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Abstract—In this paper, we propose a spectrally efficient coop-
erative transmission protocol for multiple access scenarios. The
key feature is to utilize multi-user diversity and fully exploit the
dynamic nature of radio propagation. In particular, by carefully
scheduling the multiple sources and relays’ transmissions, a
source with a poor connection to the destination can have higher
priority to obtain help from a relay with better channel cond ition.
As a result, the full diversity gain is achievable even though only
a fraction of relays is scheduled to help each user. We developed
an achievable diversity-multiplexing tradeoff for the proposed
transmission protocol to assist performance evaluation. When
the number of relays is large, the diversity-multiplexing tradeoff
achieved by the proposed scheme can approximate the optimal
multiple-input single-output upper bound. Both analytical and
numerical results show that the proposed protocol outperform
other comparable schemes in most conditions.

I. I NTRODUCTION

As an alternative to multiple-input multiple-output (MIMO)
techniques, cooperative diversity offers an efficient and low-
cost way to provide spatial diversity, which is effective in
combating multipath fading in wireless environments [1]. By
encouraging single-antenna nodes to cooperatively share their
antennas, a virtual antenna array can be formed and the
robustness of reception can be improved without requiring
extra hardware cost. Initial studies focused on the basic sce-
nario of a source-destination pair [2], [3]. More recent studies
for cooperative diversity have focused on more realistic and
practical communication scenarios, such as multiple access
channels (MAC), broadcasting channels, interference channels
and the two-way relaying scenario [4], [5]. For example,
the use of relay selection has been applied to multi-source
multi-destination scenarios in [6], which can achieve the full
diversity gain but suffer some loss of multiplexing gains in
order to avoid co-channel interference.

The multiple access channel is an important communication
scenario and has been recognized as one of the fundamental
building blocks for modern wireless networks [7], [8]. Its
application can be found in wireless sensor networks, where
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a data fusion center collects data from multiple sensors,
and in traditional cellular networks, where multiple users
communicate with a base station. In [4] a cooperative multiple
access (CMA) transmission protocol was proposed; similar
work based on superimposed modulation can be found in
[9]. In general, these CMA schemes only exploit cooperation
among the source nodes and hence their achievable diversity
gain is constrained by the number of source nodes. Recall that
in a wireless network, the number of active users is typically
much smaller than the idle ones, which can be utilized as
dedicated relays. Hence it is of interest to invite idle nodes to
cooperate as relays, and to exploit them as an extra dimension
to further enhance the system robustness. However, relays
are different from sources in the sense that they only repeat
what has been transmitted, and hence it is desirable to reduce
the bandwidth consumed by such relay transmission. This
motivates the application of network coding over cooperative
diversity to improve its spectral efficiency [10], [11]. However,
for many network coded cooperative transmission schemes,
the computational complexity at the intermediate relay nodes
could be high due to the complicated operations for decoding
and encoding the received mixture. Note that the idea of using
dedicated relays has been previously proposed in [12], [13].
Specifically, provided that all nodes are only equipped witha
single antenna, a study of the diversity-multiplexing tradeoff
has been carried out for the multiple access scenario with one
relay. And [12] the number of relays has to be assumed to be
less than the number of source nodes.

In this paper, we propose a new relay-assisted coopera-
tive transmission protocol for multiple access communication
scenarios with dedicated relays. By carefully scheduling the
transmissions of multiple sources and relays, a source witha
poor connection to the destination is given a higher priority
in order to obtain better service from the relays. Hence the
maximum diversity gain becomes achievable for each user,
with only a fraction of the relays scheduled to help any
given user. A non-orthogonal transmission strategy is also
applied, where the source transmission and relay forwarding
take place at the same time. Since relay transmission is onlyto
repeat what has been sent, it is desirable that the bandwidth
resource consumed by relaying be as small as possible. By
introducing non-orthogonal transmission, it becomes possible
for relay forwarding and source transmission to share the same
bandwidth, which ensures a more efficient use of bandwidth
compared with orthogonal transmission schemes.

Diversity-multiplexing tradeoffs have been widely used to
evaluate the spectral efficiency of MIMO techniques. Since a
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cooperative network can be viewed as a special case of MIMO,
it is desirable to develop the diversity-multiplexing tradeoff for
the purpose of performance evaluation. Following the defini-
tion of the MAC outage events provided in [8], the outage
probability achieved by the proposed transmission protocol is
studied. The fact that the sources and relays are no longer
scheduled randomly, unlike the schemes in [2], [4], makes
it difficult to obtain explicit expressions, since the channel
coefficients are ordered in a certain way. Thus, order statistics
[14] are applied here to obtain closed-form expressions of
the outage probability. In particular, an achievable diversity-
multiplexing tradeoff is developed for the proposed relay-
assisted CMA scheme. When the number of relays is large,
we show that the diversity-multiplexing tradeoff achievedby
the proposed scheme approaches the optimal tradeoff achieved
by the classical multiple-input single-output scheme. Com-
pared to the CMA schemes in [4], [9], the proposed scheme
achieve a better diversity-multiplexing tradeoff in the low and
intermediate multiplexing gain ranges, and eventually become
the dominant scheme with a sufficiently large number of
relays. Monte-Carlo simulation results also demonstrate the
performance of the proposed transmission protocol.

This paper is organized as follows. The proposed cooper-
ative multiple access transmission scheme is described in in
Section II. The diversity-multiplexing tradeoff of the proposed
protocol is studied in Section III and numerical results are
provided. The details for the development of the diversity-
multiplexing tradeoff are provided in Section IV. Finally,
concluding remarks are given in Section V.

II. D ESCRIPTION OF THE COOPERATIVE MULTIPLE ACCESS

CHANNEL SCHEME

We consider a setting whereM source nodes deliver data
to a common destination. In addition there areL relay nodes
helping the communication between the sources and destina-
tion. Each node is constrained by the half duplexing assump-
tion, where one node can not transmit and receive at the same
time. Time division multiplexing access is considered heredue
to its simplicity. All channels considered here are assumedto
experience quasi-static identical independent Rayleigh fading.
And all nodes, including the sources and relays, use the same
transmission power.

