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ABSTRACT

Blind identification of SIMO systems is dependent on identi-
fiability conditions which include the requirement that there
are no common zeros between multiple channels. We
demonstrate that common zeros are likely to exist for long
channels, such as acoustic impulse responses and we illus-
trate the performance degradation due to common zeros in
blind system identification. Subsequently, we propose a new
scheme where the characteristic zeros components of the
transfer functions are identified using a blind multichannel
method and the common zeros component is obtained with a
single channel approach.

1. INTRODUCTION

The problem of Blind System Identification (BSI) is of great
importance in a variety of signal processing and communica-
tions applications, such as acoustic dereverberation, speech
source separation and image deblurring [1]. The objective
is to recover the source signal only through multiple obser-
vations by estimating the channels. The sufficient and nec-
essary conditions for multichannel identifiability are [2]: (i)
the channels must be co-prime, i.e., they do not share any
common zeros, and (ii) the auto-correlation matrix of the
source signal must be of full rank. Several algorithms, such
as [3, 4, 5, 6] rely on these conditions.

Since current BSI algorithms do not operate successfully
in the presence of common zeros, it is necessary to iden-
tify the common roots among multiple channels to avoid the
performance degradation caused by them. Tugnait [7, 8] in-
vestigated the blind identification of multichannel systems
over communication channels with common zeros, where the
common zeros are assumed to be minimum phase. Non-blind
methods to estimate the common roots of polynomials with-
out factorization have been proposed in [9, 10]. Work has
also been carried out in [11] to gain some insight of the com-
mon zeros problems in the context of adaptive blind multi-
channel identification algorithm.

In this paper, we investigate the effect of common ze-
ros on blind multichannel system identification. We demon-
strate that the zeros of long channels tend to cluster near the
unit circle and therefore common or near common zeros are
likely to occur. Correspondingly, we propose a two-stage
method for blind identification of multichannel systems with
common zeros, which is based on a channel decomposition
scheme. First, a subspace multichannel technique is used to
identify the distinct components of two channels. Second,
the common zeros of the multiple channels are identified us-
ing a single channel approach.

The remainder of this paper is organized as follows.
In Section 2, the problem of blind identification of Single-

Input-Multiple-Output SIMO systems with common zeros is
formulated where the effect of common zeros on the per-
formance of blind multichannel identification algorithms is
demonstrated. The proposed two-stage method is described
in Section 3. The performance gains of the new method are
demonstrated with simulation results in Section 4 and con-
clusions are drawn in Section 5.

2. PROBLEM FORMULATION

Consider a linear time-invariant SIMO system where the re-
lationship between the input and mth output is given by

xm(n) = hm(n)∗ s(n)+νm(n), m = 1,2, . . . ,M (1)

where ‘∗’ denotes linear convolution, s(n) is the source sig-
nal, hm(n) is the L-tap channel impulse response of the mth
channel and νm(n) is additive noise. Equation (1) can be
written equivalently

Xm(z) = Hm(z)S(z)+Nm(z), m = 1,2, . . . ,M (2)

where Xm(z), Hm(z), S(z) and Nm(z) are the z-transforms of
xm(n), hm(n), s(n) and νm(n), respectively.

It was shown in [11] that the performance of BSI algo-
rithms is degraded when the zeros between different channels
are close to each other, but not necessarily exactly common.
To illustrate this, the Multi-Channel Least Mean Square algo-
rithm (MCLMS) proposed in [3] was deployed over a short
two-channel SIMO system specified by the position of chan-
nel roots, where the distance between the zeros of the two
channels is defined as Δz = 2cosθ , 0 ≤ θ ≤ π/2, as shown
in Fig. 1. The zeros of the two channels get closer as the
value of θ is increased and are identical for θ = π/2. We
then study the convergence of the MCLMS under different
channel conditions of Δz. The number of iterations needed
for the cost function of the MCLMS to reach −60 dB ver-
sus the channel zero separation Δz is plotted in Fig. 2. The
asymptotic curve shows that the time for the MCLMS to con-
verge increases exponentially as Δz reduces. It can be further
expected that the MCLMS will not converge at all if the zeros
are exactly common, as will be seen in Section 4.

