
 

 
Abstract—High node mobility and transient connectivity in 

Vehicular Ad Hoc NETworks have introduced numerous 
challenges in the design of efficient communication protocols 
for these networks.  Toward the goal of efficient design of such 
networks, the focus of this work is to develop methods that will 
allow the estimation of a wireless link’s future quality and the 
remaining (residual) time for which this will remain efficiently 
active and useful for data transmission. Such information can 
serve as key input to the routing algorithms and data 
dissemination for VANETs. Specifically, we propose a cross-
layer approach to the link estimations by introducing a 
method that utilizes the received signal strength of data 
packets.  Small scale fading induced by the relative movement 
of the nodes, limited knowledge of the signal, caused by the 
fact that the received energy metric will be numerically 
available only when packets are sent, and the small number of 
available samples of the metric make the problem challenging. 
To overcome these, a signal processing technique, Empirical 
Mode Decomposition is used along with robust regression for 
the prediction of link quality and residual time. The validity of 
the proposed methods are tested and validated via extensive 
simulations.  

 
Index Terms—Vehicular Ad Hoc Networks, link quality, 

link residual time, mobility prediction, received signal 
strength 

I. INTRODUCTION 
HE field of Vehicular Ad hoc NETworks (VANETs) is 
constantly drawing research attention due to the wide 
range of technological applications that they have and 

the special characteristics and technical challenges that they 
exhibit. They offer a tempting solution for inter-vehicle 
communications without the need for infrastructure and 
compared to existing technologies such as cellular GPRS or 

3G networks, they reduce the cost by employing the ad-hoc 
wireless paradigm. Constituting a subclass of Mobile Ad 
hoc NETworks (MANETs), VANETs are self configuring 
networks of mobile routers connected via wireless links, 
and need to rely on the nodes themselves to perform 
network management functions. They are however much 
distinguishable from most generic MANETs, in the sense 
that their inherent attributes make the design of efficient 
communication protocols much more challenging.  

One of the biggest challenges in VANETs is the high 
mobility of the nodes, which results in frequent 
fragmentation and short-lived links. Prior knowledge of 
existing links’ residual time, their future quality or 
notifications of imminent breakage of a link could assist the 
routing decision to a great extent. The availability of such 
information is crucial for the selection of appropriate 
routes, or the forming of clusters within the network. More 
importantly, it is essential in seamless handoff processes, 
where the discovery of a new route can be initiated before 
the current one breaks to avoid disruption of data flow. The 
study and development of techniques for predicting such 
link quality information is the focus of this work.  

A method using global positioning system (GPS) 
information to predict the link expiration time is presented 
in [1]. A free space propagation model is assumed and the 
duration of a connection between two nodes is then 
calculated based on the transmission range, speed, direction 
and position of the nodes. However, being within range 
does not necessarily guarantee radio connectivity and closer 
physical distance does not always imply better link quality, 
especially in an urban environment.  

The use of link quality feedback in terms of signal 
strength is considered in [2], where the metrics of signal 
strength and location stability are introduced. Beacon 
messages are exchanged between the nodes to maintain 
connectivity. These are sent at regular intervals, once every 
time quantum. Signal strength is taken into account by 
calculating the exponentially smoothed average of the 
signal strength of every packet received by a specific 
sender. In order to monitor the temporal stability of the link 
they record how long beacons have been continuously 
received with a strong signal. Similarly, [3] use the 
smoothed SNR value to evaluate the link. Nevertheless, no 
details as to how or how often the signal-to-noise ratio 
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(SNR) is sampled, or results on the success of these 
monitoring techniques are given in the afore-mentioned 
studies. These approaches cannot provide any information 
other than the exponentially smoothed average value of 
SNR from previous samples. This cannot be utilized to 
predict the link residual time, which is defined as the 
remaining time interval until the link quality (e.g., in terms 
of received signal power) drops below a given level. 
Moreover, exponential smoothing gives a smoothed but 
lagged version of the available data, rather than an 
extrapolation into the future. 

The novelty of this work lies in utilizing information 
available in the physical layer for estimating the future link 
quality and the residual time of the link between a given 
pair of nodes that lie in the proximity of each other using 
signal processing methods when sparse samples of the 
received energy are available.  The proposed techniques are 
validated by running computer simulations for short 
duration links (approximately 10 seconds to 2 minutes) that 
are affected by small scale fading. More precisely, the 
signal strength of all packets transmitted by a node is 
monitored by each neighboring node, so that a time series 
of received energy samples is formed. The time series is 
then used by each node individually, producing estimates 
concerning the link between the two nodes.  Every time a 
new packet is received, the method is applied so that new 
estimates can be acquired. Empirical Mode Decomposition 
and robust regression techniques are used for the 
estimation. 