A. Initialization

In this paper, the decode-forward (DF) strategy is used for
relay transmission. We assume that each relay has the local
channel state information (CSI) for the incoming and outgoing
channels. Such CSI information can be obtained by asking the
M source nodes and the common destination to broadcast pilot
signals. In total,M+1 time slots are required for such training
signaling. Note that one time slot for training is unavoidable
for the DF scenario with a single source-destination pair [2].
GivenM source nodes,M time slots will be consumed also
for the traditional scheme, and the proposed transmission
strategy only requires one extra time slot due to the broadcast
transmission by the destination.

Similar to [2], we assume that each of theL relays can
decode them-th source information if the source-relay channel
satisfieslog(1 + ρ|hmri

|2) ≥ R, wherehmri
is the coefficient

for the wireless channel between them-th source and the relay
ri, R denotes the targeted data rate, andρ denotes the average
received signal-to-noise ratio (SNR), which is assumed to be
the same at each relay and the destination. Consider the index
set of relays that can decode the transmission from all sources:
{i : |hmri

|2 ≥ 2R−1
ρ , ∀m ∈ {1, · · · ,M}}. The motivation for

such a relay set will be discussed in the next section. Let
K denote the size of this qualified relay set. Note that it is
assumed that there are a lot of relays, or idle nodes, in the
network, which is valid for classical wireless sensor or cellular
networks. For example, in a lecture hall, the total number of
mobile users could be extremely large. Among these users,
there are only a few ones making phone calls at a particular
moment, whereas the rest of the users is idle. According to
the proposed scheme, idle users can be used as relays and
hence the number of relays, or idle users, can be quite large.
Similar scenarios with a large number of relays can be found in
those dense sensor networks. Through an error free signalling
channel, the destination obtains the number of the qualified
relays and determines the size of each data frame asN = QM
whereQ = ⌈K+1

M ⌉. Note that a node from the relaying set
will be always qualified for the whole frame since quasi-static
fading is considered here.

B. Cooperative Transmission

In contrast to the CMA strategies presented in [4], [9],
the M source nodes are not scheduled in a round-robin
way. Instead, the source with the poorest connection to the
destination transmits first. In other words, theM source nodes
are scheduled for transmission to satisfy

|h1|
2 ≤ |h2|

2 ≤ · · · ≤ |hM |2.

wherehm denotes the coefficient of the channel between the
m-th scheduled source and the destination. Similarly, theK
qualified relays are scheduled to satisfy

|g1|
2 ≤ |g2|

2 ≤ · · · ≤ |gK |2.

where gk denotes the coefficient for the channel between
the destination and the relay scheduled at the(K − k + 1)-
th time slot1. The reason for such a schedule is to ensure
that a source with a poor connection to the destination will
receive better help from the relays than a source with a good
connection. The details of the transmission protocol follow.
The relay selection can be accomplished by using a centralized
strategy, where the feedback ofLM complex-valued channels
is required. To reduce the system overhead for scheduling
sources and relays, the distributed selection strategy proposed
in [15] can be applied. In particular, source transmissionscan
be scheduled in a distributed way by setting their backoff
time proportional to the quality of their source-destination
channels, whereas relay transmissions can be scheduled by

1Note that the relay associated withgk is not scheduled at thek-th time
slot. The reason to have different sorting notation for the relays and sources is
to simplify the development of analytical results, as shownlater in this paper.
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setting their backoff time to be inversely proportional to the
qualities of the relay-destination channelsgi. As a result, only
theK qualified relays are active and each of them needs to
feedback one digit flag, which consumes much less system
overhead than the centralized scheme. Similar to [3], [4],
non-orthogonal transmissions have been adopted and hence
medium access control protocols have to be designed carefully,
which is beyond the scope of this paper.

The source with the channel coefficienth1 is scheduled to
transmit a message,s1(1), during the first time slot of each
data frame. AllK qualified relays decode the message and
store it in their memories. The destination receives

y(1) = h1s1(1) + n(1),

wheren(i) denotes the additive white Gaussian noise at the
common destination. During the second time slot, the relay
with the largest coefficientgK (the best relay-destination
channel) is scheduled to help the user with the poorest channel
condition and forwards1(1). At the same time, the source
associated withh2 is scheduled to transmit a new message
s2(1). The destination receives the superimposed observation

y(2) = h2s2(1) + gKs1(1) + n(2).

Although the remaining(K − 1) qualified relays also receive
a mixture, the qualification criteria guarantee that each of
them can decodes2(1) via simple successive decoding, since
they were able to decodes1(1). Hence at then-th time slot
(n = 1, . . . , N ), the source withhn′ is scheduled to transmit
a new messagesn′(⌈ nM ⌉) wheren′ = (n mod M). At the
same time, forn ≤ K, the relay with gK−n+1 will be
scheduled to transmit its previous observation. Forn > K,
all qualified relays have been used and hence non-cooperative
direct transmission will be adopted2.

As a result, the signal model for one data frame can be
written as

y = Hs + n, (1)

where y =
[
y(1) · · · y(N)

]T
, s =

[
s1(1) · · · sM (1) · · · s1(Q) · · · sM (Q)

]T
,

n =
[
n(1) · · · n(N)

]T
and the channel matrix is

H =
















h1 0 · · · · · · · · · · · · 0

gK h2 0
...

...
... 0

...
. . .

. . .
...

...
...

...
0 0 g1 h(K+1)′ 0 · · · 0
0 0 0 0 h(K+2)′ 0 0
...

...
...

...
. . .

. . .
...

0 0 0 0 0 0 hM
















N×N

2Note that CSI between relays is needed for the proposed cooperative
scheme. Such inter-relay CSI can be obtained in the following two ways.
One is to ask each of theK qualified relays to send training messages,
which consumes extra system overhead. The other is to utilize the fact that
each relay has some priori information for the received mixture, and apply
the channel estimator based on so-called first-order statistics [16]. In such a
case, dedicated training information is no longer needed, and the redundant
structure of cooperative transmissions can be utilized to yield low-cost channel
estimation.

