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Abstract

In wireless sensor networks, the accuracy of localization
information deteriorates significantly after relaying multi-
ple hops due to accumulation of errors. Techniques exist to
enhance the localization information by employing redun-
dant measurements available in networks with high connec-
tivity or from a large number of reference nodes. However,
it is challenging to obtain accurate localization information
in deployment environments with: 1) unfavorable radio-
propagation characteristics that degrade measurements, or
2) sparse topologies that limit the redundancy. One such
example is underground tunnels.

In this paper, we study the performance of localization
techniques that are applicable to such sparse networks.
Particularly we focus on the COBALT method, which is
based on cliques of nodes in the network and uses angle
of arrival and range estimates. For different techniques, we
show the influence of the connectivity among sensor nodes
on the accuracy. Our results show that the COBALT method
outperforms other general-purpose localization techniques.

1. Introduction

Localization of nodes in wireless sensor networks

(WSNs) has attracted considerable research attention re-

cently. Accurate location estimations of sensors are re-

quired in numerous industrial, military and public applica-

tions of WSN. Sensor networks used for monitoring pur-

poses in general require accurate positioning information in

order to link the sensing data to the place where it is gath-

ered. From a wider perspective, localization in WSN can

serve as a basis for solving a number of networking prob-

lems, like scheduling of the transmission [1] and geograph-

ical routing [2].

∗This work is funded by UK EPSRC Research Grant EP/D076838/1,

entitled: "Smart Infrastructure: Wireless Sensor Network System for Con-

dition Assessment and Monitoring of Infrastructure".

WSNs used for monitoring applications have to be de-

signed to meet the specific requirements and characteristics

of the application environments. This fact is strongly re-

flected in the indoor systems where operating constraints

can vary significantly from one application scenario to an-

other. The particularly sparse network topologies, like

those in tunnels, impose constraints on the possible network

topology. Deployed in such long structures, the WSN has a

linear topology [3, 4, 5]. This limits the usability of certain

localization methods or reduces dramatically their accuracy.

In fact, the public literature has few studies about methods

dedicated to localization in tunnels and thus the challenges

for accurate localization techniques remain to be addressed.

The major issue with localization in sparse topology net-

works is that nodes tend to have a relatively small number

of neighboring nodes. For that reason many localization al-

gorithms (like [6, 7]) not always produce a unique solution.

We say that the algorithms do not hold rigidity if the node

degree of connectivity is below a certain threshold.

Rigidity of localization algorithm is the ability to solve

the localization problem uniquely. Rigidity is an equivalent

of determinability of the set of localization equations that

result from the localization algorithm. Some algorithms not

always hold rigidity conditions, hence are unable to local-

ize all nodes uniquely in certain cases. For example, 3-D

trilateration is not rigid if node connectivity is less than

4 [7]. Out algorithm referred to as COBALT (Clique-of-

Nodes Based Localization Technique) produces a unique

solution for any topology of connected nodes. This is be-

cause each node gathers enough information about their

neighbors. Nodes measure distance-vectors (i.e. spherical

angle and distance) to neighbors and the earth gravity direc-

tion.

In this paper we continue work presented in [3]. We fo-

cus on a localization method called COBALT which em-

ploys measurements of radio-wave direction-of-arrival [8],

range and earth gravity direction. Our main contribution

in this publication is as follows. Firstly, we propose a so-

lution to 3-D localization problem of wireless sensors in

sparse networks like tunnels. Secondly, our method pro-

duces a rigid estimation of the network for any topology,
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i.e. COBALT can localize even the nodes whose connec-

tivity is as little as 1. Thirdly, we propose a heuristic for

identifying cliques of nodes in a network.

The remaining part of the paper is organized as follows.

Our localization algorithm is described in section 2 pre-

ceded by definitions of the associated terminology. Follow-

ing this we discuss the inherent properties of our algorithm

- COBALT in the section 3. Simulation results showing the

performance of the proposed algorithm and discussion of

the results are presented in section 4. Concluding remarks

can be found in section 5.

