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ABSTRACT

The common zeros problem for Blind System Identification
(BSI) has been well known to degrade the performance of clas-
sic BSI algorithms and therefore limits performance of subsequent
speech dereverberation. Recently, we have shown that multichannel
systems cannot be well identified if near-common zeros are present.
In this work, we further study the near-common zeros problem us-
ing channel diversity measure. We then investigate the use of forced
spectral diversity (FSD) based on a combination of spectral shap-
ing filters and effective channel undermodelling. Simulation results
show the effectiveness of the proposed approach.

Index Terms— blind system identification, near-common zeros,
channel identifiability condition, forced spectral diversity

1. INTRODUCTION

Blind System Identification (BSI) has attracted significant interest
due to its potential applications in several areas. Since the pioneer-
ing work by Tong et. al. [1], many second-order statics (SOS)-based
methods have been proposed, among which are the subspace [2] and
the cross-relation [3] algorithms. Recently, these methods have been
adopted from communications into the domain of acoustic signal
processing such as for acoustic dereverberation and speech source
separation. Both closed-form [4] and adaptive [5] algorithms have
been proposed to identify room impulse responses of length up to
hundreds of taps for acoustic dereverberation.

Most SOS-based BSI methods, such as [2][3][4][5], rely on the
channel identifiability conditions [3] from which one of the condi-
tions is that the channels must be co-prime, i.e., no zeros being com-
mon across all channels. This is because when common zeros exist,
the BSI algorithms do not have sufficient information to distinguish
the common zeros of the channels from ones due to the source sig-
nal. Unlike algorithms for communications applications where vari-
ous pre-processing techniques, such as linear precoding, can be ap-
plied to induce specific statistical properties, algorithms for acoustic
signal processing in speech dereverberation do not share the similar
flexibility. A common way to mitigate the common zeros problem
is therefore to increase the number of microphones, which is com-
putationally expensive and practically limited. More recently, the
problem of near-common zeros (NCZs) has been addressed in [6][7]
where results presented showed that the performance of SOS-based
BSI algorithms can degrade as zeros of different channels become
close to each other.

In this paper, we first review blind single-input multiple-output
(SIMO) system identification in Section 2, where the problem of
NCZs is discussed and illustrated. We then show experimentally,
in Section 3.1, the relationship between the channel characteristics
and the performance of the BSI algorithms such as the normalized
multichannel fast least-mean-square (NMCFLMS) algorithm [5]. In

Section 3.2, we introduce the forced spectral diversity (FSD) con-
cept for addressing the detrimental effects of near-common zeros on
adaptive BSI algorithms. The FSD concept employs a combination
of spectral shaping filters and effective channel undermodelling tech-
niques which in turn improve the performance of the NMCFLMS
algorithm. The performance of the proposed approach is illustrated
in Section 4.

2. THE NEAR-COMMON ZEROS PROBLEM IN BLIND
SIMO SYSTEM IDENTIFICATION

2.1. Review of the NMCFLMS algorithm

Consider a typical acoustic environment with one talker and mul-
tiple microphones. This system can be modeled as a linear SIMO
system where the relationship between the source signal s(n) and
mth output xm(n) is given by

xm(n) = Hm(n)s(n) + bm(n), m = 1, 2, . . . , M (1)

where M is the number of channels, xm(n) = [xm(n) xm(n −
1) . . . xm(n − L + 1)]T and s(n) = [s(n) s(n −
1) . . . s(n − 2L + 2)]T . The vector bm(n) = [bm(n) bm(n −
1) . . . bm(n − L + 1)]T denotes the additive noise and hm(n) =
[hm,0(n) hm,1(n) . . . hm,L−1(n)]T is the vector of channel im-
pulse response of length L, from which the L × (2L − 1) channel
matrix is given as

Hm(n)=

264 hm,0(n) · · · hm,L−1(n) · · · 0
...

. . .
...

. . .
...

