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ABSTRACT

Image convolution is conventionally approximated by
the LTI discrete model. It is well recognized that the higher
the sampling rate, the better is the approximation. However
sometimes images or 3D data are only available at a lower
sampling rate due to physical constraints of the imaging sys-
tem. In this paper, we model the under-sampled observation
as the result of combining convolution and subsampling. Be-
cause the wavelet coefficients of piecewise smooth images
tend to be sparse and well modelled by tree-like structures,
we propose the L0 reweighted-L2 minimization (L0RL2 )
algorithm to solve this problem. This promotes sparsity by
minimizing the reweighted L2 norm, which approximates the
L0 norm, and by enforcing a tree model through bivariate
shrinkage. We test the algorithm on 3 examples: a simple
ring, the cameraman image and a 3D microscope dataset; and
show that good results can be obtained.

Index Terms— Image restoration, deconvolution, spar-
sity, L0 norms, regularization.

1. INTRODUCTION

Usually convolution is assumed to be a continuous linear
shift-invariant system 𝑦 = ℎ⊗ 𝑥+ 𝑛, which is often approx-
imated by the discrete vector model

y = Hx+ n.

It is well recognized that higher sampling rates lead to better
approximations. However, sometimes only a relatively low
sampling rate can be achieved due to physical constraints in
the system hardware or to measurement time constraints.

In some situations the point-spread function (psf) H at a
higher sampling rate is available, although y at the same sam-
pling rate is not. For example the psf H of a 3D microscope
can be calculated or well calibrated although the image data
must be sampled at a lower rate due to physical / temporal
constraints. (Often the under-sampling is most pronounced in
the inter-slice or 𝑧 direction.) Hence, a question arises: can
we recover the ideal sampled x from the under-sampled y,
using the known psf at a higher sampling rate?

Assume y = Hx + n is the discrete model obtained
by ideal sampling, and the observation is only available at
a lower sampling rate, which we model as:

D(y) = D(Hx) +D(n)

where D is a matrix that represents the subsampling opera-
tion. For simplicity, we denote the undersampled observa-
tions and noise as ȳ = D(y) and n̄ = D(n) to give:

ȳ = D(Hx) + n̄ (1)

Then the problem can be expressed as recovery of the higher-
sampled x from ȳ, with known PSF H and subsampling op-
eration D according to eq(1).

2. SPARSE PENALTY IN THE WAVELET DOMAIN

Wavelet decompositions provide insight about image struc-
ture and scale. They decompose signals or images into dif-
ferent scales, where the scales produce a pyramid structure.
Moreover, the coefficients show strong persistence across
scales; i.e. large parent coefficients tend to have large child
coefficients while small parents tend to have small children.
This connection between parents and children is well known
as the tree structure of wavelet transforms, and it has been
much exploited for image modeling and denoising [2, 3, 4].
The inter-scale correlations are particularly strong for the
magnitudes of coefficients from analytic complex wavelets
from transforms such as the dual tree (DT ℂWT) [1].

Besides the tree-structure property, the wavelet repre-
sentation of piecewise smooth images is well known to be
compressible [5], as exploited in the now well-established
sparsity regularization approaches developed in the context of
compressive sensing [6]. Recently, Baraniuk et al. proposed
model-based compressive sensing, which utilizes sparsity and
tree-structure simultaneously to improve the recovered signal
quality [7].

3. MODEL-BASED RECOVERY ALGORITHM

In this paper we modify the DT ℂWT-based L0 reweighted-
L2 minimization algorithm (L0RL2

1)[8] to solve the prob-
lem, because the algorithm is simple enough to be used with

1the L0RL2 algorithm was previously called ℓ02 in [9]



large 3D datasets and it is able to recover much of the missing
information in fine-scale subbands [9].

Firstly, we use real matrices W and M to represent the
forward and inverse DT ℂWT, and a column vector w to
denote the wavelet coefficients of the transform of the im-
age x, such that w = Wx, and x = Mw is the image
reconstructed from w. 𝑤𝑖 is the 𝑖th entry of w. We denote
by (W𝑗)𝑗∈𝑆 and (M𝑗)𝑗∈𝑆 the different decomposition and
reconstruction wavelet subspaces (subbands) respectively,
where 𝑆 = 0, 1, . . . 𝐽 . Note that 𝐽 is the number of wavelet
subspaces, and 0 indexes the scaling function subspace.
Specifically W𝑗 and M𝑗 are masked versions of W and
M, respectively, such that w =

∑
𝑗∈𝑆 w𝑗 =

∑
𝑗∈𝑆 W𝑗x

and M =
∑

𝑗∈𝑆 M𝑗 . For simplicity, we denote W𝑗x as col-
umn vector w𝑗 , with non-zero coefficients only in subband 𝑗.