2. Localization Algorithm

In this section we present the COBALT algorithm. This

algorithm comprises of three stages: (1) Distributed iden-

tification of overlapping cliques of nodes across the whole

network. As a result, some nodes belong to more than one

clique. (2) Second stage occurs independently in all cliques,

possibly in parallel. Members of a particular clique through

message exchange and computations agree on their refer-

ence system that is intended to be common for all members

of this particular clique. Some nodes therefore are aware of

more than one reference system: one in each clique they be-

long to. (3) Progressively, starting at a particular clique, the

reference systems between two cliques are agreed between

one another and a common reference system for those two

cliques is introduced. This process occurs iteratively thus

propagating one common reference system throughout the

network. Process continues until there are no more cliques

to propagate the reference system to. This iterative process

is referred to as stitching.

The order of the cliques to participate in the iterative

process of agreeing on the common reference system (i.e.

in the process if stitching) is studied by [9] and we adopt

their approach of establishing the stitching-order in our al-

gorithm.

2.1. Alignment & Identity of Ref. Systems

The two Cartesian frames of reference (non-prim and

prim) have the property of being aligned iff any vector a
observed in one frame of reference equals a′ = a + d in

the other frame of reference, where d is a constant for those

two frames of reference and is a distance vector of the prim-

system origin from the non-prim origin. We can say of the

corresponding axes of aligned frames of reference that they

point towards the same direction.

The two Cartesian frames of reference have the property

of being identical iff they are aligned and the distance vector

between the origins is d = 0. Observation of any vector a
in one of the frames of reference equals the observation of

a in the other frame of reference.

Aligning is achieved by the method presented in [10] that

originates from the absolute orientation method [11], but

uses all possible distance constraints between aligned refer-

ence systems.

2.2. Maps and Reference Systems

We call “map” (of a node, of a clique or global) a set of

position-vectors which are estimates of distances from the

origin of the reference system of the “map” to positions of

nodes represented at a particular “map”. There are three

following contexts in which we refer to maps.

∙ At the beginning of the localization process, just af-

ter a node is activated to work; Nodes use hardware
reference system (hdw_RS) which is associated with

the node’s physical construction. The angle and dis-

tance measurements conducted in hdw_RS determine

position-vectors to the node’s neighbors at node’s local
map.

∙ In a clique which is identified in the network during

operation of COBALT; The group of 𝑛 nodes which

has been identified to be a clique will proceed to obtain

a clique reference system (cli_RS) and a clique map
which both are common to all 𝑛 members of the clique.

In a particular clique 𝑐, each membering node 𝑘 = 1..𝑛
possesses a parameter R𝑘

𝑐 that is a rotation that rotates

vectors from node’s 𝑘 hdw_RS to cli_RS of 𝑐. Each

node 𝑘 also has a parameter C𝑘
𝑐 which is a position

vector of this node in the cli_RS of clique 𝑐.

∙ In order to achieve a network-wide localization, an

introduction of global reference system (glo_RS) is

needed. At the end of the localization process glo_RS

is common to all nodes. At the beginning of the lo-

calization process one clique is chosen (as discussed

in [9, 10]) to be the initial part of the global map.

Other cliques are added iteratively to the global map

until there are cliques that can be added. The order of

this iterative clique-adding to the global map is defined

in [9, 10]. The computations done in order to add a

clique to the global map is referred to as stitching, and

it is equivalent to introducing identity of cli_RS with

regards to glo_RS (as described in section 2.1). After

clique 𝑐 is stitched to the global map each node which

is a member of 𝑐 becomes a member of the global map.

After stitching all cliques identified in the network of

𝑁 nodes, each node 𝐾 = 1..𝑁 has two parameters:

ℛ𝐾 and𝒟𝐾 which align hdw_RS of 𝐾 to glo_RS, and

transfer the origin of hdw_RS of 𝐾 to this of glo_RS

respectively.

Stitching map 𝑎′ in hdw_RS to map 𝑎 in glo_RS is a process

which introduces identity of 𝑎′ with regards to 𝑎. Precisely,
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this process computes the parameters ℛ and 𝒟 that trans-

form hdw_RS in such a way that it is identical with glo_RS.

One crucial remark is thatℛ is chosen in a way that for the

earth gravity direction co-located with vector G the follow-

ing holds: G = Gℛ. This assumption does not introduce

an error of any kind, since the earth gravity in both refer-

ence systems is oriented in the correct direction - physically

in the same direction.