0 · · · hm,0(n) · · · hm,L−1(n)

375(2)

with [·]T being the transpose operator. A system equation can then
be derived by concatenating all M outputs of (1) as follows:

x(n) = H(n)s(n) + b(n), (3)

where x(n) = [xT
1 (n) xT

2 (n) . . . xT
M (n)]T ,

b(n) = [bT
1 (n) bT

2 (n) . . . bT
M (n)]T and H(n) =

[HT
1 (n) HT

2 (n) . . . HT
M (n)]T is the ML × (2L − 1) global

channel matrix.
As we are concentrating on the common zeros problem, hence-

forth we consider only the noise-free case in this paper. In the ab-
sence of noise, a multichannel system can be identified using the
cross-relation between the ith and jth channel outputs [5], for i 6=
j, given by xT

i (n)hj(n) = xT
j (n)hi(n) for i, j = 1, 2, . . . , M .

An error function can then be defined, for i 6= j,

eij(n) = xT
i (n)ĥj(n− 1)− xT

j (n)ĥi(n− 1), (4)
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Fig. 1. An illustrative example of two NCZ clusters for a three-channel
SIMO system.
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Fig. 2. Number of clusters, ct, found using the GMC-DC and GMC-ST [7]
algorithms against tolerance δ with different number of channels M using
simulated impulse responses.

where ĥi(n) is the estimated impulse response for the ith channel.
Using (4), the NMCFLMS algorithm [5] is derived by minimizing
the cost function

J(n) =
1

‖ ĥ(n) ‖2
2

M−1X
i=1

MX
j=i+1

e2
ij(n), (5)

where ĥ(n) = [ĥT
1 (n) ĥT

2 (n) . . . ĥT
M (n)]T is the channel vector

for estimated impulse responses and ‖ · ‖2 denotes l2-norm. Our ob-
jective is to estimate ĥm(n) by employing only observations xm(n)
for m = 1, 2, . . . , M . Note that in this work the channel length L is
assumed to be available.

2.2. Effect of near-common zeros on the NMCFLMS algorithm

For an M -channel SIMO system, the channels are said to be co-
prime if they do not share the same zeros. However, NCZs are clus-
ters of zeros that satisfy the following conditions [7]: (i) each cluster
contains only M zeros with each channel contributing to a zero, and
(ii) the Euclidean distance between any pair of zeros in a cluster lies
within a pairwise tolerance δ where δ ≥ 0. We note that given these
two conditions, any zero can be included in more than one cluster.
Figure 1 shows an example of two clusters for a three-channel sys-
tem where the zeros from each channel are represented by triangles,
squares and circles.

To illustrate the number of NCZ clusters in SIMO acoustic sys-
tems, a set of impulse responses was simulated using the method of
images [8] with a linear array of M = 8 microphones in a room of
dimension 10× 10× 3 m. The source is located 1 m in front of the
microphone array with uniform spacings of 8 cm. The sampling rate
was 16 kHz with each channel impulse response having 512 coeffi-
cients and White Gaussian Noise (WGN) is used as source signals. A
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Fig. 3. Performance variation of NMCFLMS [5] with different number of
channels using WGN input and simulated impulse responses.

set of 100 SIMO systems are generated by placing this source-sensor
configuration in different positions of the room. Finally, results are
obtained by averaging across all systems.

Two generalized multichannel clustering (GMC) algorithms, the
GMC-DC and GMC-ST proposed in [7] were employed to compute
the number of NCZs over the generated impulse responses. Fig-
ure 2 shows the average number of NCZs clusters, denoted as ct,
against the tolerance δ with different number of channels M . To
show the corresponding performance variation of the BSI algorithm
against NCZs, we then employed the NMCFLMS algorithm [5] with
a step-size of 0.5. The signal-to-noise ratio (SNR) is set 60 dB to
avoid the misconvergence problem [9]. We use the normalized pro-
jection misalignment (NPM) [10] to quantify the BSI estimation er-
ror. In Fig. 3, performance variation of the NMCFLMS algorithm
with different number of channels is shown, where ct is found for
δ = 6 × 10−3. As can be seen from Fig. 2 and Fig. 3, the num-
ber of clusters decreases when M increases, which results in better
NPM performance. We also note from Fig. 2 that for all sample
systems, there exist no exactly common zeros, i.e., no NCZ clusters
were found for δ = 0.