The rest of the paper is organized as follows. We firstly 
address in Section II issues concerning realistic simulation 
of the temporal changes in the channel and sampling. 
Sections III and IV present the new techniques based on 
regression and Empirical Mode Decomposition. Results 
revealing the performance of the proposed techniques are 
presented in Section V and finally we conclude. 

II. SIMULATION PRODUCED DATA AND SAMPLING 
In order to evaluate any prediction method, we need to 

produce a series of data that resemble the temporal changes 
of the actual received signal strength as accurately as 
possible. It is very important that the small scale fading 
(high frequency noise), caused by the relative movement 
between transmitting and receiving nodes as well as the 
temporal changes in the channel, is depicted in our test data. 
At this point it must be clarified that it is the large scale 
phenomenon that we are trying to capture and predict, 
namely the change in the average value (either attenuation 
or amplification) caused by change in the relative distance 
between sender and receiver or by loss/disturbance of line 
of sight or other changes in the environment. However, 
changes in the signal due to small scale fading are not to be 
neglected as they will greatly affect the performance of the 
algorithm. The reason for this is that small scale fading may 
cause rapid fluctuation of the signal by as much as three or 
four order of magnitude (30-40 dB) when the receiver is 
moved by only a fraction of a wavelength [4], introducing 

considerable noise. Therefore, we employ the Rayleigh 
fading channel model, and specifically, the Jakes channel 
model for the Doppler spectrum. 

In order to model the distance dependence of the 
received energy, we attenuate the signal by assuming that 
the received strength is declining proportional to da where a 
is the attenuation exponent factor and d is the distance 
between the sender and receiver. Details about the 
modeling of the distance are described in Section V. 

As far as sampling is concerned, we distinguish two 
different situations. The first is when there already exists a 
data flow on the link so the monitoring can actually be very 
frequent. As for the other case, we have to rely on “hello” 
messages, sent by the nodes to retain connectivity or on 
overhearing packets transmitted by the neighboring nodes 
on other links via the wireless medium. The regularity and 
duration of the packets received will greatly affect the 
performance of any algorithm used, since these constitute 
the time series that will act as input for the method. More 
specifically, when the packet is longer, our data will be 
more insensitive to the noise induced by small scale fading, 
as this will be averaged out to a certain extent. The data will 
also be less noisy for higher speeds due to the larger value 
of Doppler frequency. In addition, the data will be aliased, 
since the frequency with which packets are sent, i.e., our 
sampling frequency, does not satisfy the Nyquist criterion 
for the frequency of the noise. The initiation of the method 
occurs after packets have been received for 3 seconds. Short 
lived links and infrequent reception of packets may mean 
that in certain cases the maximum number of samples 
available as inputs to the prediction method is 15 or lower, 
while this number increases to hundreds if the relative 
speed between the vehicles is low and if packets are 
transmitted more frequently.  

III. EMPIRICAL MODE DECOMPOSITION 
Because of the noise that heavily influences our data, we 

apply a denoising (i.e. noise removal) process. This 
involves smoothing of the available data by using Empirical 
Mode Decomposition (EMD) [5]. Using EMD for the 
signals in question is well justified, since this method 
considers oscillations at a very local level. It is in this way 
suitable for non-stationary signals, such as the received 
energy for mobile nodes, as the speed with which the 
channel changes, and hence the Doppler frequency is 
variable. Furthermore, it also applies for non-periodically 
distributed samples in time, so missing packets or packets 
that are not sent periodically can be handled by the method.  

Very briefly, EMD is a signal processing technique that 
comprises of successive steps gradually dissecting the 
signal into local detail d(t) (high local frequency part) and 
local trend m(t) (low local frequency part). The procedure, 
presented in [5] and summarized in [6], includes the 
computation of the lower and the upper envelope of the 
signal, emin(t) and emax(t) respectively, by interpolating 
between local extrema. The local trend can then be 
identified as the mean of the envelopes: 
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while the local detail is what remains of the signal: 
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A sifting process is then applied by iterating the trend 
extraction on the local detail until certain conditions are 
met. The resulting local detail after the sifting process is the 
first intrinsic mode function, c1. The intrinsic node function 
is then subtracted from the signal and the whole procedure 
is reapplied, so that in the end the signal is dissected into a 
number of intrinsic functions and the residual, which is the 
global mean linear trend of the signal: 

n
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i
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The smoothing process we use includes decomposing the 
available samples with EMD, using the criteria described in 
[6] for the halting of the sifting process, up to the point 
where oscillations occurring because of small scale fading 
are eliminated, to the possible extent. In practice, this is 
achieved by adding the last extracted intrinsic mode 
function with the residual, as given being the output of the 
EMD algorithm. The overall effect is that of locally 
smoothing the data. 

