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Abstract—In-network processing (INP) is a promising method
that allows aggregation of data as a means to optimize the
utilization of network resources without violating the quality of
information (QoI) requirements. Given the potentially large scale
and dynamic network environment, optimization of INP requires
a distributed framework that can adapt easily to network changes
and user’s QoI requirements. We develop the principle for
designing such a distributed mechanism to facilitate control of
INP. We formulate the INP problem as a non-linear optimization
problem in order to minimize the total energy consumption by all
associated nodes while satisfying QoI requirements. High inter-
dependency among the nodes renders the optimization problem
intractable. To cope with this, we propose a fully distributed,
but suboptimal, approach which we call Locally Constrained
Optimization. We prove that under a set of conditions, the
INP process can be fully distributed while performing closely
to the optimality. The significance of the proposed distributed
framework is that it requires each node to make independent
decisions locally for data aggregations; this naturally enhances
robustness and resiliency of network and data load dynamics.

I. INTRODUCTION

In-Network Processing (INP) primarily aims to aggregate
(e.g., compression, fusion and averaging) data from different
sources with the objective of reducing the data volume for fur-
ther transfer, thus reducing energy consumption and increasing
the network lifetime [1]. When INP is applied in an informa-
tion network, it is crucial to consider how such data processing
affects the quality of information (QoI) at the receiving end,
which is represented by multi-dimensional metrics [2], e.g.,
information accuracy, completeness, reliability and timeliness.
How INP should be carried out for satisfactory QoI at the user
level remains an open research issue. For example, [3], [4]
investigate the QoI and introduce various models to maximize
a utility function of QoI. However, they do not consider INP or
the impact of further INP process on aggregated information.
For this reason and in sharp contrast to other related literature,
the objective of this paper is to introduce a fully distributed
framework to facilitate controlling of INP process at interme-
diate nodes while satisfying the end user QoI requirements.

In a dynamic environment, such as military field, fully
distributed methods are very desirable due to the ability to
readily adapt to the network changes and constraints and deal
with a huge amount of data generated in this environment.
For this purpose, as a starting point, we consider the amount
of information that user needs to receive as a QoI parameter.
Note that required amount of data can represent the accuracy
metric of QoI [3].
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II. PROBLEM FORMULATION AND ASSUMPTIONS

Assume a Wireless Sensor Network (WSN) monitoring
the level of chemical contamination in an area. A user
approaches the area and wants to know the level of chemical
contamination of a specific part of the area. The user sends
a query to the network specifying his area of interest and
the amount of information that user needs to receive (e.g.,
number of data packets) as a QoI requirement threshold.
We assume a data aggregation tree is formed after the user
queries the network.

Furthermore, we assume that the total energy consumption
of a node consists of the energy spent in receiving pR ,
computing pC and transmitting pT its data. Among these
operations, data transmission typically uses more energy than
the others [5]. Data generated in the information networks
has a large amount of redundancy due to the spatial and
temporal correlation among sensors. Therefore, it is possible
to aggregate data as a means of reducing energy consumption
for transmission and reception, without sacrificing QoI for the
end users. On the other hand, the more the data are aggregated,
the higher the computational energy cost is. Therefore, an
energy trade-off exists among the energy that each node
spends for data reception, transmission and computation. A
key for the energy trade-off is the data reduction rate (denoted
by δ between 0 and 1), which is the ratio of the amount of
aggregated data to that of all original input data at a node.
The optimal energy trade-off is determined by choosing the
optimal reduction rate at each node.

We formulate the problem of finding the optimal data
reduction rates at all nodes as an optimization problem. Our
goal is to choose the data reduction rates at all nodes involved
in order to minimize the total energy consumption, while
ensuring that the amount of aggregated data for the end user
exceeds a specified QoI threshold γ.

min
{δi}

n∑
i=1

pi(δi, yi)

s.t. δryr ≥ γ

, (1)

where n is the total number of nodes in the network aggrega-
tion tree and pi(δi, yi) is the total energy consumption which is
a function of the volume of input data yi and the data reduction
rate δi at node i. Since node r is responsible for delivering
the required information to the user, the constraint yrδr ≥ γ
specifies the minimum volume of aggregated data that the
user requires from all source nodes in the area of interest.

We refer to (1) as a global optimization (GO) problem.
Even though the problem has only a single constraint, data
reduction rate must be chosen optimally at every node so that
the constraint for the end user can be satisfied.