3. CHANNEL AND SPECTRAL DIVERSITY WITH
EFFECTIVE UNDERMODELLING

It has been shown in Section 2 that the presence of NCZs results in
the performance degradation of the NMCFLMS algorithm. In addi-
tion, increasing spatial diversity using more microphones is compu-
tationally expensive. In this Section, we show that spectral diversity
can be utilized to reduce the number of NCZ clusters. We propose
to obtain such extra diversity for a SIMO system with NCZs via the
use of spectral shaping filters and effective channel undermodelling,
to which we refer as the FSD concept.

3.1. Channel diversity for SIMO systems

Consider a M -channel SIMO system defined in Section 2, if the
multiple channels do not share exactly common zeros, the global
channel matrix (3) is of full rank [2], i.e., Rank(H(n)) = 2L − 1.
This indicates that the smallest singular value of H(n), denoted as
σ2L−1(H(n)), is non-zero. If exactly common zeros exist, H(n)
becomes rank deficient and leads to σ2L−1(H(n)) = 0. According
to [11], the minimum non-zero singular value of the global channel
matrix, i.e., λmin = σ2L−1(H(n)) can be used as a measure of
channel diversity of H(n).
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Fig. 4. Variation of λmin against the number of channels M for simulated
impulse responses used in Fig. 3.

To show that such measurement can also be used for systems
with NCZs, Fig. 4 depicts the variation of λmin against differ-
ent number of channels over impulse responses used in generating
Fig. 3. The number of NCZs found using the GMC-ST algorithm [7]
for each data point is also shown for δ = 6× 10−3. As can be seen,
the channel diversity increases with M . This indicates that as chan-
nel diversity increases, the NPM performance of the NMCFLMS
algorithm can improve correspondingly since the number of NCZs
reduces with M . It is also noted from the figure that for simulated
acoustic SIMO systems, the value of λmin is small, which can be
expected to result in a large condition number for H(n) and to fur-
ther degrade the performance of channel inversion algorithms, such
as the MINT algorithm [12], over acoustic SIMO systems.

3.2. Spectral diversity with effective undermodelling

Channel undermodelling was introduced for blind identification of
microwave radio impulse responses with small leading and tailing
taps in [11], where it was shown that the m-order least-squares (LS)
method [3] or subspace method [2] can estimate impulse responses
that are close to the m-order “significant” part of the full impulse
responses which is obtained by removing small leading and tailing
taps. This can only be achieved when the undermodelled system
offers sufficient diversity. The attempt of modelling full-length im-
pulse responses, however, can result in much worse estimation per-
formance.

Inspired by results in [11], our proposed FSD concept includes
the use of spectral shaping filters and effective channel undermod-
elling. For clarity of presentation, FSD in this paper is based on a
two-channel system case and a schematic for a two-channel SIMO
system is shown in Fig. 5. As can be seen, the microphone signal
xm(n) is pre-processed using a pair of spectral shaping filters, e.g.,
a pair of high- and lowpass filters (LPF and HPF), the resulting filter
outputs x′m(n) are then given as

x′m(n) = FT
mHm(n)s(n) (6)

for m = 1, 2, where Fm denotes the mth spectral shaping filter
matrix of dimension L× (L + Lp − 1),

Fm =

264 fm,0 · · · fm,Lp−1 · · · 0
...

. . .
...

. . .
...

0 · · · fm,0 · · · fm,Lp−1

375 , (7)

and fm = [fm,0, fm,1, . . . , fm,Lp−1]
T is the impulse response of

the mth filter of length Lp. According to Fig. 5, x′m(n) can be
considered as the linear convolution between s(n) and an equivalent
SIMO system of length L + Lp − 1, i.e.,

h̄m(n) = FT
mhm(n), m = 1, 2. (8)
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Fig. 5. Schematic for a two-channel FSD SIMO system.
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Fig. 6. Frequency responses of the spectral shaping filters.