Fig. 1 shows an example on how EMD smoothing will 
denoise our data: the channel state at all times (considered 
unknown) is depicted, together with the samples available 
to us. The EMD smoothed version of the samples is shown 
together with the exponentially smoothed version for 
comparison (a typical value for the smoothing parameter, 
α=0.15 has been chosen). 

IV. REGRESSION TECHNIQUES 

A. Critical Points Identification 
  In order to apply the regression model on the samples, it 

is of vital importance that turning points on the data are 
promptly identified. Turning points are defined as the 
extrema of the received energy on the large scale, implying 
change of direction of the relative movement between the 
two nodes. We distinguish two phases, the improving phase 
when nodes move closer to each other and as a result the 
link quality improves, and the deteriorating phase, when 
nodes move apart from each other. Identification of such 
points is crucial, as any data before the turning point need 
to be discarded before applying the regression algorithm. 
Correct identification should occur as soon as possible. The 
process of determining those critical points, is however not 
trivial, as the noise is contained in the data in a way that the 
zero derivative method would yield false results. The 
method used involves denoising of the time series using 
EMD and identification of the turning points on the 
denoised signal based on a combination of a simple 
differentiation method with localization of extrema based 
on their surroundings.  
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Fig.1 Comparison of EMD and exponential smoothing denoising. The 
temporal state of the channel and the samples if packets are received 
periodically every 500 msec are sent are also plotted.  

B. Applying Regression  
As it is the large-scale path loss aspect that we want to 

derive out of the sampled data, we can apply regression, 
treating small scale fading and other random variations in 
the received signal strength and measurement errors as 
noise. Regression techniques consist of assuming a 
functional relationship to exist among the data and then 
estimating the parameters of this relationship [7].  

According to [4], both theoretical and measurement-
based models indicate that the received energy in decibel 
for outdoor channels varies according to the log-distance 
path loss model, which is an extended generalization of the 
Friis equation: 

itr n
d
dnPLEE ++= ))(log10(

0
100 ,       (4) 

where PL0 depends on the frequency, antenna gains and 
other system loss factors, n is the path-loss exponent 
depending on the specific propagation environment (e.g. 
existence of obstructions), d is the separation distance and 
ni is the noise caused by small scale fading. Assuming all 
these factors except for distance as constant, we get  

ir ndacE ++= )(log10                 (5)
 If we assume constant speed over certain time intervals, 
thus having  

,,)( iconst Ttutu ∈=               (6) 
or equally accept that speed will not dramatically change, 
so that we can average over this time interval: 

,,)( iTtutu ∈=                 (7) 
then we finally have  

iTtutd ∈= , .                 (8) 
Putting (8) into (5) leads to modeling the received energy 

according to the following equation: 
,log10 ε++= btaE                 (9) 

where ε accounts for the error introduced by variations of 
other forms that are not taken into account by the log 
distance model (including small scale fading, errors of 
measurement and sampling biases). 

Utilizing given pairs of energy values and the time 
instances on which these were sampled (i.e., measuring the 
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energy level of the signal in received packets and keeping 
track of the times on those where received), we can regress 
on (9), acquiring values for a and b. We can then use these 
values to obtain estimates of the energy level at some time 
(tf) in the near future or the link’s residual time until the 
value of the received energy drops below a specified 
threshold  γ, according to the following equations: 

btaE f += 10logˆ                (10) 

ttTRL b
a

−=
−γ

10)(ˆ                (11) 
We compare two different methods of regression, namely 

simple regression and robust regression. Simple regression 
gives an estimate of a and b by solving  

,))((log))(log))(((log],[ 10
1

1010 STTTba TT −=   (12) 
where T is the vector of times and S is the vector of the 
samples of energy received at these times. Eq. (12) is well 
known to minimize the sum of squares errors on the 
observed values: 
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where N is the number of available samples. 
Robust regression is an iterative form of simple 

regression, where pairs of independent and dependent 
variables are assigned weights based on the residuals from 
the previous iteration. This way, the parameters acquired 
are less sensitive to outliers that may exist among the 
sampled data. Specifically, we try to minimize the weighted 
sum of the square errors: 
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where W is the diagonal matrix containing all weights. 
For each iteration the weight at each point is a bisquare 

function of the residual of the previous iteration: 
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where tune=4.685, s is an estimate of the standard deviation 
of the error term and hi is the leverage value from a least 
squares fit. 

