0, the algorithm converges so slowly that it often stops

at a non-sparse solution under some numerically conver-

gent criteria, whereas when ν → ∞, the solution becomes

zero. Meanwhile, ǫ, as stabilizer, should be small enough to

avoid artefacts. In fact, ǫ has a more fundamental meaning:

it decides the geometry of the penalty function. Theoret-

ical analysis shows ǫ and ν should be related in order to

achieve convergence to a good solution. Therefore, we fit

the algorithm to the continuation framework described be-

low, which automatically selects proper values for ν and ǫ
so as to achieve this.

3.1. Geometry of the penalty function

Substituting into eq(8) with eq(9b) and eq(3), and z = x,

and introducing −N ln ǫ2 into eq(8), it gives

F (xn) = ν2



N +

N
∑

j=1

ln
x2

j,n + ǫ2

ǫ2



+‖y−Φxn‖
2
2 (10)

Then the iteration rules of eq(9) result in:

F (xn+1) ≤ Jα(xn+1, zn+1,Sn) −N ln ǫ2 ≤ F (xn)

1In fact,convergence is also guaranteed, if 2Λα −ΦT Φ is positive def-

inite. Combettes and Wajs prove this result in [13].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
e

n
a

lt
y

 

 

−ε ε

L1

f
ln, ε

f
ln, ε

L1

Thresholded L0

(a) Comparison with L1 norm

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε
2
 = 0.0001

ε
2
 = 0.001

ε
2
 = 0.01

ε
2
 = 0.1

ε
2
 = 1

← ε
2
 = 10

← L2 ball

(b) Unit Ball

Fig. 1. Geometry of penalty function Pǫ(x), eq(11).

Hence F (x) is effectively the underlying cost function that

the algorithm is minimizing. Thus the penalty function

which the algorithm uses to promote sparsity is:

Pǫ(x) =

N
∑

j=1

ln
x2

j + ǫ2

ǫ2
(11)

The geometry of the log-sum penalty function F (x)
lends itself well to detecting sparsity. In Figure 1(a) we

plot fln,ǫ = C ln x2+ǫ2

ǫ2 , ‖x‖1, and thresholded ‖x‖0; where

ǫ = 0.1, C = 1
ln(1+1/ǫ2) is a scalar such that fln,ǫ(1) = 1,

and the threshold is 0.05 where fln,ǫ(x) and ‖x‖1 first in-

tersect. Figure 1(a) shows that the log function imitates the

thresholded L0 norm better than the L1 norm. Not only

does it penalize much less on large coefficients than the L1

norm, it also penalizes more heavily in the region [0.05, 1].
In fact, as ǫ decreases towards 0, the log function fln,ǫ(x)
approximates the true L0 norm.

Figure 1(b) shows the interesting effect of ǫ on the ge-

ometry of Pǫ(x). When ǫ is small, the geometry of Pǫ(x)
approximates that of the L0 norm; when ǫ becomes larger,

the geometry of Pǫ(x) approaches the L2 ball. Daubechies

et al have shown experimentally that with weights that grad-

ually move the penalty from the L1 norm to the L0 norm,

IRLS achieves a higher success rate in exact sparse signal

recovery (see figure 8.4 of [7]). This finding inspires the

idea of reducing ǫ gradually.

3.2. Conditions for convergence

We assume x∗ is the equilibrium solution for a given ǫ and
ν, therefore from eq(9):

(Λα + ν2S∗)x∗ = (Λα − ΦT Φ)x∗ + ΦT y (12)

S∗
jj = S∗

j =
1

|x∗j |
2 + ǫ2n

, j = 1...N (13)

Let the errors from x∗ at iteration n+ 1 be ηn+1 = xn+1 −
x∗, ηn = xn − x∗. For convergence we require ‖ηn+1‖ ≤
‖ηn‖. By the iteration rules in eq(9), we have

(Λα +ν2Sn)(ηn+1 +x∗) = (Λα−ΦT Φ)(ηn +x∗)+ΦT y.

Substituting eq(12) into this gives

ηn+1 =
(

Λα + ν2Sn

)−1 (

(Λα − ΦT Φ)ηn + ν2(S∗ − Sn)x∗
)

(14)



We denote the jth element of vector ηn as ηj,n. As long as

we make sure that

|ηj,n+1| ≤ |ηj,n| (15)

then ‖ηn+1‖ < ‖ηn‖ always holds. Assuming Λα is prop-

erly set such that the eigenvalues of
(

Λα − ΦT Φ
)

are close

to zero2, by substituting eq(13) into eq(15), we require

|ηj,n+1|

|ηj,n|
≈

∣

∣

∣

∣

∣

(Λα + ν2Sn)−1
jj

ν2(|x∗j | + |xj,n|)x
∗
j

(|x∗j |
2 + ǫ2)(|xj,n|2 + ǫ2)

∣

∣

∣

∣

∣

≤ 1

(16)

