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Abstract—We investigate the problem of identifying individual
link performance metrics in a communication network by mea-
suring end-to-end metrics of selected paths between monitors,
under the assumption that link metrics are additive and constant
during the measurement, and measurement paths cannot contain
cycles. In a previous work, we developed an algorithm that
places the minimum number of monitors to identify all link
metrics. However, even the minimum number can be large in
some practical networks (e.g., 60% of all the nodes), suggesting
high monitor deployment cost. In this paper, we study the dual
problem where given a fixed number of monitors, we want to
place them to maximize the number of identifiable link metrics,
with concrete results for the case of two monitors. The significance
of the two-monitor case is that all the tomographic computation
can be performed at the destination monitor without shipping
measurements to a central node, thus enabling endhost-based
network monitoring. We develop an efficient algorithm to deter-
mine all identifiable links in an arbitrary network with a given
placement of two monitors, based on which we propose an optimal
two-monitor placement algorithm to maximize the number of
identifiable links. Our evaluation on real ISP topologies shows
that although a large number of monitors is needed to identify all
link metrics, we can usually identify a substantial portion (up to
97%) of the links using a single pair of optimally placed monitors.

I. INTRODUCTION

Accurate and timely knowledge of the internal state of
a network (e.g., delays on individual links) is essential for
various network operations such as route selection, resource
allocation, and fault diagnosis. Directly measuring the perfor-
mance of individual network elements (e.g., nodes/links) is,
however, not always feasible due to the traffic overhead of
the measurement process and the lack of support at internal
network elements for making such measurements [1]. These
limitations motivate the need for external approaches, where
we infer the states of internal network elements by measuring
the performance between a subset of nodes with monitoring
capabilities, hereafter referred to as monitors.

Compared with hop-by-hop measurements, end-to-end
measurement between monitors has the advantage requiring
the minimal cooperation from internal nodes. However, such
measurements impose a challenge on extracting network state
as each end-to-end measurement usually contains information
about multiple network elements along the measurement path.
To this end, network tomography [2] provides a method-
ology for inferring network internal characteristics through
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externally-available end-to-end measurements. Besides elimi-
nating the need for special cooperation from internal nodes,
network tomography can also utilize passive measurements
from data packets to obtain path-level information [3], thus
reducing traffic overhead.

In this paper, we consider the particular network tomogra-
phy problem of inferring additive link metrics from end-to-end
path measurements, where each measurement equals the sum
of link metrics along the corresponding path. For instance,
delays are additive, and multiplicative metrics (e.g., packet
delivery ratio) can be expressed in an additive form using the
log(·) function. For additive metrics, we can formulate the
problem as a system of linear equations, where the unknown
variables are the link metrics, and the known constants are the
end-to-end path measurements. The goal of network tomog-
raphy is essentially to solve this system of linear equations.

Past experience shows that it is frequently impossible to
uniquely identify all link metrics from path measurements [4],
[5], [6]. In the language of linear algebra, this is because
the linear system associated with the measurement paths is
noninvertible, i.e., the number of linearly independent paths is
smaller than the number of links. To ensure invertibility, we
developed an algorithm in [7] to select the minimum number
of nodes as monitors such that all link metrics are identifiable,
where we restrict measurements to cycle-free paths to conform
with the requirement of routing protocols. However, to fully
identify a network, even the minimum required number of
monitors can be large, e.g., up to 64% of the nodes in real
ISP networks [7]. In cases where the network operator does
not have sufficient budget to deploy the minimum set of
monitors required for complete identification, it is still possible
to identify a subset of the link metrics through a partial
deployment. Therefore, it is essential to determine the fraction
of link metrics identifiable for a given monitor placement and
the optimal placement of a given number of monitors so as to
maximize the fraction.

In this paper, we take a first step toward addressing the
above problem by solving two closely related subproblems:
(a) Given a network with two monitors, which links are iden-
tifiable from end-to-end measurements along cycle-free paths
between the monitors? (b) Given an arbitrary network, what is
the optimal placement of two monitors such that the number
of identifiable links is maximized? We focus on the case of
two monitors because this is the minimum possible number of
monitors for cycle-free measurement, and more importantly,
it represents the paradigm of endhost-based tomography. In a
network with symmetric link metrics (equal in both directions),
all measurements are collected by the same node (destination
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monitor) and hence ready for processing by this node to
yield a (partial) network state without further assistance from
other nodes. We answer these two questions by developing
efficient polynomial-time algorithms with guaranteed correct-
ness. Throughout this paper, we assume that the link metrics
are additive and constant, where the “constant” assumption
means that either the link metrics change slowly relative to
the measurement process, or they are statistical characteristics
(e.g., mean, variance) that stay constant over time.