In a multichannel system with M channels the likelihood
of having common zeros decreases as M increases. There-
fore, most current techniques avoid the common zeros prob-
lem by assuming a large number of channels. However, in
many applications, M is limited. Typical impulse responses
of acoustic channels contain several thousand taps. Recent
results by Hughes and Nikeghbali [12] show that as the or-
der of a polynomial increases, its roots tend to cluster near
the unit circle and their angles become uniformly distrib-
uted. This indicates that the mean distance between adja-
cent zeros of different channels will reduce as the order in-
creases. Simulation on different channels with long impulse
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Figure 1: Position of the channel zeros for the example two
zeros, two channel system.
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Figure 2: Number of samples needed for the cost function of
MCLMS to reach −60 dB for different zero separation.

responses confirms this. Fig. 3 shows a plot of the mean
distance between the zeros and the unit circle versus an in-
creasing channel length for four different channels: two real
acoustic channels measured in a reverberant room, a ran-
dom channel with normally distributed coefficients, and an
acoustic channel generated with the method of image [13].

Therefore, the problem is to identify Hm(z) using only
the observations Xm(z) without performance degradation in
the presence of common zeros.

3. TWO-STAGE BLIND CHANNEL
IDENTIFICATION

We next introduce a new approach for identification of mul-
tichannel systems with common zeros. This is done in two
stages. First, components associated with the characteristic
zeros are blindly identified and inverse filtered. Next, the
component associated with the common zeros is estimated.
For clarity of presentation, a two-channel system is used
as an example, however, it is straightforward to extend this
method to the general M-channel case.

In the presence of common zeros, the conventional mul-
tichannel system Hm(z) can be decomposed into one compo-
nent containing the common zeros of all channels, HC(z), and
one component containing the characteristic zeros of each
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Figure 3: Mean distance between zeros and unit circle vs. the
length of channel.
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Figure 4: SIMO FIR system with common zeros.

channel, H ′
m(z), i.e.,

Hm(z) = HC(z)H ′
m(z), m = 1,2 (3)

where deg[Hm(z)] = L − 1, deg[HC(z)] = LC − 1,
deg[H ′

m(z)] = L′ −1 and where L′ ≤ L .
Note that we do not explicitly consider the noise robust-

ness of the multichannel identification algorithms since we
are primarily interested in the common zeros problem in
this paper. Therefore, our objective is to identify HC(z) and
H ′

m(z) from only the observations Xm(z),

Xm(z) = S(z)HC(z)H ′
m(z), m = 1,2 (4)

The system is depicted in the system diagram in Fig. 4.

3.1 Stage 1: Characteristic zeros identification
From (4), the outputs of the system can be written

Xm(z) = H ′
m(z)S′(z), (5)

where S′(z) = S(z)HC(z).
Since the transfer functions H ′

m(z) do not share any com-
mon zeros, we can identify them blindly using, for example,



the subspace method [5], which is derived from the cross-
relation [2] between two channels:

x1(n)∗h′2(n) = s′(n)∗h′1(n)∗h′2(n)
= x2(n)∗h′1(n). (6)

This results in a system of equations [3]

Rh′ = 0, (7)

with

R =
[

Rx2x2
−Rx2x1−Rx1x2
Rx1x1

]
, (8)

where Rxix j = E{xi(n)x j(n)}, xi(n) = [xi(n) xi(n −
1) . . . xi(n− L + 1)] and h′ = [h

′T
1 h

′T
2 ]T is the composite

channel response vector composed of two channel coefficient
vectors h′

m = [h′m(0) h′m(1) . . . h′m(L′ − 1)]T . The channel
estimates are the eigenvectors corresponding to the smallest
eigenvalue of R and are determined up to an arbitrary scale
factor. Alternatively, adaptive estimation algorithms, such
as [3, 4] can also be used.