Hence, after some algebra:

ν2(Λα)−1
jj ≤

|x∗j |
2|xj,n|

2 + ǫ2(|x∗j |
2 + |xj,n|

2) + ǫ4

|x∗j ||xj,n| − ǫ2

(17)

for any j which satisfies |x∗j ||xj,n| > ǫ2. Because the RHS

of the above inequality is always larger than 8ǫ2 (maximum

when the derivative of the RHS equals zero), we set

ν2 = 8ǫ2 min(α) (18)

Remark 2. eq(18) is not sufficient to ensure ‖ηn+1‖ ≤ ‖ηn‖
when

(

Λα − ΦT Φ
)

is not sufficiently close to zero. How-

ever, we find in practice that eq(18) is usually adequate for

convergence, because |ηj,n+1| ≤ |ηj,n| holds for most j,
which dominates in the relationship of ‖ηn+1‖ to ‖ηn‖.

3.3. L0RL2 continuation

The continuation strategy is inspired by homotopy tech-

niques in L1-sparse representations [14]. Malioutov et al

[15] considered the solution path for

arg min
x

λ‖x‖1 + ‖Φx − y‖2
2. (19)

This algorithm terminates when it produces a desired num-

ber of non-zero components in the reconstructed x̂. Hale

et al [14] introduce a fixed-point algorithm which approxi-

mately follows the solution path of eq(19) for values of 0 <
λ < ‖Φy‖∞, and hence the sparse solution may be found

by solving a sequence of L1-norm penalized problems. It

is also reported that it is faster to solve the above L1-norm

penalized least square problem when λ is large. This obser-

vation greatly motivates the exploration of the convergence

effect of different ǫ (because ν2 = 8min(α)ǫ2, it is equiv-
alently the effect of ν.). In a series of experiments, we find

larger ǫ gives faster convergence, but small ǫ results in bet-

ter recovery. By reducing ǫ from a large value, we hope

2This can often be achieved in compressed sensing applications where

the sampling matrix is commonly a submatrix of a unitary transformation

to allow a fast algorithm for matrix-vector products, e.g. a submatrix of the

DCT or Fourier transform. Such matrices give an approximately diagonal

ΦT Φ.

to accelerate the convergence speed. In fact, the idea of

using continuation to speed up the convergence has been

shown to be very successful when dealing with large-scale

problems[16].

Our strategy for continuation is simple. Let rL(x) de-

note the Lth largest amplitude element of vector x and

Lmax, the maximum number of nonzeros. Set initial ǫ =
‖ΦT y‖∞, and then reduce ǫ gradually. We summarise the

key steps of the L0RL2 continuation algorithm as follows:

1. estimate xn+1 using eq(9a)

2. update ǫ and ν:
L = min(L+ 1, Lmax)
ǫ = min(2rL(xn+1), ǫ); ν2 = 8ǫ2 min(α)

3. update S according to eq(9b)

However, we know of no formal proof of global conver-

gence for nonconvex problem.

4. COMPRESSIVE SENSING RESULTS

We have chosen two experiments to demonstrate the per-

formance of the L0RL2 algorithm for compressed sensing

scenarios.

4.1. 1-D random signal

We have tested the algorithm on a similar example to

Daubechies et al in [7]. The sparse input signal has 1500 el-

ements, among which there are 45 non-zeros. The position

of the nonzeros are picked randomly and the amplitudes are

generated from a normal distribution with mean 0 and stan-

dard deviation (s.dev) 1. The sampling matrix Φ is of size

250 × 1500, with Gaussian N (0, 1) i.i.d. entries. We also

added Gaussian noise with s.dev 0.05 to the observations.

The evolution of x versus iteration number is shown in

Figure 2. We use purple to trace the elements of x that

should be non-zero, and black to trace the zeros. The blue

line depicts ǫ. The true values of the non-zero elements are

shown by red circles at the ends of the purple tracks. It

shows that L0RL2 gradually picks the non-zero elements of

x as ǫ decreases, and all the non-zeros are well separated

from the zeros, after ǫ drops below the smallest non-zero.

In these experiments, we found the algorithm is not sensi-

tive to Lmax, the nominal sparsity value. The algorithm still

gets perfect recovery when Lmax is set to several times the

nominal value of 45. The results in Figure 2 are obtained

with Lmax = 80. In the example with noisy observations,

ν converges to 0.0576, whereas the true s.dev of the added

noise is 0.05.

Since the problem is small, IRL1 also perfectly recover the

signal in 1.230 seconds while L0RL2 only takes 0.165 sec-

onds. IRLS [7] takes 32.50 seconds to reach the same level

of accuracy.



(a) Noise Free

(b) Noise s.dev = 0.05, SNR ≈ 42dB

Fig. 2. Plots showing how L0RL2 gradually selects the non-zero

components of x as ǫ is reduced. Horizontal axes are iteration

numbers and vertical axes are amplitudes of x. It should be noted

that the limiting value ǫ is about 10−3, ν =
√

8αǫ, where
√

8α ≈
59, where α is proportional to the largest eigenvalue of ΦT Φ.