2.3. Identification of Cliques

Below we introduce a distributed heuristics that finds

cliques of nodes of the network in a reasonable time.

Clique in a graph is a completely connected sub-graph.

The task of finding a clique in a group of nodes is an NP-

hard problem. In order to solve the problem within a rea-

sonable time and distributively we propose a heuristic. The

heuristic needs 𝒪 (𝑛 log 𝑛) average time, 𝒪 (
𝑛2

)
worst-

case time, and 𝒪 (𝑛) messages for finding a clique in a

group of 𝑛 neighbors. The heuristic uses two connected

nodes as initial candidates for a clique. This is correct since

all nodes of this group of two nodes are connected with each

other. The heuristic then proceeds to iterative selection of

one most favorable (in terms of conditions explained below)

neighbor of all current candidates for a clique and adds it

to the clique. The list of the common neighbors is then re-

freshed and the selection attempted until there are neighbors

in common.

The criterion of the selection of a node for adding it

to clique candidates is the number of neighbors this node

shares with all current clique candidates. The heuristic in

pseudo-code is shown in Listing 1.

Listing 1. Partitioning of the network into
overlapping cliques.

1 FOR EACH PAIR p OF CONNECTED NODES

2 c l i q u e =p

3 inCommon=NEIGHBOURS OF ALL FROM c l i q u e

4 SORT( inCommon )

5 WHILE inCommon NON−EMPTY

6 n = inCommon ( FIRST_NODE_OF_IT )

7 c l i q u e = c l i q u e OR n

8 inCommon = inCommon AND NEIGHBOURS( n )

9 END

10 END

11 REMOVE REPLICATED CLIQUES

The initial selection for the clique members is two linked

nodes. In fact, all connected pairs of the network have to

belong to a clique in order for the clique maps to overlap.

Note that not only “partitioning of a network into maximum

cliques” is needed. It is a partitioning which 1) “ensures

overlaps of the clique maps” in order to enable building a

connected tree of clique map stitching and 2) “finds possi-

bly maximal cliques” in order to maximize the use of re-

dundancy of measurements.

In line 3 there is a creation of inCommon list of nodes

that are neighbors of all nodes from the clique list-variable.

The dominating operation of the heuristic is sorting the

list of neighbors (line 4), hence the optimal complexity can

be as good as this of comparison sort algorithms.

There are two criteria for sorting: the more significant

criterion is the quality of the geographical information that

can be provided by a node. (This criterion is analogous

to the bandwidth in [9].) The less significant criterion is

the number of neighbors in common with the initial pair of

nodes. The sorting order is descending, hence the nodes

most favorable for being proceeded with are stored first in

the inCommon list (hence the instruction in the line 6).

2.4. Clique Reference System

In this sub-section we focus on the procedure of com-

puting R𝑘
𝑐 and C𝑘

𝑐 for each node 𝑘 = 1..𝑛 in the clique 𝑐
comprising 𝑛 nodes. Those parameters are computed in or-

der to introduce a reference system common to all nodes 𝑘
of 𝑐. Transformations R𝑘

𝑐 and C𝑘
𝑐 transform hdw_RS of 𝑘

to cli_RS of 𝑐.
The cli_RS will have its origin in the centroid of the

clique. We choose to use the centroid for the origin because

node maps have to be aligned through rotations around the

centroid [11], so it is straightforward to retain the position

vectors as they are needed by this method used in the local-

ization algorithm.

The measurements are carried out in the hdw_RS of 𝑘.

