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MOTIVATION

To have a realistic and physically realizable acquisition scheme
for sub-Nyquist sampling sequences of pulses with unknown
shapes. We assume that the pulses have compact support in
time and have sparse representation in the wavelet domain.

At the end, recover the pulse
from its discrete samples
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SUMMARY OF OUR SOLUTION

h0(t) y(0)k
T0

h1(t) y(1)k
T1

hL−1(t) y(L−1)
k

TL−1

x(t)

I hl(t) is the Modulated E-spline with Multiple subbands
(MEMS), which is constructed by a new method

I MEMS allows stable estimation of the exact Fourier
transform of the signal over a wide range of predefined
frequencies

I `1 minimization for reconstruction
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DIAGRAM OF OUR SOLUTION
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Estimate the Fourier
transfrom of x(t) from
the discete samples

Reconstruct x(t)
from its wavelet
coefficients

Reconstruct the wavelet
coefficients with `1 mini-
mization
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ROADMAP – WHERE WE ARE
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THE STREAMLINE OF THIS SECTION

1. To estimate the Fourier transform from the discrete spatial
samples – we need exponential reproducing kernels

2. E-spline – the exponential reproducing kernel central to
the exponential reproducing concept

3. E-spline – not stable in the concerned scenario
4. Our solution – a new reconstruction method that gives us

MEMS

1, 2 and 3 explain why we need MEMS.
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ESTIMATION OF THE FOURIER TRANSFORM

x(t) y(t)
h(t) ykT

Analogue
Discrete

Figure: The sampling structure of one channel, h(t) = ϕ(−t/T).

I The discrete samples at the output of one channel are

yk = 〈x(t), ϕ(t/T − k)〉. (1)

I The Fourier transform of x(t) at predefined frequencies can
be estimated from yk if ϕ(t) is a exponential reproducing
kernel.
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EXPONENTIAL REPRODUCING KERNELS
I An exponential reproducing kernel satisfies∑

k∈Z

ckψ(t− k) = eαt with α ∈ C, (2)

i.e. it satisfies the generalized Strang-fix conditions
(explained later).

I The convenient relationship between the discrete spatial
samples and the Fourier transforms of the analogue signal.
If α = jω for some real ω

s

moment

=
∑
k∈Z

ckyk =
∑
k∈Z

ck〈x(t), ψ(t/T − k)〉

= 〈x(t),
∑
k∈Z

ckψ(t/T − k)〉 = 〈x(t), ej w
T 〉

Fourier transform

. (3)

.
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E-SPLINES

I Exponential splines (E-Splines) are central to the
exponential reproduction property.

I The E-spline is any function βα(t) with Fourier transform

β̂α(ω) =

PP
Order of the E-spline∏

n=0

1− eαn−jω

jω − αn
. (4)

I It can reproduce eαnt, i.e. there exist weights cn,k such that∑
k∈Z

cn,kβα(t− k) = eαnt (5)

I γ(t) ∗ βα(t) can also reproduce eαnt.
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THE STRANG-FIX CONDITIONS
I When αn = jωn is purely imaginary, the Strang-fix

conditions are simply:

β̂α(wn) 6= 0 (6)

β̂α(wn + 2πl) = 0 (∀l 6= 0), (7)

Sufficient and necessary condition for βα(t) to be able to
reproduce ejωnt

−4π −2π 0π 2π 4π −4π −2π 0π 2π 4π

π
2 + 2πl
−π2 + 2πl

Figure: Illustration for the Strang-fix conditions. The amplitude of β̂α
with α = ±j[π2 ].
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OBSERVATIONS

−4π −2π 0π 2π 4π

main lobe

I main lobe size = 2π
I the generating parameters

in ω have to stay in the
main lobe

I real E-spline with
generating parameters
over π has instability
issues
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WHY–INSTABILITY PROBLEMS
Let ω+ = {w : w ∈ ω,w > 0}, ω− = ω \ ω+,

β̂ω(w) = β̂ω+(w) β̂ω−(w).
multiplication of two radial
functions with fast decaying
tails - instability issue

(8)
A
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Figure: The conventional E-spline βω(t) reproduce exponential ejwt

with w ∈ ω = {±k
32

∣∣k = 49 : 2 : 63}. βω(t) is unstable because the ratio
minwn |β̂ω(wn)|
maxwn |β̂ω(wn)|

(about 10−4) is very small, i.e. the noise in the samples
creates huge error in generating the Fourier transforms.
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SOLUTION: A STABLE BAND-PASS KERNEL:
I Multiplication causes problems
I Consider the summation instead, i.e.