However, the channel length employed within the NMCFLMS algo-
rithm is fixed at L and therefore it is equivalently “blind” to such fil-
tering process. This results in an effective channel undermodelling,
i.e., the channel estimates produced by the NMCFLMS algorithm,
denoted as ĥ′m(n), actually correspond to an undermodelled SIMO
system of length L.

For acoustic SIMO systems, the room impulse responses have
small tailing taps due to the reverberation tail that still exist after
being filtered by spectral shaping filters. This characteristic is similar
to the microwave radio impulse responses shown in [11]. Therefore,
we propose to effectively undermodel h̄m(n) by removing the last
Lp − 1 taps of h̄m(n), i.e.,

h′m(n) = Uh̄m(n), m = 1, 2 (9)

where U = [IL×L, 0L×(Lp−1)] with IL×L and 0L×(Lp−1) being
a L× L identity matrix and a L× (Lp − 1) null matrix. As will be
shown in Section 4, the combination of spectral shaping filters and
the effective channel undermodelling can result in increased channel
diversity and reduced the number of NCZ clusters.

Finally, we note that the original system can be recovered in
principle since the characteristics of the spectral shaping filters are
known and could be inverted. In practice, effects of noise ampli-
fication in the inversion process will limit accuracy. However, an
estimate of ŝ(n) can be obtained without the need to “undo” the ef-
fect of the spectral shaping by inverting ĥ′m(n) using, for example,
the MINT algorithm [12]. Similar practical limitations apply but
we have found in our tests that such limitations are more than out-
weighed by the advantages obtained in the BSI due to the increased
channel diversity, resulting in an overall improvement in our ability
to equalize channels containing NCZs.

4. SIMULATIONS

In this section, we further demonstrate the effect of FSD using the set
of two-channel SIMO systems obtained from the impulse response
library that has been used throughout this paper. A pair of high- and
lowpass shaping filters of length Lp = 32 was generated with their
magnitude responses shown in Fig. 6.

To demonstrate the effect of FSD on SIMO systems with NCZs,
we first measure the channel diversity over the set of two-channel
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Fig. 7. Variation of channel diversity λmin for the original system hm(n)
and the FSD system h′m(n) for different simulated impulse responses.
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Fig. 8. Comparison of ct between the original system hm(n) and the FSD
system h′m(n) against various tolerance δ.

SIMO systems chosen from a set of impulse responses described in
Section 2.2, where hm(n) and h′m(n) are obtained using (9) in a
similar way as described in [13]. In Fig. 7, the variation of λmin

for the original system hm(n) and the FSD system h′m(n) is plot-
ted against different impulse responses. The FSD system is seen
to provides a consistent improvement in terms of channel diversity
over the original system, which implies that h′m(n) can be better
identified. Using the same set of impulse responses, we then com-
pare Fig. 8 the number of NCZ clusters between hm(n) and h′m(n)
against pairwise tolerance δ. As can be seen, the FSD system h′m(n)
only contains approximately half of the number of NCZs compared
to the original system hm(n).

Finally, we show in Fig. 9 that the FSD system is more identi-
fiable than the original system in terms of NPM performance. The
parameters used are the same as in Section 2 and previous simula-
tions. An approximate 3 dB improvement can be clearly seen which
is close to the NPM performance for the case of M = 6 in Fig. 3.

5. CONCLUSIONS

We have addressed and illustrated the near-common zeros problem
for blind system identification. We showed the link between the
channel diversity and the NPM performance of the NMCFLMS al-
gorithm. The FSD concept for blind identification of acoustic SIMO
system in the presence of NCZs has been proposed, which combines
the use of spectral shaping filters and the effective channel under-
modelling method. Simulation results based on two-channel case
confirmed the effectiveness of the proposed concept.
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