3.1. L0 reweighted-L2 minimization
To measure sparseness, we use the weighted L2-norm to ap-
proximate the L0 sparseness measure:∑

𝑖

𝑎𝑖∣𝑤𝑖∣2 =
∑
𝑖

1

∣𝑤𝑖∣2 + 𝜖2
∣𝑤𝑖∣2 ≈ ∥w∥0 (2)

where 𝜖 serves as a stabilizer to avoid infinity and set the
threshold between wavelet coefficients that are regarded as
’0’ and those regarded as ’1’. Typically, 𝜖2 is of the order of
𝜎2, the variance of the measurement noise n.

As in [8], we formulate the primary penalty function as:

𝐽(w) = ∥ȳ −D(HMw)∥2 + 𝜎2𝜆w𝑇Aw (3)

where the weight matrix A is diagonal with 𝐴𝑖𝑖 = 𝑎𝑖, and 𝜆
controls the level of sparsity.

Then, employing the subband pre-emphasis process from
[8, 11], we have the following auxiliary penalty function:

𝐽𝑛(w) = 𝐽(w) +
∑
𝑗∈𝑆

𝛼𝑗∥W𝑗x
(𝑛) −w𝑗∥2

− ∥DHx(𝑛) −DHMw∥2 (4)

where x = Mw =
∑

𝑗∈𝑆 M𝑗w𝑗 , x(𝑛) is the 𝑛th iteration
of x and the 𝛼𝑗 must be properly chosen to make sure that
𝐽𝑛(w)− 𝐽(w) ≥ 0 (see [8] for ”the setting of 𝜶”).

Let Φ = DH, and let 𝐶(x(𝑛), ȳ) = ∥ȳ∥2 − ∥Φx(𝑛)∥2
which is a function that does not depend on w𝑗 . We can then
rewrite eq(4) as a quadratic equation in w𝑗 :

𝐽𝑛(w1, . . . ,w𝐽) = (5)

− 2(Φ𝑇 ȳ)𝑇
∑
𝑗∈𝑆

M𝑗w𝑗 +
∑
𝑗∈𝑆

𝛼𝑗∥W𝑗x
(𝑛) −w𝑗∥2

+ 2(Φ𝑇Φx(𝑛))𝑇
∑
𝑗∈𝑆

M𝑗w𝑗 + 𝜎2𝜆
∑
𝑗∈𝑆

w𝑇
𝑗 A𝑗w𝑗 + 𝐶(x(𝑛), ȳ)

whose minimum is simply obtained by setting

∂𝐽𝑛(w1, . . . ,w𝐽) /∂w𝑗 = 0,

and the solution (using M = W𝑇 ) is, for any 𝑗 ∈ 𝑆:

(𝛼𝑗 + 𝜎2𝜆A𝑗)w𝑗 = W𝑗

(
𝛼𝑗x

(𝑛) +Φ𝑇 (ȳ − Φx(𝑛))
)

(6)

where A𝑗 is a masked version of A with non-zero coefficients
only in subband 𝑗.

Hence we get the following algorithm (L0RL2 ):

INPUT: Measurement ȳ, noise variance 𝜎2, initial x(0).
INITIALIZE: Set the weights:

w = Wx(0), 𝐴𝑖𝑖 =
(∣𝑤𝑖∣2 + 𝜖2

)−1

Repeat the following until convergence or a fixed number of
times
APPROX: z𝑗 = W𝑗

(
𝛼𝑗x

(𝑛)
𝑗 +H𝑇D𝑇 (ȳ −DHx(𝑛))

)
and threshold according to the structure set by A

x(𝑛+1) =
∑

𝑗 M
(
(𝛼𝑗 + 𝜎2𝜆A𝑗)

−1z𝑗
)
.

UPDATE: After several approximations, update the weights
using estimate x(𝑛+1):

w = Wx(𝑛+1), 𝐴𝑖𝑖 =
(∣𝑤𝑖∣2 + 𝜖2

)−1

The initial guess x(0) can be obtained by D−1(DH)−1ȳ.
Because the missing data in observations can be treated

similarly to the effect of noise, 𝜆 should be set larger than
1 to encourage the regeneration of such missing information.
As the iterations proceed and missing data is progressively
filled in, 𝜆 is slowly decreased to 1 so that 𝜎2𝜆 reaches the
actual noise level.

3.2. Embedding tree models into the algorithm
The above L0RL2 algorithm uses the weight matrix A as a
regularization constraint to confine the support of the large co-
efficients. We can expect good results if A is accurate enough.
The tree model in the wavelet domain has been intensively
researched, and many tree-model based algorithms have been
proposed and successfully applied both for denoising [2, 3, 4]
and compressive sensing [7, 10].

These methods can be used in our algorithm to find a
proper ∣𝑤𝑖∣2. Many of these methods can be computationally
demanding, so in the following experiments we use bivari-
ate shrinkage [4] to denoise Wx(𝑛+1) and then use the de-
noised coefficients to update A. We find that bivariate shrink-
age gives a good tradeoff between performance and computa-
tional efficiency.