ψ̂ω(w) = β̂ω+(w) + β̂ω−(w). (9)

Problems! The Strang-fix conditions are not satisfied.
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∣∣β̂ω(w)
∣∣ ∣∣β̂ω+(w) + β̂ω−(w)

∣∣

Figure: Black dots mark
∣∣β̂ω+(w) + β̂ω−(w)

∣∣ at frequencies ω+ and
ω−. Blue triangles shows the frequency response at frequencies
ω± ± 4π and ω± ± 2π. The Strang-Fix conditions on ω are not
satisfied after summation. ω− + 4π are located in the main lobe of
β̂ω+(w)
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A STABLE BAND-PASS KERNEL: Solution- a simplified example

Amplitude
(log10)

addend1
addend2

π π
3π

−6
−5
−4
−3
−2
−1

0

−3π−2π−1π 1π 2π 3π

I shrink the main lobe
so that ω− + 2πl is
not in the main lobe
of ω+ for any l

I carefully choose
parameters in ω+, so
that the zeros of the
two addends align.
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A STABLE BAND-PASS KERNEL: dilated E-spline
The dilated E-spline is defined as:

β̂ω,2M(w) =

P∏
n=0

1− e2Mj(wn−w)

2Mj(w− wn)
, (10)

Dilation

which satisfies

β̂ω,2M(wn) 6= 0, β̂ω,2M(wn + l
π

M
) = 0, ∀l ∈ Z \ 0. (11)

And its main lobe size is 2π
2M .

Amplitude
(log10)

addend1
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A STABLE BAND-PASS KERNEL: constrains of the parameters

Amplitude
(log10)

addend1
addend2

2.8π
zeros not aligned

−6
−5
−4
−3
−2
−1

0

−3π−2π−1π 1π 2π 3π

I The center of the lobe
must be at multiple of
π
M

I The parameters are
symmetrical to the
center
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A STABLE BAND-PASS KERNEL: constrains of the parameters
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A STABLE BAND-PASS KERNEL: constrains of the parameters
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A BAND-PASS E-SPLINE:

Theorem 1: constructing a stable band-pass real E-spline
Let

ψ̂ω,2M(w) =
(
β̂ω,2M(w) + β̂−ω,2M(w)

)
, (12)

where M is a positive integer. Assume

w0 ≤ w1 ≤ · · · ≤ wP,wP − w0 <
π

M
,

wn + wP−n = k
π

M
, k ∈ N \ {2Ml

∣∣l ∈ N.}
(13)

Then ψ̂ω,2M(w) is able to reproduce exponential e±jwnt, and is a
real function:

ψω,2M(t) = 2βω− kπ
2M ,2M(t) cos

(
kπ
2M

t
)
. (14)
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MULTIPLE-SUBBAND E-SPLINES

I Extension of the band-bass E-spline: for some real bi,

φM
ω0,K0

(t) = βω0,2M(t)

(
M∑

i=1

2bi cos
(

2ki + K0

2M
πt
))

, (15)

where βω0,2M(t) is a real dilated E-spline.

Theorem 2: constructing a MEMS

Let ri = rem(ki, 2M). K0 ∈ {0, 1}. MEMS φM
ω,K0

(t) can reproduce
exponential e±jwn,it if

ri + rl 6= 2M− K0 and min
i 6=l
|ri − rl| 6= 0. (16)

Here wn,i = wn + 2ki+K0
2M π.
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MULTIPLE-SUBBAND E-SPLINE: Example

Amplitude
(log10)
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addend 1

π

addend 2

π

Figure: The frequency amplitude of MEMS, where M = 2, P = 7,
ω0 = { k

32

∣∣k = −7 : 2 : 7}, K0 = 1, k1 = 1, k2 = 3.
∣∣φ̂M
ω0,K0

(wn + 2ki+K0
4 π)

∣∣
is marked by the solid dot.