An example for the signal model withK = 4 andM = 3
is shown as following











y(1)
y(2)
y(3)
y(4)
y(5)
y(6)











=











h1 0 0 0 0 0
g4 h2 0 0 0 0
0 g3 h3 0 0 0
0 0 g2 h1 0 0
0 0 0 g1 h2 0
0 0 0 0 0 h3





















s1(1)
s2(1)
s3(1)
s1(2)
s2(2)
s3(2)











.

III. D IVERSITY-MULTIPLEXING TRADEOFF FOR THE

PROPOSEDCMA

The aim of this section is to analytically evaluate the per-
formance of the proposed cooperative protocol by calculating
the diversity-multiplexing tradeoff. As can be seen from the
signal model (1), the structure of the channel matrixH is
not regular, which poses difficulties in obtaining an explicit
expression for the outage probability and the tradeoff. In the
following, we assume that the number of the qualified relays
plus one,K+1, is an integer multiple of the number of sources
M , which results in the following simpler channel matrix as

H =








h1 0 0 0
gK h2 0 0
...

. . .
. . .

...
0 0 g1 hM








N×N

. (2)

Later in this paper, Monte-Carlo simulation results will be
provided without assuming such a relationship betweenK and
M .

A. Achievable diversity-multiplexing tradeoff

First we recall the definition of the diversity gain and
multiplexing gain as [17]

d , − lim
ρ→∞

log[Pe(ρ)]

log ρ
, r , lim

ρ→∞

R(ρ)

log ρ
, (3)

wherePe is the probability of error of the maximum likelihood
detector andR is the data rate of a code. We say that a function
f(ρ) is said to be exponentially equal toρd, denoted asf(ρ)

.
=

ρd, when lim
ρ→∞

log[f(ρ)]
log ρ = d. The following theorem provides

an achievable diversity-multiplexing tradeoff for the proposed
cooperative protocol conditioned on the size of the qualified
relaying set.

Theorem 1: Assume that all addressed channels are i.i.d.
quasi-static Rayleigh fading and the number of qualified relays
isK = QM−1. The following diversity-multiplexing tradeoff
is achievable.

dK(r) = (1 − r) + [K − (K +M)r]+, (4)

where(x)+ denotemax{x, 0}.
Proof: The details of the proof for this theorem will be

provided in Section IV.
Recall that the number of the qualified relaysK is dynami-
cally changing according to instantaneous channel realizations.
Hence we would like to have the diversity-multiplexing trade-
off in terms ofL. The important relationship betweenK and
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the total number of relaysL is characterized in the following
lemma

Lemma 2: Assume that all addressed channels are i.i.d
quasi-static Rayleigh fading. Then,

P (K = k)
.
= ρ−(L−k)(1−r).

asρ→ ∞.
Proof: Denotehri

as the channel which has the smallest
absolute value among the set containing theM channels
between thei-th relay andM sources. Consider the set
{hr1 , . . . , hrL

} which collects theL worst source-relay chan-
nels. Under the Rayleigh fading assumption, theseL variables
|hri

|2 are i.i.d with density function

f(x) = Me−Mx.

Consider theL channels ordered as|hr(1) |
2 ≥ . . . ≥ |hr(L)

|2.
The event that the size of the qualified set isK = k means
|hr(k)

|2 ≥ γ ≥ |hr(k+1)
|2, whereγ = 2R−1

ρ . By using order
statistics, the probability that the size of the qualified relay set
is K = k can be expressed as [14]

P (K = k) =
L!

(L− k)!(k)!
[1 − e−Mγ ]L−k[e−Mγ ]k, (5)

whereγ = 2R−1
ρ

.
= ρr−1, asρ → ∞. Whenρ → ∞, the use

of the exponential expansion yields

P (K = k)
.
=

L!

(L− k)!(k)!
(Mγ)L−k

.
= ρ−(1−r)(L−k).(6)

Combining Theorem 1 and Lemma 2, the overall outage
probability can be expressed as3

P (O) =

L∑

k=0

P (O|K = k)P (K = k) (7)

.
=

L∑

k=0

ρ−(L−k+1)(1−r)−[k−(k+M)r]+ .
= ρ−d(r).

where d(r) = (1 − r) + [L − (L + M)r]+ and the last
relationship follows from the fact that the error probability
with K = L is the dominant factor. For a fixed data rate, (7)
shows that the proposed cooperative multiple access scheme
can achieve the maximum possible diversity gainL + 1.
Thus, although each user only uses a fraction of the available
relays, this full diversity gain is still achieved with the help of
the opportunistic scheduling. Rewrite the achievable diversity-
multiplexing tradeoff as

d(r) =

{

(L + 1)
(

1 − r − M
L+1r

)

, if 0 ≤ r ≤ L
L+M

1 − r, if L
L+M < r ≤ 1

.

The optimal tradeoff for the traditional multiple-input single-
output (MISO) scheme can be expressed as [17]

dMISO(r) = (L+ 1)(1 − r), if 0 ≤ r ≤ 1.

3Note that the diversity-multiplexing tradeoff in Theorem 1is obtained with
the assumptionK = QM , which imposes a constraint on the realization of
K that is not considered here. For simulation results, this assumption about
K will not be used.

As the number of available relaysL becomes large for a fixed
number of sourcesM , the tradeoff achievable for the proposed
transmission scheme approximates the optimal MISO tradeoff,
d(r) → dMISO(r).

On the other hand, the diversity-multiplexing tradeoff
achieved by the CMA schemes in [4], [9] can be written as

dCMA(r) = M(1 − r), if 0 ≤ r ≤ 1.