The position vector of node 𝑖 measured by node 𝑘 is noted

as X̄𝑘
𝑖 . The local map of node 𝑘 is referred to as X̄𝑘. The

centroid of the local map is the average of all points on this

map, hence:

C̄𝑘 = − 1

𝑛

∑
𝑖

X̄𝑘
𝑖 (1)

where the minus sign indicates reverting the direction of the

node’s measurements in a way that the origin of the node

map is in the centroid, not at the origin of hdw_RS. In order

to align the hdw_RS of 𝑘 to hdw_RS of 𝑚 one has to find

a 3-D rotation R𝑘 such that it rotates vector
[
X̄𝑘

𝑖 + C̄𝑘
]

onto vector
[
X̄𝑚

𝑖 + C̄𝑚
]

with earth gravity co-linear with

the rotation axis or R𝑘. For that purpose a minimum square

error with regards to R𝑘 should be computed:

min

𝑛∑
𝑖=1

(
X̄𝑚

𝑖 + C̄𝑚 − (
X̄𝑘

𝑖 + C̄𝑘
)
R𝑘

)2
. (2)

We call this expression peer-to-peer map alignment expres-

sion. Minimization is needed because we are not aware of
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an algebraic method for finding R𝑘. By aligning systems

of all nodes in a clique to a hdw_RS of one arbitrary node

the orientation of cli_RS is established. The origin of the

cli_RS is in the centroid of all node map centroids, hence:

C𝑘 =
1

𝑛

𝑛∑
𝑘=1

C𝑘R𝑘 (3)

and the observations of the physical measurements of node

𝑘 can be expressed as:

X𝑘 =
(
X̄𝑘 + C̄𝑘

)
R𝑘 (4)

Note, that earth gravity direction which is the same in

both reference systems restrictsR𝑘 to a rotation with a fixed

rotation axis co-located with the earth-gravity-direction

vector. Hence the equation 2 can be solved uniquely for

as little as one pair of observations: X1
2 and X2

1 in a clique

of two nodes. In other words, rigidity holds even for 𝑖 = 1
(one pair of observations, i.e. two nodes) in equation 2.

Without the earth-gravity-direction constraint the expres-

sion needs at least three physical nodes in order to hold

rigidity (three nodes is a setup where at least two pairs of

observations exist).

2.5. Stitching Cliques

In this sub-section we explain the process of stitching

clique 𝑐 to the global map. In other words we explain the

procedure of computing the transformations of cli_RS to

glo_RS.

For stitching of a clique to the global map to be possible,

there have to be at least one node 𝑠 in the clique which is a

member of the global map, i.e. is stitched (𝑠 = 1..𝑡 and 𝑡 ∈
(1..𝑛), where 𝑡 is the number of nodes already stitched). All

nodes 𝑠 have the parameters transforming their hdw_RS to

glo_RS (because they are stitched) as well as the parameters

transforming their hdw_RS to cli_RS of 𝑐 (because they are

members of 𝑐). From this fact the transform of cli_RS of 𝑐
to glo_RS with regards to 𝑠 can be written as:

ℛ𝑐𝑠 = (R𝑠
𝑐)

𝑇 ℛ𝑆 (5)

where 𝑆 ∈ {1..𝑁} is a node in the network of 𝑁 nodes we

are referring to as 𝑠 in clique 𝑐, hence its global transforms

are ℛ𝑆 and 𝒟𝑆 , and the transpose inverts the transforma-

tion.

Of course for 𝑡 > 1 there will be 𝑡 > 1 rotations

ℛ𝑐𝑠, hence requiring “averaging” the rotations which is not

straightforward; it consists of finding a rotation that rotates

any vector X onto the vector being: 1
𝑡

∑𝑡
𝑠=1 (Xℛ𝑐𝑠).

The global position vector of node 𝑀 is the average of

position vectors of 𝑀 which are estimated by all possible

nodes 𝑆 and it is therefore 𝒟𝑀 such that

𝒟𝑀 =
1

𝑡

𝑡∑
𝑠=1

(𝒟𝑆 + (C𝑚 −C𝑠)ℛ𝑐𝑠
)

(6)

where 𝑀 , (𝑀 ∈ {1..𝑁}) is a node which we are refer-

ring to as a member 𝑚 of the clique 𝑐.

3. Discussion on COBALT properties

There are three inherent properties of COBALT which

we would like to discuss. Firstly, the approach of COBALT

is motivated by the problem existing in map stitching algo-

rithms which stitch maps one-by-one. We call this problem

a “problem of cascade of averaging” which is discussed be-

low. Secondly, COBALT has a linearly increasing compu-

tational cost with the increase of the degree of node con-

nectivity compared to map stitching. However, we find this

to be a very low price for the accuracy gain that COBALT

offers. Thirdly, COBALT is rigid for any topology, i.e. it

always produces a unique estimation of the topology.