4. EXPERIMENTAL RESULTS

The first experiment (Fig.1) aims to show that better inter-
polation can be obtained by the nonlinear L0RL2 algorithm
compared to linear spline interpolation. The original image is
a ring with an inner radius of 80 pixels and a width of 6 pix-
els with a small amount of edge smoothing to reduce aliasing
effects. The whole image is of size 256 × 256. Only the odd
columns of the image are preserved and the even columns are
discarded, which simulates in 2D the effect of missing slices
in 3D data. Then the full-resolution image is reconstructed,
first using spline interpolation and then using the proposed
L0RL2 algorithm. Only ten iterations of L0RL2 are needed to



Original Spline L0RL2

Difference
from original:

Fig. 1. Reconstruction of part of a ring of unit intensity
change, when alternate columns are discarded. In the differ-
ence images, midgray represents 0, black -0.5, white 0.5.

achieve the result shown. Note how the L0RL2 error becomes
very small when the angle of the ring is below 45 degrees.

In figure 2, we show a deconvolution experiment on the
standard 2D test image Cameraman, which has been subject
to blur and added noise, and alternate columns have been dis-
carded. To demonstrate the effectiveness of the new model
(eq(1)), we compare it with deconvolving the subsampled and
blurred image first, followed by spline interpolation to recon-
struct the missing columns.

For figure 2, we convolved the image with a 16×16 Gaus-
sian blurring kernel with 𝜎 = 1 pel, and added noise at BSNR
= 40 dB. We used the under-regularized Wiener filter to obtain
the initial estimate:

D(x(0)) = (H𝑇D𝑇DH+ 10−3𝜎2I)−1(DH)𝑇 ȳ

Figure 2(d) shows the result of using L0RL2 to decon-
volve the subsampled blurred and noisy image in fig. 2(b),
and fig. 2(c) shows the result of applying spline interpolation
to fig. 2(d). In comparison, fig. 2(e) is the result of applying
the proposed L0RL2 upsampling algorithm to fig. 2(b), while
fig. 2(f) shows just the odd columns of this restored result for
comparison with the subfigures above it. We applied 100 it-
erations of the L0RL2 algorithm to get these results, although
many fewer iterations would have given almost equivalent im-
ages. We observe that (e) and (f) have improved visual met-
rics (sharper edges and smoother background) over (c) and
(d). We use ISNR to quantify the improvement:

ISNR(x(𝑛)) = 10 log10(
∥y−x∥2

∥x(𝑛)−x∥2 );

ISNR(D(x(𝑛))) = 10 log10(
∥ȳ−Dx∥2

∥Dx(𝑛)−Dx∥2 );
and get the following ISNR(dB) measures:

(c) (d) (e) (f)
Guassian filter 3.1734 3.2720 4.2188 4.0900

Uniform blur filter 4.3641 4.5664 5.5276 5.5179

(a) Observation with even columns
missing

(b) odd columns
of (a)

(c) Spline interpolation of (d)
(d) deconvolved
result from (b) by
method[8]

(e) restored to higher resolution
by L0RL2 from (b) (f) odd columns of (e)

Fig. 2. Results of L0RL2 on Cameramen, Gaussian filter,
[16× 16], 𝜎 = 1, BSNR = 40dB.

In the above table we also give results for an 8×8 uniform
blurring kernel on the Cameraman image. We are only able
to show images for the Gaussian blur kernel in Fig.2 due to
space limitations.

The 3D microscopy dataset is from a wide-field fluores-
cence microscope experiment (Fig.4). In microscope imaging
systems, the sampling rate of the vertical (inter-slice) direc-
tion is often lower than in the horizontal plane due to physi-
cal considerations. Therefore, using the L0RL2 algorithm to
recover the missing slices and restore the dataset to equal res-
olution in all directions is valuable. The 3D DT ℂWT repre-
sentation of the dataset gives 28 directional subbands in each



(a) original image, horizontal (b) Spline interpolated slice, horizontal (c) L0RL2 recoverd slice, horizontal

(d) original image, vertical (e) Spline interpolated image, vertical (f) L0RL2 recoverd image, vertical

Fig. 3. Result for a 3D fluorescence microscope dataset.

scale. The coefficients in different subbands are denoised by
bivariate shrinkage [4] to improve the quality of A. The re-
sults are shown in Fig.4. Subfigure (c) shows one slice of
the L0RL2 recovery, while (b) shows the result obtained by
interpolation of the conventionally deconvolved dataset. Sub-
figures (d) to (f) show vertical slices through these datasets.
There is a noticeable improvement in sharpness of features in
(c) and (f) over (b) and (e).

5. CONCLUSION AND DISCUSSION

By using the L0RL2 algorithm to recover the image to a
higher resolution, not only the deconvolved results at the
observation level are improved over the conventional de-
convolved result by about 0.8 dB in Cameraman, but also
improved results on the higher resolution are gained. This is
because the new model we use in this paper make a better use
of the PSF by considering the convolution model at a higher
sampling rate, rather than using the conventional discrete
model at the sampling rate of the observation.

The improved orientation selectivity of DT ℂWT is par-
ticularly beneficial for this missing-slice interpolation prob-
lem because it allows surfaces in diagonal directions to be
emphasised by specific subbands, while noise and aliasing ef-
fects in the other directions can be suppressed by the sparsity-
inducing regularization process.
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