The advantage of the proposed relay-assisted CMA is its
capability to exploit the relay nodes as an extra dimension
and enhance the robustness of reception, whereas the diversity
gain of the schemes in [4], [9] is constrained by the number of
source nodes. Such a capability to utilize relays is particularly
important for a network where the number of idle users is
much larger than the number of active ones. However, for a
large value of the multiplexing gainr, the DMT achieved by
the relay-assisted CMA is worse than those using the source
nodes only in [4], [9].

Obviously the opportunistic relaying scheme in [15] can
be straightforwardly extended to multiple access channelsby
applying the time sharing approach, which yields the diversity-
multiplexing tradeoffdos(r) = L(1 − 2r), 0 ≤ r ≤ 0.5 [18].
Another comparable scheme for multiple access transmissions
has been proposed in [6]. To combat co-channel interference,
the scheme in [6] requires2M time slots to transmitM
source messages, which results in the fact that its achievable
multiplexing gain is0.5 at most. Comparing to these two co-
operative schemes, the proposed transmission scheme achieves
larger diversity gains for the multiplexing gains1 ≥ r ≥ 0.5.

B. Numerical Results

The analytical results developed in the previous section
require the assumptionsK = QM − 1 andK = L. In this
section, we provide some numerical results based on Monte-
Carlo simulations that do not rely on these assumptions.

In the first experiment, the outage performance of the
proposed CMA scheme is compared with the superimposed
modulation based CMA in [4], [9] as well as the non-
cooperative scheme. The number of source nodes is set to
M = 2 and the number of relays is fixed asL = 5. The target
data rate is set toR = 4 andR = 8 bits per channel use
(BPCU). By increasing the target data rate, the performances
of all studied schemes decrease as shown in Fig. 1. We further
observe that the proposed CMA scheme achieves smaller out-
age probabilities compared with the two comparable schemes
for all SNR. The reason for this performance gain is that the
comparable cooperative schemes do not exploit the available
relays and their diversity gain is constrained by the numberof
sources.

In the second experiment, the outage probability achieved
by the proposed scheme is shown in Fig. 2 as a function of
SNR and with different numbers of relay candidates,L. The
number of source nodes is set toM = 2. As can be seen from
the figure, the robustness of the multiple access transmission
can be improved by increasing the number of the relays. As
indicated by Theorem 1, increasing the number of relays not
only increases the diversity gain, but also improve the spectral
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efficiency of the proposed CMA scheme since the tradeoff
achievable for the proposed scheme is approaching the optimal
MISO upper bound.

IV. PROOF OFTHEOREM 1

As discussed in [17], the error probability of the maximum
likelihood detector can be tightly bounded by the outage
probability at high SNR, and hence the outage probability
will be used as the criterion for performance evaluation in this
paper. Since the multi-user scenario is considered, the outage
event can be defined as [8]

O ,
⋃

A

OA, (8)

and the outage probability of the cooperative network can be
written as

P (O) = P

(
⋃

A

OA

)

≤
∑

A

P (OA), (9)

where

OA ,

{

I(sA;y|sAc ,H = H) < Q
∑

i∈A

Ri

}

, (10)

Ri denotes the target data rate for thei-th source,A ⊆
{1, . . . ,M} and |A| is denoted as the number of users in
A. Note that the symmetric tradeoff is of interest in this
paper, which means|A|R =

∑

i∈ARi. From the definition,
the mutual information for each outage event can be written
as

IA = log det
[
IN + ρHΓAHH

]
, (11)

where IA , I(sA;y|sAc ,H = H), and ΓA is formed by
removing the columns of the identity matrixIN corresponding
to columns ofH associated with the users inAc. TakeA =
{i} as an example. TheQ diagonal elements ofΓA are ones,
ΓA[(q − 1)Q+ i, (q − 1)Q+ i] = 1 for q ∈ {1, . . . , Q}, and
all other elements are zero.

According to the elements contained in the setA, the outage
events can be classified into three events.

• The first event, denoted byO1, is an event where one
user is in outage (i.e.|A| = 1). Furthermore,f(ρ) is said
to be exponentially smaller thanρd, denoted asf(ρ)≤̇ρd,
when lim

ρ→∞

log[f(ρ)]
log ρ ≤ d. The following lemma provides

an upper bound for the outage probability of this type of
events.
Lemma 3: Assume that all channels are i.i.d. Rayleigh
fading and the number of relays isK = QM − 1. The
outage probability for the eventO1 is upper bounded as

P (O1)≤̇ρ
−dO1(r),

wheredO1(r) = 1 − r + (K − (K +M)r)+.
Proof: See Appendix.

• The second outage event, denoted asO2, is the event
where the overall sum rate is in outage (i,e, the set
A contains allM users, |A| = M ). The following
lemma provides an upper bound for the outage probability
associated with such an event.

Lemma 4: Assume that all addressed channels are i.i.d.
Rayleigh fading and the number of the relays isK =
QM −1. The outage probability for the eventO2 can be
upper bounded as

P (O2)≤̇ρ
−dO2(r),

wheredO2(r) = M(1 − r) + (K − (K + 1)r)+.
Proof: According to the signal model, the sum rate

can be written as

IA = log det
[
IN + ρHHH

]
. (12)

It is easy to show thatHHH is a tridiagonal matrix, and
hence[IN+HHH ] is also a tridiagonal matrix. According
to [19], the determinant of a tridiagonal matrix can be
obtained iteratively as

Dn = [1 + ρ(xn + yn−1)]Dn−1 − ρ2xnyn−1Dn−2.

whereDn = det[In + Hn−1H
H
n−1], Hn is the n × n

top-left submatrix fromH, andxn and yn are then-th
element on the principle diagonal and subdiagonal ofH,
respectively. By using such a property, we can obtain the
following inequality

IA ≥ log





[
M∏

i=1

(1 + ρ|hi|
2)

]Q

+

[
K∏

i=1

ρ|gi|
2

]

 ,

whose proof can be accomplished by following similar
steps in [20]. Hence the outage probability can be upper
bounded as

P (IA < QMR) ≤ P
{
(z1 + z2) < 2QMR

}

≤ P
{
z1 < 2QMR

}
P
{
z2 < 2QMR

}

.
=

1

ρM−Mr
·

1

ρK−(K+1)r

wherez1 =
[
∏M
i=1(1 + ρ|hi|

2)
]Q

, z2 =
[
∏K
i=1 ρ|gi|

2
]

,
and the last inequality follows from the proof for Lemma
3.