V. PERFORMANCE RESULTS OF THE PROPOSED METHODS 

A. Settings 
The methods are evaluated by considering a pair of nodes 
that move relative to each other. Packets are assumed to be 
sent periodically with the intervals ranging from 0.25 to 1 

second. These may be either ‘hello’ packets or data packets 
being exchanged within the network, whose energy is being 
monitored by the nodes. Each packet transmission lasts 5% 
of the time interval, so that there is constant traffic load. 
This means that packets transmitted more frequently will 
last less and thus the time series will contain more samples 
but it will also be noisier, as explained in Section II. The 
relative speed between nodes ranges between 1 and 8 m/sec 
(uniform distribution). The value chosen from the uniform 
distribution is contaminated with additive white Gaussian 
noise (SNR=10). This reflects a situation where the 
movement is quite stable in time, but it is realistic, since 
speed varies for the whole duration of the movement. The 
frequency used to calculate the Doppler effect is that of 
IEEE 802.11g, namely 2.4 GHz. The threshold for efficient 
communication is -110 dBm.  Any samples below the 
threshold are considered not received and not processed by 
the method. The initial distance between the nodes for 
sections C and D is uniformly distributed between 1 and 
100 m. All simulations were run on Matlab.  

B. Critical Points Identification 
We hereby evaluate the proposed method of finding 

turning points. Table I shows turning points that were 
missed by the algorithm as a percentage of the total turning 
points for different time intervals between packets. 
Moreover, the percentage of false alarms (the method 
indicated a critical point when there was none) over the 
total alarms is given. False alarms should be avoided, but in 
general they do not influence the method as a whole that 
much. We can observe that the method yields more false 
alarms when more frequent but shorter packets are 
received. This was expected, as these data contain more 
noise. Because our samples are sparse in time, we can not 
expect to exactly match the critical point. The sensitivity is 
the time interval between samples. Fig. 2 shows the 
absolute mean error in the detection of the time on which 
the critical point (tcp) is observed relatively to the time 
interval (T) used: 

T
tt

r cpcp
ˆ−

=                     (17) 

The distance between sender and receiver is derived 
through a model that assigns values for the relative speed 
between the two nodes as described in part A of this section. 
Nodes are initially placed in random positions within range. 
The minimum distance that will be achieved between them 
is uniformly distributed between 1 and 50 m. Changes in 
the direction of the relative movement are allowed only 
after a considerable amount of distance has been covered 
maintaining the previous direction. This model  
successfully reproduces the changes in distance between 
vehicles that move in a sequential way, one following the 
other, coming closer and further to each other as their 
relative speed changes over time, vehicles moving almost 
randomly in a tactical environment or simply vehicles 
passing past each other. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2008 proceedings.



 

The results presented are the mean values for 400 
different time series obtained by simulations. 

TABLE I 
Time Interval (sec) 0.25 0.5 0.75 1.0 

Missed Turning Points (%)
False Alarms (%)

0 
2.5 

0 
0.25 

0 
0 

0.5 
0  

Percentage of false alarms and missed turning points using the Critical 
Points Identification Method. 

 
Fig.2  Accuracy in critical points identification in terms of the mean 
relative error, as this is defined in (17), plotted versus the time interval 
between received packets. 

C. Prediction of Received Energy 
The prediction is made for the time that the next packet is 

expected to be received, thus after one time interval. Since 
we aim at predicting the average received energy, the true 
value at the time of prediction is the average received 
energy over a time period equal to half of the time interval, 
so that high frequency noise is averaged out for the 
calculation of the true value. Prediction at each time point is 
based on the packets received so far. 

The mean absolute error for different values of the 
interval between received packets is shown on Fig. 3. The 
methods compared are simple and robust regression on raw 
and EMD filtered data.  

  The results presented were obtained by running 
simulations for 800 different time series. We have averaged 
over the mean error of the time series that corresponded to 
same time intervals between packets. 
  We note that the best performing method for smaller time 
intervals is using robust regression on EMD filtered 
samples. The smaller the time interval, the more packets are 
received, thus enabling better estimation. However, for 
bigger time intervals, the packets received last longer, as we 
have made the assumption of constant traffic load. After a 
certain point, when the duration of the packets becomes 
large enough, noise tends to be averaged out to a certain 
extent. This is the reason why robust regression on raw data 
will perform better than robust regression on emd denoised 
data as the time interval increases. The denoising process 
achieved by EMD will rather distort than improve the 
quality of the data (it should be reminded here that robust 
regression entails denoising in itself). 
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Fig. 3  Mean absolute error of received energy prediction plotted against 
the time interval of the packets that are periodically received.  