The signal, s′(n) is then formed using the estimated im-

pulse responses ĥ′
m. Since the impulse responses may be

non-minimum phase and have no common zeros, MINT [6]
can be used for inversion and s′(n) can be obtained as

s′(n) = x1(n)∗g′1(n)+ x2(n)∗g′2(n), (9)

where g′m(n), m = 1,2 are the inverse filters obtained from
the MINT method.

3.2 Stage 2: Common zeros identification
Using the results obtained from Section 3.1, the single chan-
nel associated with common zeros is to be identified. For a
static or a slowly time-varying channel, this can be achieved
blindly by locating the position of corresponding zeros fol-
lowing the technique proposed in [14].

Representing S′(z) and HC(z) in factored form, we have

S′(z) = A
N1

∏
k=1

(1−akz−1)
N2

∏
k=1

(1− s′kz−1)(1− s
′∗
k z−1), (10)

HC(z) = B
N3

∏
k=1

(1−bkz−1)
N4

∏
k=1

(1−hC,kz−1)(1−h∗C,kz−1),

(11)
where A and B denote gains, ak and bk represent the real roots
and {sk,s∗k} and {hC,k,h∗C,k} represent the complex-conjugate

pairs of roots. N1,N2 and N3,N4 are defined as the numbers
of real and complex-conjugate pairs of roots for S′(z) and
HC(z), respectively.

In the duration for which the channel is considered sta-
tic, there is a fixed pattern of those zeros that belong to the
channel transfer function, , while the zeros of the input vary
with time [14]. Therefore, by observing the output signal
over several input frames at the microphone, we may iden-
tify those zeros which are stationary from those which are
dynamic.

The roots of HC(z) can be written zi = αie jθi . In practice,
the length of each frame can be very large, in which case the

Lindsey-Fox factorizing method [15] can be used for efficient
factorization. In the technique used for the identification of
the fixed-zero pattern with common zeros component HC(z),
the z-plane is represented by a grid [14] in terms of magni-
tude and phase in order to capture the position of the zeros.
For each cell, an integer counter is defined and is initialized
to zero. For each input frame, we map the location of ze-
ros of corresponding output into one of these cells, whose
counter is incremented by one. Therefore, after evaluating N
frames, the cells with counter values equal to N identify the
zeros that have fixed-patterns. Also, the number of common
zeros deg[HC(z)] is estimated based on static roots. Two or
three frames are usually sufficient for identification.

As discussed in Section 2, for very long channels, the
length of HC(z) is also large, in which case the zeros tend to
cluster around the unit circle and their angles are uniformly
distributed [12]. Therefore a non-linear magnitude quantiza-
tion is used in order to provide more accuracy. Let Bm denote
the number of bits used to linearly quantize the magnitude of
roots ranging from 0 to 1, a nonlinear equation [14] is used
to map these linearly quantized cells to nonlinear ones:

α̃iq =
1

tan(π/D)

[
tan(

π
D

)+ tan(
π
D

αiq − π
D

)
]
, (12)

where D is a control parameter and αiq is the linearly quan-
tized magnitude value αi. We also quantize the phase of roots
by using Bp bits. Those zeros that are outside the unit cir-
cle are converted to their reciprocals before being evaluated,
and they will be converted back when reconstructing the es-

timated impulse response ĥC(n) after identification.

Finally, ĥC(n) and ĥ′m(n) are utilized to generate the chan-
nel estimate as

ĥm(n) = ĥC(n)∗ ĥ′m(n). (13)

4. SIMULATIONS

We present simulation results to demonstrate the perfor-
mance of the proposed approach.