• The third type of outage events, denoted asO3, corre-
sponds to the case where the setA contains more than
one user, and less thanM users,1 < |A| < M . Obtaining
a closed-form expression for the probability forO3 is
difficult, and we only prove that the probability ofO3 is
upper bounded by the probability ofO1. The following
lemma will be needed for the development ofP (O3).
Lemma 5: Consider a(P + 1) × P complex-valued
matrix, denoted asΘP , whose(m,m)-th element ishm
and its(m+1,m)-th element isgm for m ∈ {1, . . . , P}.
The remaining elements of this matrix are zero. The
following inequality holds

det{IP + ρΘH
P ΘP } ≥

P∏

i=1

ρ|hi|
2 +

P∏

j=1

(1 + ρ|gj |
2).

Proof: See Appendix.
By using this lemma, we can have the following result
about the probability ofO3 andO1.
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Lemma 6: Assume that all wireless channels are i.i.d.
Rayleigh fading and the number of relay isK = QM−1.
The probability ofO3 can be upper bounded as

P (O3)≤̇P (O1)≤̇ρ
−dO1 (r).

Proof: See Appendix.

Of the three events, the probability ofO1 dominates. As a
result, the overall outage probability can be upper boundedas

P (O) ≤
∑

A

P (OA)
.
= ρ−dO1(r), (13)

proving Theorem 1.

V. CONCLUSION

In this paper, we have proposed a spectrally efficient co-
operative transmission protocol for multiple access scenarios.
By carefully scheduling the multiple sources and relays’
transmission, the full diversity gain can be achievable foreach
user although only a fraction of relays is utilized by each
user. An achievable diversity-multiplexing tradeoff (DMT)
was developed. With a large number of relays, the DMT
achieved by the proposed scheme can approach the optimal
multiple-input single-input upper bound. Both analyticaland
numerical results demonstrated that the proposed protocol
can outperform comparative schemes that employ only source
cooperation in most conditions.

APPENDIX

Proof of Lemma 3:The set of the usersA corresponding
to the outage eventO1 can be further divided into two
types which will be studied separately in the following two
subsections.

A. The event with A = {n} and 1 ≤ n ≤M − 1

Recall that such a outage event corresponds the case where
all users’ information can be decoded correctly expect then-th
user’s message, which means that the mutual information can
be written as

IA = log

Q
∏

i=1

[
1 + ρ(|hn|

2 + |giM−n|
2)
]
. (14)

Hence the outage probability can be upper bounded as

P (IA < QR) = P

{
Q
∏

i=1

[
1 + ρ(|hn|

2 + |giM−n|
2)
]
< 2QR

}

≤ P

{

(ρ|hn|
2)Q +

Q
∏

i=1

[
1 + ρ|giM−n|

2
]
< 2QR

}

≤ P
{
ρ|hn|

2 < 2R
}
P

{
Q
∏

i=1

[
1 + ρ|giM−n|

2
]
< 2QR

}

.

Denoteyn = |hn|
2 andxi = |gi|

2. The factorP
{
ρyn < 2R

}

can be easily analyzed as following. According to the adopted
transmission scheduler,yn is the n-th smallest amongM

i.i.d. exponentially distributed variables. Hence, its probability
density function is

fyn
(y) =

M !

(n− 1)!(M − n)!
e−(M−n+1)y[1 − e−y]n−1.

And its outage probability can be written as

P
{
ρyn < 2R

}
=

∫ 2R

ρ

0

M !e−(M−n+1)y

(n− 1)!(M − n)!
[1 − e−y]n−1dy

Applying R = r log ρ, we obtain 2R

ρ = ρ−(1−r). Hence the
facts ofr ≤ 1 andρ→ ∞ yields ρ−(1−r) << 1, and thus

P
{
ρ|hn|

2 < 2R
} .

=

∫ ρ−(1−r)

M !yn−1dy

(n− 1)!(M − n)!

.
=

1

ρn(1−r)

where the exponential expansion is used to obtain the approx-
imation.

Define I = ln
∏Q
i=1 [1 + ρxiM−n]. The density function

of I will be first studied to obtain the outage probability
P {I < QR ln 2}. Recall that the density of the mutual in-
formation can be written as

q(I) = Eg

{

δ

(

I −

Q
∏

i=1

[1 + ρxiM−n]

)}

, (15)

which contains a non-analytical Dirac delta function, see [21].
To find the outage probability, the delta function has to be
removed from the expression ofq(I). Recall the following
property of the delta function:

∫ a

b

δ(ψn − ψ)δ(ψ − ψm) dψ = δ(ψn − ψm), (16)

which can be used to separatexi in the delta function. Hence
we have

q(I) = eI
∫ ∞

0

· · ·

∫ x(Q−1)M−n

0

δ

(

eI −

Q
∏

i=1

(1 + ρxiM−n)

)

×f(xM−n, · · · , xQM−n) dxM−n · · · dxQM−n,

where the joint density function of theQ ordered variables
can be written as [14]

f(xM−n, · · · , xQM−n) = K!

(
Q
∏

i=1

f(xri
)

)

[F (xr1)]
M−n−1

(M − n− 1)!

×
[1 − F (xrQ

)]n−1

(n− 1)!

Q
∏

i=2

[F (xri
) − F (xri−1)]

M−1

(M − 1)!
,

where f(x) denotes the probability density function (PDF)
f(x) = e−x andF (x) is the cumulative distribution function
(CDF) F (x) = 1 − e−x. Since an upper bound to the outage
probability is of interest, the following bound is employedto
simplify the expression of the joint density function as

f(xM−n, x2M−n, · · · , xQM−n) ≤

K!