Introduction MEMS Sampling and reconstructing the wavelet-sparse signal Conclusion

CONTENTS

Introduction
Motivation
Summary of our solution

Modulated real E-spline with multiple subbands (MEMS)
Why MEMS
A stable band-pass kernel
Multiple-subband E-splines

Sampling and reconstructing the wavelet-sparse signal
`1 norm minimization
A multichannel scheme
Numerical example

Conclusion



Introduction MEMS Sampling and reconstructing the wavelet-sparse signal Conclusion

ROADMAP – WHERE WE ARE

x(t)
multi-channel
sampling setting
in the time domain

y(0)
k

y(1)
k

...

Estimate the Fourier
transfrom of x(t) from
the discete samples

Reconstruct x(t)
from its wavelet
coefficients

Reconstruct the wavelet
coefficients with `1 mini-
mization



Introduction MEMS Sampling and reconstructing the wavelet-sparse signal Conclusion

`1 NORM MINIMIZATION

I The relationship between Fourier transform of x(t) and its
wavelet coefficients:

x̂(w) = γT(w) η.

wavelet coefficients

(17)

I η can be recovered from Fourier transforms of x(t) at set Ω
by

min|η|1
s.t. ‖x̂(Ω)− γ(Ω)η‖2 ≤ σ,

(18)

given that Ω (f-pattern) is randomly picked from
[−N0,N0]/2τ and with sufficient size. N0 is a constant
dependent on the signal, and τ is the support of x(t).
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A MULTICHANNEL SCHEME

h0(t) y(0)k
T0

h1(t) y(1)k
T1

hL−1(t) y(L−1)
k

TL−1

x(t)

to reproduce the Fourier trans-
forms on random frequencies
within the region (f-domian)

0

...

Figure: The multichannel sampling scheme. Channels are used to
estimate the Fourier transform of x(t) at frequencies from different
regions in the frequence domain. By choosing different bandwidth of
the region and Tl, an variable density sampling pattern is obtained.
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THE FILTERS

The filters are generated by the following parameters
I

ω0 = {2n + 1
2P + 2

π

Ml
|n = 0 : P + 1}

K0 = 0

where P and Ml are picked manually,
I ki are randomly picked from a specific region such that
ωn,i/Tl is within the predefined frequency range.

I {ki} have to satisfy Theorem 2.
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THE RESULTED F-PATTERN

Figure: The resulted pattern (Ω of (18)) in f-domain using the filter
setting describe in the previous slide. 0 frequency in the center. The
f-pattern is the result of picking ki satisfying Theorem 2 uniformly
from a given range. The output of the multichannel system can be
used to estimate the Fourier transform of x(t) on the f-pattern. The
f-pattern will be used in the following numerical example.

It is much easier to randomly pick ki that generates random
f-pattern than to calculate ki, Ml and P according to a given
f-pattern
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WHY THIS MULTI-CHANNEL SETTING?

I additional degrees of freedom
I reduced complexity in setting parameters
I sampling pattern with variable density
I easy to modify (add or delete channels)
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NUMERICAL EXAMPLE: sparse on db4 with 13 non-zeros

True pulse

Figure: The pulse. The number of non-zeros in each level is [1 2 4 2 1
1 1 1].
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THE F-PATTERN

The f-pattern of the proposed multichannel setting

benchmark(uniformly random)
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SAMPLING IS IN SPATIAL DOMAIN
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multi-channel
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in the time domain

y(0)
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Estimate the Fourier
transfrom of x(t) on
predefined frequencies Ω

Reconstruct x(t)
from its wavelet
coefficients

Reconstruct the wavelet
coefficients with `1 mini-
mization
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NUMERICAL EXAMPLE: sparse on db4 with 13 non-zeros

With noiseTrue pulse

Proposed Benchmark

Figure: Example performance under the noisy condition (10dB).
NT = 32,N0 = 1024.
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NUMERICAL EXAMPLE: sparse on db4 with 13 non-zeros

Table: The recovery error of different designs in the presence of noise.
The average performance of 100 realizations.

50dB 40dB 30dB 20dB 10dB
Proposed 0.0025 0.0078 0.0222 0.0591 0.1082

Benchmark 0.0025 0.0080 0.0245 0.0679 0.1277
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CONCLUSION

I A new method for reconstructing exponential reproducing
kernels

I The constructed kernel provides us a way to easily obtain
the Fourier transforms on frequencies over a wide range.

I A multichannel sampling strategy to sample
wavelet-sparse signal with variable density in the
frequency domain.

I `1 minimization reconstructs the signal to satisfactory
level.
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QUESTIONS?

Thank you!
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