The problem of “cascades of averaging” has been ob-

served in the map stitching algorithms which stitch maps in

a series, one-by-one, i.e. not in parallel. When map X𝑘

of node 𝑘 is being stitched to the global map 𝐺 it does not

benefit from the redundancy offered by the not-yet-stitched

nodes 𝑜 and their maps X𝑜. This leads to a loss of the po-

tentially useful redundancy. Many algorithms do not fix that

problem at all, including [9]. One trivial solution is to take

the omitted redundant measurements from X𝑜 into account

later in order to refine position of 𝐾 by the means of av-

eraging. The refinement would be: X𝑘 = avg
(
X𝑜,X𝑘

)
.

However, iterative application of this method to a position

vector X𝑘leads to degradation of the contribution of the ini-

tial position vector: X𝑘 = avg
(
X𝑜1, avg

(
X𝑜2, ...X𝑘

))
.

This phenomena reduces even further the contribution of

the earliest-used position vector in case of a long cascade of

averages, whose length is unknown beforehand. COBALT

uses several local maps available at a moment in order to

compute the clique map, hence produces enhanced maps

resilient for the problem at this step.

The increasing computational complexity with increas-

ing connectivity comes from the fact that COBALT builds

maps for each pair of connected nodes, hence builds up to

𝑁𝐶/2 maps (for network of 𝑁 nodes and degree of con-

nectivity 𝐶), hence up to 𝐶
2 times more than map stitching

algorithms. We find this relative increase of the cost is small

compared to the accuracy gain.

Rigidity is an ability of localization algorithm to solve

the localization problem uniquely. While many wireless

sensor localization algorithms available in the public liter-

ature require certain degree of connectivity for being rigid,

COBALT is rigid in any topology and can localize all nodes

uniquely regardless on the degree of connectivity. This is
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achieved by rich spatial measurements taken as an input to

the algorithm. COBALT uses angle-of-arrival, range and

earth gravity direction. This enables peer-to-peer localiza-

tion, as explained in 2.4, equation 2.

4. Simulation Results

In order to investigate the performance of COBALT we

simulate its behavior in three 3-D topologies and compare

the results with simulations of two other algorithms on the

same set of data. The topologies we used are: C-shaped,

highly clustered C-shaped and uniform. The projections on

the plane of the first two topologies are illustrated in figure

1.

We regulate the degree of connectivity in the networks

by varying the number of nodes deployed in the network

area from 150 to 400. Initially in each simulation the nodes

have their hardware reference system randomly rotated and

origin of this system set to be in the node’s physical posi-

tion. One node in the network is oriented and positioned

correctly in the global reference system. It is in the left bot-

tom corner of the maps in figure 1 (a) and (b).

Each node in our simulations has the same communica-

tion range 𝑟 which is 90 meters in our simulations. The two

nodes spaced 𝑑 from each other succeed to communicate

with the probability 𝑝 = 1 − 𝑑2

𝑟2 , for 𝑑 ≤ 𝑟. Even though

this assumption is not a reliable simulation of the commu-

nication channel, it is a reasonable initial approach [9].

We assume the uniform distribution of the measurement

errors, as in [9, 12]. We used two ranges of measurement

errors: ranging error ±7.5% of the communication range

and angular error ±7.5 degrees. The error range which is

shown as second in the figure 2 is: ±25% for ranging and

±15 degrees for angles. The earth gravity direction can be

determined in reality using accelerometers with the accu-

racy as good as a fraction of a degree, hence its error can be

neglected in the deliberations where the scale of the error of

radio-wave measurements is as high as mentioned above.

The other two algorithms we use for comparison are:

map stitching, which has a stitching-order decision-making

mechanism the same as COBALT does, and flooding algo-

rithm, which does not employ any inter-node co-operation

technique for eradicating the error.

Map stitching algorithm is originally a 2-D localization

algorithm [10, 9] that uses only distance estimations for cre-

ating node maps by trilateration. We extend the original

algorithm in two ways: firstly, we create node maps us-

ing angle-of-arrival and range measurements (see section

2.2), secondly we extend the map-stitching procedure to 3-

D (see section 2.5), hence extending the algorithm to 3-D.