Q
∏

i=1

f(xri
)
[F (xr1 )]

M−n−1

(M − n− 1)!

Q
∏

i=2

[F (xri
)]M−1

(M − 1)!
,

where the inequality follows from the fact that the CDF is
always positive. Furthermore, sincef(xi) = e−xi ≤ 1, we
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have
∏Q
i=1 f(xri

) ≤ 1. Together with the fact that1−e−x ≤ x
for x ≥ 0, we have

f(xM−n, · · · , xQM−n) ≤ K!
[xM−n]

M−n−1

(M − n− 1)!

Q
∏

i=2

xM−1
iM−n

(M − 1)!

= f ′(xM−n, · · · , xQM−n),

where C1 = K!
[(M−1)!]Q−1(M−n−1)!

and f ′ =

C1

{
∏Q
i=2 xiM−n

}M−1

xM−n−1
M−n . To further simplify

the development, the integration region of the expectationin
(15) is extended to the entire positive plane

q(I) ≤ C1e
I

∫ ∞

0

· · ·

∫ ∞

0

δ

(

eI −

Q
∏

i=1

(1 + ρxiM−n)

)

×f ′(xM−n, · · · , xQM−n) dxM−n · · · dxQM−n,

since the simplified joint density function is always positive
over the addressed region.

In the following, we will focus on how to remove the
delta function out of the density function. First we obtain the
expression as shown in the top of the next page. where the
following property of the delta function is used

∫ a

b

δ(ψn − ψ)δ(ψ − ψm) dψ = δ(ψn − ψm).

Again using the property (16) we obtain the equation shown
in (17). Recall another property of the delta function as

∫

D

δ(x− ψ)f(x) dx =

{
f(ψ) ψ ∈ D

0 otherwise
. (18)

Together with the high SNR assumption, we can finally
remove the delta function from the density function

q(I) ≤
eI

ρQ

∫ eI

1

∫ ψ1

1

· · ·

∫ ψQ−2

1

Ψ(ψ1, . . . , ψQ−1, ρ)

Q−1
∏

i=1

1

ψi
dψi,

where

Ψ(ψ1, . . . , ψQ−1, ρ) = f ′

(
eI

ρψ1
,
ψ1

ρψ2
, · · · ,

ψQ−2

ρψQ−1
,
ψQ−1

ρ

)

.

Substituting the simplified density function, we can obtain

Ψ(ψ1, . . . , ψQ−1, ρ) = f ′

(

eI
′

ρψ1
,
ψ1

ρψ2
, · · · ,

ψQ−2

ρψQ−1
,
ψQ−1

ρ

)

≤
C1

ρQ(M−1)−n
e(M−n−1)Iψn1 .

Interestingly, only one variableψ1 is left in the joint density
function, which shall simplify the following development
significantly. By using this simplified result, the density of
the mutual information at high SNR can be upper bounded as

q(I) =
eI

ρQ

∫ eI

1

∫ ψ1

1

· · ·

∫ ψQ−2

1

C1e
(M−n−1)I

ρQ(M−1)−n
ψn1

Q−1
∏

i=1

1

ψi
dψi,

=
C1e

(M−n)I

ρQM−n

∫ eI

1

ψn1

∫ ψ1

1

· · ·

∫ ψQ−2

1

Q−1
∏

i=1

1

ψi
dψi,

which can be written as

q(I) =
C1e

(M−n)I

ρQM−n

∫ I

0

enφ1

∫ φ1

0

· · ·

∫ φQ−2

0

Q−1
∏

i=1

dφi

=
C1e

(M−n)I

ρQM−n(Q− 2)!

∫ I

0

enφ1φ
(Q−2)
1 dφ1

=
C1e

(M−n)I

ρQM−n

(

1

(−n)Q−1
− enI

Q−2
∑

k=0

Ik

k!(−n)Q−k−1

)

.

where φi = lnψi and the last equality follows from Eq
(3.351.1) in [22]. Given the density function of the mutual
information, the outage probability can be expressed as the
integral of the density function

P (I < QR ln 2) ≤

∫ QR ln 2

0

q(I) dI

=

∫ QR ln 2

0

C1e
(M−n)I

ρQM−n

1

(−n)Q−1
dI

−

Q−2
∑

k=0

∫ QR ln 2

0

C1e
MI

ρQM−n

Ik

k!(−n)Q−k−1
dI.

Interestingly the second integral at the right hand of the
previous equation can be solved again using Eq(3.351.1) in
[22] as

P (I < QR ln 2) ≤
C1e

(M−n)QR ln 2

ρQM−n(−n)Q−1
−

Q−2
∑

k=0

C1

(−n)Q−k−1
(19)

×
1

ρQM−nk!




1

(−M)k+1
− eMQR ln 2

k∑

j=0

(QR ln 2)j

j!(−M)k+1−j



 .

Recall that the diversity-multiplexing tradeoff can be obtained
by substitutingR = r log ρ into the outage probability. By
using the relationship betweenr andR, we first have

QR ln 2 =
Qr log ρ

log e
= ln ρQr.