4.2. 1-D Heavisine signal

The original Heavisine signal is shown in Figure 3(a). It is

a piecewise-smooth signal with length N = 1024, and we

have chosen onlyM = 80 random Gaussian measurements

of it to be available for its recovery, as in [8]. For com-

parison, the L1 and iterative reweighted L1 (IRL1) mini-

mizations are performed by the Sparco [17] and SPGL1 [18]

toolboxes.

We chose the dual-tree complex wavelet transform

(DT CWT) [19] as the sparse basis for implementing this

experiment, because it has good shift invariant and sparsity-

inducing properties. We also observed improved results

for L1 and IRL1 minimization with DT CWT. The ini-

tial guess to start L0RL2 and IRL1 is the zero vector with

unit weights. Results of IRL1 and L0RL2 are shown in Fig-

ure 3. The recovery quality is quantitatively measured by

RMSE = ‖x − s‖2/‖s‖2, where x is the final estimation

and s is the true input signal. α is set in the same way as in

example 4.1. Specifically, α = 3.8.
The sparse representation of natural signals on a wavelet ba-

sis is often well structured and utilizing such information

0

(a) original signal

0

(b) L1-optimization

0

(c) IRL1, RMSE = 0.042

0

(d) L0RL2 , RMSE = 0.026

Fig. 3. Example performance on the Heavisine signal with

80 measurements. To obtain the above results, L0RL2 updates

weights for 50 times (updates every 2 iterations) and its compu-

tation time is about 14.5s, while IRL1 updates weights for 4 times

and its computation time is 894.8s.

in signal reconstruction often results in improved perfor-

mance in the sense that fewer samples are needed for per-

fect recovery as reported in [8]. Because the signal is rep-

resented on the DT CWT frame, which will benefits from

a strong parent-child model, we integrates a parent-child

bivariate prior into the algorithm of eq(9), as described in

[20]. For a wavelet coefficient xj , we denote its parent

as xp(j). In the implementation, we assume the latest esti-

mates, |xj | and |xp(j)|, are the noisy observations of σj and

σp(j). This gives a simple inter-scale denoising scheme, bi-

variate shrinkage for estimating the σj at each scale, from

coarse to fine in turn. Implementation details are available

in [20]. We denote this bivariate-shrinkage aided L0RL2 as

Bi-L0RL2 in Table 1.

To demonstrate the effect on recovery quality, we ran Bi-

L0RL2 , L0RL2 , IRL1 and L1 minimization on 20 random

implementations of Φ. We also reduced the number of ob-

servation from 80 to 60 and 50. The recovery quality is

quantified by RMSE in Table 1. To obtained the results in

Table 1, IRL1 needs to update weights for 4 times, the aver-

age computation time is around 840 seconds for each imple-

mentation. L0RL2 runs 100 iterations and updates weights

every two iteration, and each implementation takes about 14

seconds; Bi-L0RL2 also runs 100 iteration and each imple-

mentation takes around 23 seconds.

5. CONCLUSION AND DISCUSSION

We propose a reweighted L2 norm algorithm within a con-

tinuation framework for fast sparse signal recovery. It relies

only on one preset parameter, the sparsity level Lmax, and



Table 1. Recovery error of different algorithms,
‖x−s‖2

‖s‖2

.

Obs. No. 80 60 50

mean std mean std mean std

L1 0.194 0.049 0.291 0.102 0.464 0.167

IRL1 0.042 0.007 0.061 0.010 0.178 0.157

L0RL2 0.037 0.009 0.058 0.011 0.082 0.047

Bi-L0RL2 0.037 0.006 0.053 0.010 0.073 0.013

a loose estimate of Lmax is enough to achieve good results.

We observe two learning behaviours of the algorithm: 1) the

sparsity map is automatically recovered without any prior

knowledge; 2) the noise level is automatically estimated.

We observe that no prior information about the noise vari-

ance is needed and ν automatically converges to the true

noise level.

The algorithm is suitable for large-scale problems, be-

cause it only requires matrix-vector multiplications and

element-wise operations in each iteration. It also allows the

integration of prior knowledge of signal structure, which re-

duces the number of observation needed for perfect recon-

struction. In our experiments, a bivariate parent-child prior

is used in the wavelet domain, and improved stability of re-

covery error is observed (see Table 1).

On the other hand, the basic model we discussed in Sec-

tion 2.1 uses parameters σj to controls the sparsity of x,

for small σj will drive the weights Sj so large that small

xj will be actually pruned out. This model finds itself very

similar with the hierarchical (sparse) Bayesian modelling.

An important tool for solving similar hierarchical Bayesian

modelling is the relevance vector machine [21]. It is possi-

ble to solve our problem with the relevance vector machine.

Future work on this aspect is warranted.
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