To summarize the description of Map Stitching algorithm,

the major difference between Map Stitching and COBALT

is that Map Stitching performs stitching of node maps while

COBALT performs stitching on clique maps.

Flooding algorithm is a trivial solution, which does not

use any redundant measurements and any error correction

mechanism. The reference system is propagated through

the network from node to node, peer-to-peer, until all nodes

are localized. Passing the reference system occurs along the

shortest path to the reference node. Information about the

neighboring nodes is not used in the process of propagation

of the reference system.

Figure 2 presents the numerical results. The horizon-

tal axis of each graph shows the average degree of connec-

tivity of the instance of network simulated. The vertical

axes show the average localization error normalized over

the communication range. The communication range in our

simulations was set to 90 meters.

The average localization error for COBALT oscillates

around 1/3 of the communication range in the most cases,

only slightly improving for higher degrees of connectivity,

as can be seen in figure 2 (b) for dash-line performance plot.

The accuracy of the other algorithms depends on the degree

of connectivity to a higher extent.

It can be seen from most of the results illustrated in figure

2 that the performance of map stitching remains relatively

constant compared to the performance of the flooding al-

gorithm. Invariant gain of map stitching algorithm may be

due to the problem of cascades of averages, which reduces

the increase of the accuracy gain despite the increase of the

redundancy. In the meanwhile, the performance of flooding

improves as the network becomes more dense and the min-

imum degree of connectivity increases, because the higher

connectivity boosts chances for long-haul links (due to how

the communication channel is modeled) and consequently

reduces the number of hops to the reference node. Less

hops means better localization accuracy.

The adverse effect of the sparse topology (highly clus-

tered C-shape) on general-purpose localization algorithms

(like map stitching and flooding) can be seen from the fig-

ure 2 (c). The accuracy of these algorithms in the experi-

ment on clustered topology depends highly on the accuracy

of the input (measurements) data, unlike in the other exper-

iments, where the algorithms performed relatively similarly

for both error ranges.

5. Conclusions

In this paper we present a distributed and scalable algo-

rithm referred to as COBALT which solves the problem of

localization for 3-D networks of wireless sensors outper-

forming other methods suitable for solving this problem.

Our focus in this work is on enhancing the local maps prior

to stitching them to the global map. Enhancing the local

maps results in achieving much better accuracy, as can be
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(a) (b)

Figure 1. Projections on the plane of example
3-D network topologies that we used: (a) C-
shape, (b) C-shape highly clustered.

seen in section 4 and figure 2. The algorithm takes the fol-

lowing measurements as input: distance, radio wave angle

of arrival and earth gravity direction. The method used for

eradication of the measurement error is minimum square er-

ror, as in equation 2. The nodes which are being processed

in order to eradicate the error belong to groups of fully con-

nected nodes, i.e. cliques.

We have proposed a fast heuristic that finds cliques in

the connectivity graph of the sensor network. The heuristic

is applicable to be implemented in a distributed way and

performed by sensor nodes.

We have two concluding remarks about COBALT.

Firstly, the approach of stitching a few maps collectively

has the accuracy advantage over stitching of a single map

at a time. This is due to avoiding the problem of cascade

of averages. This problem appears when some initial values

are averaged with each other and are later averaged with yet

another value. The contribution of the initial values into the

overall average is thus not proportional and may be further

disrupted if the cascade has many steps. COBALT miti-

gates this problem by using cliques for computing stitching

parameters. Secondly, COBALT has no rigidity conditions,

i.e. the network is always rigid, thus allowing for local-

ization of all nodes connected. This property was achieved

by using rich spatial measurements including: range, angle

of arrival as well as earth gravity direction. The property

of rigidity is crucial for localization in sparse networks like

those deployed on tunnels.
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(a) uniform topology

(b) C-shape topology

(c) C-shape topology, highly clustered

Figure 2. Localization error with varying de-
gree of connectivity for different topologies.
Two measurement error setting used are:
[±7.5%, ±7.5𝑜] and error 2: [±25%, ±15𝑜] ([nor-
malized to the communication range, and the
angular error]).
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