Following similar steps in [9], it can be shown that

C1e
(M−n)QR ln 2

ρQM−n

1

(−n)Q−1

.
=
ρ(M−n)Qr

ρQM−n

1

(−1)Q−1
,

and

−

Q−2
∑

k=0

C1

ρQM−nk!(−n)Q−k−1

(
1

(−M)k+1
(20)

−eMQR ln 2
k∑

j=0

(QR ln 2)j

j!(−M)k+1−j




.
=

ρMQr

ρQM−n
. (21)

Obviously the latter is dominant at high SNR, and hence the
outage probability can be upper bounded as

P (I < QR ln 2) ≤̇
ρMQr

ρQM−n
, ∀n ∈ {1, · · · ,M − 1}.(22)

And the outage probability forOA can be expressed as

P (IA < QR) = P (ρ|hn|
2 < 2R)P (I < QR ln 2) (23)

≤̇
ρ(n+MQ)r

ρQM
, ∀n ∈ {1, · · · ,M − 1}.
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q(I) ≤ eI
∫ eI

1

∫ ψ1

1

· · ·

∫ ψQ−2

1
︸ ︷︷ ︸

ψ1,··· ,ψQ−1

∫ ∞

0

· · ·

∫ ∞

0
︸ ︷︷ ︸

xM−n,··· ,xQM−n

δ
(
eI − [1 + ρxM−n]ψ1

)
δ (ψ1 − [1 + ρx2M−n]ψ2) · · ·

×δ (ψQ−1 − [1 + ρxQM−n]) f ′(xM−n, · · · , xQM−n) dxM−n · · · dxQM−n, dψ1 · · ·dψN−1,

q(I) ≤ eI
∫

· · ·

∫
1

ρψ1
δ

(

xM−n −
eI − ψ1

ρψ1

)
1

ρψ2
δ

(

x2M−n −
ψ1 − ψ2

ρψ2

)

· · · (17)

×
1

ρ
δ

(

xQM−n −
ψQ−1 − 1

ρ

)

f ′(xM−n, · · · , xQM−n) dxM−n · · · dxQM−n, dψ1 · · · dψN−1.

B. The event with A = {M}

The event with the caseA = {M} is different to the cases
with A = {i, i 6= M}. According to the proposed transmission
protocol, only(Q − 1) relays will be used to help theM -th
user’s information whereasQ relays are scheduled to help
each of the rest of the users. As a result, the expression of the
mutual information can be written as

IA = log

{

[
1 + ρ|hM |2

]
Q
∏

i=2

[
1 + ρ(|hM |2 + |giM−M |2)

]

}

≤ log

{

[
1 + ρ|hM |2

]Q
+

Q
∏

i=2

[
1 + ρ|giM−M |2

]

}

.

Comparing with the expression ofI in (14), the number of the
relay-destination channels is reduced toQ− 1. By using such
an approximation, we can upper bound the outage probability
as

P (IA < QR) ≤ P
{[

1 + ρ|hM |2
]Q

< 2QR
}

(24)

×P

{
Q
∏

i=2

[
1 + ρ|giM−n|

2
]
< 2QR

}

.

As discussed previously, it can show that
P
{[

1 + ρ|hM |2
]Q

< 2QR
}

≤̇ 1
ρM−Mr . Again define

I = ln
∏Q
i=2

[
1 + ρ|giM−n|

2
]
. The second probability

can be evaluated by using the steps similar to the previous
section. Here we only point out the different and key steps.
First the mutual information can be shown as

q(I) =
eI

ρQ−1

∫ eI

1

∫ ψ1

1

· · ·

∫ ψQ−3

1

Ψ

Q−2
∏

i=1

1

ψi
dψi, (25)

where

Ψ = f ′

(
eI

ρψ1
,
ψ1

ρψ2
, · · · ,

ψQ−3

ρψQ−2
,
ψQ−2

ρ

)

.

From the order statistics,

f(xM , · · · , x(Q−1)M ) = K!

Q−1
∏

i=1

f(xiM )

Q−1
∏

i=2

[F (xM )]M−1

(M − 1)!

×
[F (xiM ) − F (xiM−M )]M−1

(M − 1)!

[1 − F (xQM−M )]M−1

(M − 1)!

Since f(xi) = e−xi ≤ 1, we have
∏Q
i=1 f(xri

) ≤ 1. Also
F (xi) ≤ 1 and1 − F (xi) ≤ 1 andF (xi+1) − F (xi) ≤ xi+1.
So the simplified joint density function can be expressed as

f(xM−n, · · · , xQM−n) ≤ f ′(xM−n, · · · , xQM−n)

= C2

{
Q−1
∏

i=1

xiM

}M−1

,

whereC2 = K!
[(M−1)!]Q . By using this simplified expression,

we obtain

Ψ(ψ1, . . . , ψQ−2, ρ) ≤
C1

ρ(Q−1)(M−1)
e(M−1)I ,

which is no longer a function ofψi. Hence the density of the
mutual information is simpler compared with the caseA =
{i, i 6= M} and can be written as

q(I) =
C1e

MI

ρQM−M
IQ−2,

whereφi = lnψi. Recall that the outage probability can be
reduced as

P (I < QR/ log e) =

∫ QR/ log e

0

q(I) dI (26)

=
C1

ρQM−M

(

(Q− 2)!

(−M))Q−2
− e

MQR
log e

Q−2
∑

k=0

(QR/ log e)k

(−M)Q−1−k

)

.

SubstitutingR = r log ρ, it can be shown that

P (I < QR/ log e) ≤̇
ρQMr

ρQM−M
.

Now the outage probability for the eventA can be written as

P (IA < QR) = P (I < QR/ log e)P
{[

1 + ρ|hM |2
]
< 2R

}

≤̇
ρ(Q+1)Mr

ρQM
.

Comparing the outage probability for the case
A = {i, i 6= M}, the outage probability for the case
A = {M} is the dominant one and the lemma is proved.�

Proof of Lemma 5:Here we use mathematical induction to
prove this lemma. We treat the determinantIP = det{IP +
ρΘPΘH

P } as a function ofP .
1) For P = 1, the matrixΘP becomes a column vector,

ΘP = [h1 g1]
T . So the determinant can be written as
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IP = ρ|h1|
2 + (1 + ρ|g1|

2). Hence forP = 1, the
lemma holds.

2) Assume that forP = l, the following inequality holds

Il ≥

l∏

i=1

ρ|hi|
2 +

l∏

i=1

(1 + ρ|gi|
2). (27)

The aim is to show such an inequality also holds for
P = l + 1 given the fact provided in (27). First rewrite
the matrixΘl as

Θl =










h1 0 0 0
g1 h2 0 0
...

. . .
. . .