The GO problem in (1) is a variant of 0/1 knapsack
problem [6]. Therefore, intractability and interdependency
among nodes motivate the need for a distributed method
where no centralized operator is required and complex
network structures, such as multi-level data aggregation tree
can be handled easily. To this end, we will propose our fully
distributed framework, a solution to the GO problem.



Fig. 1. Impact of computation and transmission cost on
total energy consumption.

III. LOCAL OPTIMIZATION APPROACH

We introduce our model the Local Constrained Optimization
framework (to be referred to as LCO model) as follows:

n∑
i=1

min
δi

pi(δi, yi)

s.t. δiyi ≥ γ

yi =
∑
j∈Ci

δjyj , for i = 1, ..., n

, (2)

where Ci denotes the set of children nodes of node i in the
aggregation tree.

The significance of introducing (2) is explained as follows.
It turns out that under a reasonable set of assumptions, the or-
der of the minimization and summation operators in (2) can be
switched, while yielding the same optimal solution as follows.

min
{δi}

n∑
i=1

pi(δi, yi)

s.t. δiyi ≥ γ

yi =
∑
j∈Ci

δjyj , for i = 1, ..., n

. (3)

We refer to (3) as Constrained Optimization (CO) problem.
While (3) and (1) show a global optimization model, the differ-
ence between the CO problem (3) and the GO problem (1) is
that in the CO problem, each node has its own QoI constraint,
while the GO problem has only one constraint for the root node
r. We shall develop conditions (assumptions) under which the
LCO leads to such a global optimal solution as follows.

Let pi denotes the total energy consumption of node i as
pi = piR + piC + piT , (4)

where piR, piC and piT denote the energy spent in receiving,
aggregating and transmitting data by node i, respectively.
Then, we assume

piR = f(yi) = eRyi. (5)

piT = g(yi, δi) = eT yiδi, (6)

piC = k(yi, δi) = eCyiqi(δi), (7)

yi =
∑
j∈Ci

yjδj , (8)

where eR, eT and eC are the energy consumed in receiving,
transmitting and processing one unit of data respectively.
δi and yi show the reduction rate and the amount of
received data respectively. qi(δi) is a scaling function for
energy consumption of computation which is a decreasing
differentiable function of the reduction rate δi and captures
the influence of the reduction rate δi on piC . Furthermore,
(8) shows the amount of data that node i receives.

There may be a concern that the linear model in (5) to
(7) is unable to adequately adjust to all the characteristics of
communication and computation in the network (e.g., coding

and processing functions); however, as a general assumption
in [5] we assume a linear model here.

With these assumptions, we present the following theorem
which introduces sufficient conditions under which the order
of the minimization and summation operators in (3) can be
switched while preserving optimality.
Theorem. Given the energy consumption represented by (4)
to (7) and the amount of received data in (8) for each node
in a single level data aggregation tree, the LCO model (2) is
equivalent to the CO (3) as follows:

min
{δi}

n∑
i=1

pi(δi, yi) =

n∑
i=1

min
δi

pi(δi, yi)

s.t. δiyi ≥ γ s.t. δiyi ≥ γ

yi =
∑
j∈Ci

δjyj yi =
∑
j∈Ci

δjyj

for i = 1, ..., n for i = 1, ..., n

. (9)

Proof. Duo to space limitation we omit the proof here. �

The importance of introducing the LCO model is that under
practical parameter setting it can provide very close approxi-
mate solution to the GO problem as illustrated by Fig 1.

We evaluate the LCO modelled in (2) under two different
parameters settings; Case 1 (eR = eT = eC = 0.00024J) and
Case 2 (eR = eT = 0.00024J, eC = 0.00012J). QoI threshold
γ is assumed to be 5 data packets for both cases. We compare
the LCO results to the optimal value of global optimization
(GO) in (1). We assume that the full binary aggregation tree
rooted at node r is formed for the request of information by
a user. The function qi(δi) = 1

δi
− 1, δi > 0 is considered to

reflect the impact of the data aggregation process on energy
consumption.

As Fig. 1 illustrates, imposing individual constraints on
each node and forcing them to satisfy the user QoI threshold
leads to a gap between energy consumption of the GO and
LCO models. However, under a practical network setting
presented by Case 2, the LCO model performs very close to
the GO value. The reason for this exciting result is, due to less
expensive computation cost, each node aggregates more data
and as a result, consumes less energy for data transmission.

In conclusion, we have proven that under a set of reasonable
assumptions the optimal data reduction rate can be determined
by each node based on local information in a fully distributed
manner. Computer simulations show that the new framework,
LCO, can perform very close to the global optimum for
parameter settings where communication costs more than
computation.
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