We first evaluate the performance of the proposed method
using a system comprising two random channels of length
L = 33. We have chosen to illustrate our method for a rela-
tively low order system so that results can be presented in the
following plots showing clearly the individual zeros. There
are eight common zeros between them, i.e., LC = 9. The sys-
tem is plotted in Fig. 5, where the common roots for both
channels are marked with triangles, the characteristic roots
for channel one are marked with circles and those for channel
two with squares. The performance was evaluated with the
Normalized Projection Misalignment (NPM) defined as [4]

NPM = 20log10

(
1

‖h‖
∥∥∥∥h− hT ĥ

ĥT ĥ
ĥ
∥∥∥∥
)

dB, (14)

where h = [hT
1 hT

2 ]T is the true channel vector and ĥ =
[ĥT

1 ĥT
2 ]T is the vector of channel estimates.

Figure 6 shows the result for the blind multichannel iden-
tification where the true channel zeros are indicated with cir-
cles and the identified channel with crosses.

Next, in Fig. 7 the result of the blind identification of
the common component is shown where the true zeros are
represented by triangles and the estimated zeros by crosses.
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Figure 5: Channel zeros for channel 1 (circles), channel 2
(squares) and the common zeros (triangles).
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Figure 6: Characteristic (non-common) channel zeros for the
true channels (circles) and the estimated channels (crosses).

The algorithm was run using Bm = 10 bits, Bp = 12 bits and
D = 2.05. The estimated channel impulse response is recon-
structed in Fig. 8, which shows a) the true channel, h1 and b)

the estimated channel, ĥ1. It can be seen from the figures that
the proposed approach successfully identifies the channel.

We also performed an experiment to compare the perfor-
mance of the proposed approach with the MCLMS and the
subspace method using random channels of varying length
where the number of common zeros is not controlled explic-
itly. A random input sequence was used and the SNR was
set to 60 dB to effectively remove the influence of noise.
For the proposed approach, any pair of channel zeros with
Δz ≤ 0.0001 were considered to be common and this ap-
proach reduces to the subspace approach when there are no
common zeros between multiple channels. For adaptive ap-
proaches, such as MCLMS, the minimum reachable NPM
value for the input sequence was used and all the algorithms
were also run for 100 Monte Carlo runs. The results are pre-
sented in Fig. 9 where the NPM is plotted versus system size
for the MCLMS (diamonds), subspace approach (circles) and
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Figure 7: Channel zeros for true common zeros (circles) and
identified ones (crosses).
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Figure 8: Impulse response of (a) the true channel h1 and (b)

estimated channel ĥ1 using the proposed approach.

the proposed method (squares). It can be seen from that,
the proposed method provides an averaging 5 dB improve-
ment of NPM over the subspace method, while the MCLMS
method does not converge at all in the presence of common
zeros.

In Fig. 10, we compared the NPM performance of the
proposed approach and subspace approach [5] in the pres-
ence of noise, using the SIMO system in Fig. 5. It is seen that
the proposed method is much more robust robust to common
zeros and appears to perform better than the subspace method
for SNR > 30 dB, , where more than 10 dB improvement of
NPM is observed at SNR = 40 dB.

5. CONCLUSIONS

We have considered the problem of common zeros in blind
system identification algorithms. It has been demonstrated
that as channel zeros become closer, the performance of
MCLMS algorithms is degraded. We have also demonstrated
that zeros of large order polynomials tend to be close to
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Figure 9: NPM vs. system size for channels identified with
the MCLMS (diamonds), the subspace method (circles) and
the proposed approach (squares).
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Figure 10: NPM vs. SNR for the subspace method (circles)
and the proposed approach (squares).

the unit circle and hence the likelihood of common zeros
is increased. Consequently, we proposed a new two-stage
approach where characteristic (non-common) zeros compo-
nents are identified using a multichannel subspace approach
and the common zeros component is obtained with a sin-
gle channel method. Simulation results for various channels
confirmed the efficiency of our method demonstrating up to
40dB improvement in NPM over existing methods.
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