...
0 · · · gl−1 hl
0 · · · 0 gl










WhenP = l + 1, the new matrixΘl+1 can be written
as

Θl+1 =

[
Θl hl+1

0l gl+1

]

where0l is 1× l all-zero vector andhl+1 = [0l hl+1]
T .

As a result, the determinant forP = l + 1 becomes

Il+1 = log det(Il+1 + ρΘH
l+1Θl+1)

= log[det(Il + ρΘH
l Θl)(1 + ρ(|hl+1|

2

+|gl+1|
2) − ρ2|gl|

2|hl+1|
2]

SinceIl ≥
∏l
i=1 ρ|hi|

2 +
∏l
i=1(1 + ρ|gi|

2), we have

Il+1 ≥
l+1∏

i=1

ρ|hi|
2 +

l+1∏

i=1

(1 + ρ|gi|
2).

Summarizing these two steps, the inequality derived in
Lemma 5 holds for all integerP . �

Proof of Lemma 6:Recall that the user setA associated
with O3 is characterized by its dimension,1 < |A| < M .
Without loss of generality, we assume that the setA consists
of several disjoint smaller setsA = {A1, . . . ,AI}, where each
small user set contains several continuously indexed users. For
example, considerM = 7 and the user setA = {1, 2, 4, 5, 7}
can be grouped into three smaller setsA1 = {1, 2}, A2 =
{4, 5} andA3 = {7}.

According to whether a small set contains theM -th user,
we can have the following two categories.

1) The small sets do not contain the M -th user: Without
loss of generality, consider a small user set contains the
continuously indexed users fromn to l, Ai = {n, . . . , l}.
Consider the following mutual information based on this user
set

Ii = log det{IQ(l−n) + HH
i Hi}

where the channel matrix is defined asHi =
diag{H̃Q, . . . , H̃1} and

H̃j =










hn 0 0 0
gjM−n hn+1 0 0

...
. . .

. . .
...

0 · · · gjM−l+1 hl
0 · · · 0 gjM−l










.

Note that the structure of̃Hi fits the requirement of Lemma 5.
Hence by applying this lemma, we can obtain an upper bound
for Ii as

Ii ≥ log







(
l∏

i=n

ρ|hi|
2

)Q

+

Q
∏

j=1





jM−l
∏

i=jM−n

(1 + ρ|gi|
2)










.

Using such an inequality, the outage probability associated
with this small setAi can be upper bounded as

P (Ii < (l − n)QR) ≤ P

{
l∏

i=n

ρ|hi|
2 < 2(l−n)R

}

×P







Q
∏

j=1

[
1 + ρ|gjM−l|

2
)
< 2(l−n)QR






,

which has a similar form to the probability of the outage event
O1. Hence applying the steps similar to the ones in the proof
for Lemma 3, the two probabilities in the above equation can
be bounded as

P

{
l∏

i=n

ρ|hi|
2 < 2(l−n)R

}

.
=
ρ|S|r

ρl
,

and

P







Q
∏

j=1

[
1 + ρ|gjM−l|

2
)
< 2(l−n)QR







.
=

ρQMr

ρQM−l
.

And hence the outage probability for a small user subsetAi

can be eventually bounded as

P
(

Ii < 2(l−n)QR
)

≤̇
1

ρQM−(QM+M)r
.

2) A small set contains the M -th user: When a small
set contains theM -th user, its associated channel matrix is
different to the case discussed previously, which means that
its outage probability has to be studied separately. Without
loss of generality, consider a small set contains(M − n+ 1)
continuously indexed users,Aj = {n, . . . ,M}. Then we can
have the following mutual information based this user set

Īj = log det{IQ(M−n+1) + H̄H
j H̄j}

whereH̄j = diag{H̄j,Q, . . . , H̄j,1} and

H̄j, i =








hn 0 0 0
g(i−1)M+n h2 0 0

...
. . .

. . .
...

0 0 g(i−1)M+1 hM







.

The sub-matrices of̄Hj,i are still tridiagonal ones. Again
applying the property of the tridiagonal matrix,

Īj ≥

M∏

i=n

(1 + ρ|hi|
2)Q +

(
M−n∏

i=1

ρ|gi|
2

)
Q
∏

j=2





jM−l
∏

i=jM−n

ρ|gi|
2



 .

Note that the number of the relay-destination channels is only
(M − n)Q − 1. The outage probability associated with this
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event is

P (Ij < |Aj |QR) ≤ P

{
M∏

i=n

ρ|hi|
2 < 2|S|R

}

×P







Q
∏

j=2

[
1 + ρ|gjM−M |2

)
< 2QR






.

Following the previous discussion, it is straightforward to
show

P

{
M∏

i=n

ρ|hi|
2 < 2|S|R

}

.
=
ρ|S|r

ρM

and

P







Q−1
∏

j=1

[
1 + ρ|gjM |2

)
< 2|S|QR







.
=

ρQMr

ρQM−M

Finally the outage probability associated with this particular
eventAj can be bounded as

P (Ij < |S|QR)
.
=

1

ρQM−(QM+|S|)
≤

1

ρQM−(QM+M)r
. (28)

Note that such a result is the same as the probability for an
outage event associated with the user set withAi.

Recall that the overall user setA consists of several disjoint
smaller setsA = {A1, . . . ,AI}. Summarizing the results
discussed in the previous two sections, we can find that

P (Ij < |Aj |QR)
.
= P (Ii < |Ai|QR) (29)

for all i, j ∈ {1, . . . , I}. Define the outage eventOAi
= {Ii <

|Ai|QR}. Since the overall outage event is defined asO3 =
{
∑I
i=1 Ij <

∑I
i=1 |Aj |QR},

O3 ⊆

I⋃

i=1

OAi
,

which means that the overall outage probability can be
bounded as

P

(
I∑

i=1

Ij <

I∑

i=1

|Aj |QR

)

≤

I∑

i=1

P (Ii < |Ai|QR)(30)

.
=

1

ρQM−(QM+M)r
.

And the lemma is proved. �
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Fig. 1. The outage probability for the proposed scheme, the superposition
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