D. Residual Link Time (RLT) Prediction 
It is generally very intricate to numerically evaluate an 

RLT prediction algorithm, because there is no specific time 
point when a receiver will suddenly stop receiving 
messages. The receiver’s efficiency in successfully 
collecting packets from a specific sender will deteriorate as 
the channel conditions worsen and as the distance between 
them increases. However, due to small scale fading we 
cannot distinguish a certain moment in time from which 
communication will fail, as deep fades in received energy 
may cause a packet to be lost although successive packets 
will be efficiently received. What is more, a receiver’s 
sensitivity is not a strictly set value. 

In order to calculate the RLT error, a nominal value of 
the residual time is necessary. We fit a logarithmic function 
to the temporal condition of the channel state and assume 
that link failure occurs on the time point Tf on which the 
fitted function drops below the specified threshold for 
successful communication. What is meant by channel state 
is the received energy in dBm as a function of time, had the 
transmitter been transmitting continuously. This 
information is available in our simulations. Fig. 4 further 
clarifies the definition of Tf. An example of how the 
received energy varies in time is given. Note that this is not 
the received energy in the receiver, as our samples are 
sparse, but a depiction of the channel state. Given this 
vagueness in defining actual RLT, a certain level of error 
should be allowed when predicting the link’s residual time. 

Mean absolute error for RLT estimation based on raw 
and emd filtered data versus the time interval between 
received packets is plotted in Fig. 5. Robust regression has 
been used. Estimation based on EMD filtered data performs 
better in every case. As the time interval, and therefore the 
duration of the packets, becomes longer, our data are less 
noisy, as explained in the previous sections. For this reason, 
estimation based on raw data tends to approach  estimation 
based on the denoised data for bigger time intervals 
between packets. 

As more packets are received and our time series grows 
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longer, RLT estimation improves. We have added a 
convergence criterion to decide whether the RLT estimation 
made is acceptable or not. In the average case, the 
algorithm converges after approximately 10 seconds. 

The results presented were obtained by running 
simulations for 1000 different time series. We have 
averaged over the mean error of the time series that 
corresponded to same time intervals between packets. 
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Fig.4  The intricacy of calculating actual RLT. Our error estimations are 
based on Tf  being considered as the link breakage point.  
South 
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Fig. 5  Absolute RLT prediction error versus time interval between 
received packets. 

VI. UTILIZATION OF THE METHODS FOR THE DESIGN OF 
NETWORK PROTOCOLS 

Of equal importance to the prediction of the RLT of the 
link or the future level of the received signal strength is the 
way that these will be utilized to support routing decisions. 
The algorithms developed need to be capable of indicating 
the right time point for a handoff and realizing it, as 
described in [2]. The term handoff in the routing context 
describes the process of discovering and start using a new 
route just before the current one expires, so that no gap in 
communication is observed. Ideally, an interruption on any 
of the paths comprising the route should pass unobserved at 
the higher layer, since the routing protocol should have 
regulated this by switching paths before the interruption 
occurs. In this way, seamless QoS can be offered at the 
application level. Additionally, during the construction of a 
new route, links with higher residual time and/or better 

expected link quality should be preferred. A very detailed 
analysis of adapting existing routing algorithms (both 
proactive and reactive) for MANETs to this direction is 
given in [1], if the RLT can be calculated. 

Estimation of RLT is also substantial for the design of 
clustering algorithms, where the prediction of the link 
residual time can be useful in deciding whether a node will 
become member of the cluster. 

VII. CONCLUSIONS AND FUTURE WORK 
In this work we underlined the importance of predicting 

the future link quality in terms of received signal strength 
and residual time of wireless links between a pair of 
moving nodes for the enhancement of routing algorithms 
for vehicular ad-hoc networks. The method developed was 
based on sampling the signal strength of the packets 
received and was tested via simulations depicting 
realistically the randomness of the channel state. No 
assumption of knowledge of the speeds and positions of 
neighboring nodes has been made. The method uses the 
packets that are transmitted over the network (“hello” 
messages and packets transmitted on existing data flows) 
and thus incurs little bandwidth overhead. 

Future work includes further development and study of 
estimation methods, including non-linear parameter 
estimation for estimating the initial distance between nodes, 
study of performance for different traffic loads, assumption 
of non-periodically distributed samples in time, extension 
of RLT to route residual time, extension of proposed 
methods to predicting link quality and residual time based 
on signal-to-interference-plus-noise ratio (SINR) 
measurements; integration of the prediction methods into 
efficient routing protocols and data dissemination 
algorithms for VANETs 
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