A. Related Work

When link metrics are constant, [5] shows that it is
challenging to solve the inverse problem due to the presence
of linearly dependent paths. If all link metrics are binary
(normal/failed), [8] proves that the network must be (k + 2)-
edge-connected to identify up to k failed links using one
monitor measuring cycle. For arbitrarily valued link metrics,
few positive results are known. If the network is directed (links
have different metrics in different directions), [9] proves that
not all link metrics are identifiable unless every non-isolated
node is a monitor. If the network is undirected (links have
equal metrics in both directions), [10] establishes a linear
time algorithm to determine the maximum number of linearly
independent cycles and the corresponding identifiable links
in an arbitrary network employing only one monitor. Since
routing along cycles is typically prohibited in real networks, it
remains open as to how monitor placement affects the number
of identifiable links if only cycle-free paths can be measured.
In previous work [7], we established the first topological
conditions for characterizing all the links that can be identified
using two monitors employing cycle-free measurements. In
this work, we extend the result by quantifying the fraction of
identifiable links for arbitrary network topologies.

B. Summary of Contributions

Our contributions are two-fold:
1) We develop an algorithm to determine all identifiable

links for a given placement of two monitors by decomposing
the network into triconnected components and applying
previously established identifiability conditions to each
component. The total complexity is only O(|V | + |L|) (|V |:
the number of nodes, |L|: the number of links);

2) We propose an optimal two-monitor placement
algorithm based on the above algorithm to maximize the
number of identifiable links. Our evaluation on real ISP
topologies shows that with proper placement, we can identify
up to 97% of the links using only two monitors, suggesting
the possibility of tomography-based monitoring system with
an extremely small footprint (a pair of endhosts).

The rest of the paper is organized as follows. Section II
formulates the problem. Section III summarizes the theoretical
conditions for complete identifiability, and Section IV presents
algorithms for quantifying partial identifiability, both using
two monitors. Evaluations are given in Section V. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Models and Assumptions

We assume that the network topology is known and model
it as an undirected graph1 G = (V, L), where V and L are the

1In this paper, the terms network and graph are used interchangeably.

TABLE I. NOTATIONS IN GRAPH THEORY

Symbol Meaning
V (G), L(G) set of nodes/links in graph G

|G| degree of G: |G| = |V (G)| (number of nodes)
H interior graph (see Definition 1)
P simple path

mi mi ∈ V (G) is the i-th (i = {1, 2}) monitor in G

m1

1

2

3
4

5

6 8

7

9 m2

Fig. 1. Sample network with two monitors: m1 and m2.

sets of nodes and links, respectively. Without loss of generality,
we assume G is connected, as different connected components
have to be monitored separately. Denote the link incident to
nodes i and j by ij; links ij and ji are assumed to have the
same metric. A subset of nodes in V are monitors, which can
initiate/collect measurements. In this paper, we focus on the
case where exactly two nodes are monitors, denoted by m1 and
m2, which is the minimum number of monitors feasible under
the measurement constraint specified below. We assume that
each link in G has two distinct end-points (i.e., no self-loop),
and there is at most one link connecting a pair of nodes. Table I
summarizes the graph-theoretical notations used in this paper.

Let n := |L| be the number of links in G, {li}ni=1 the link
set in G, w = (wl1 , . . . , wln)

T the column vector of all link
metrics (which are unknown), and c = (cP1 , . . . , cPγ )

T the
column vector of path measurements (which are observed),
where γ is the number of measurement paths and cPi is the
sum of link metrics along path Pi. We assume that monitors
can control the routing of measurement packets (i.e., source
routing) as long as the path starts and ends at distinct monitors
and does not contain repeated nodes. In the language of graph
theory, we limit measurements to simple paths (in contrast, a
non-simple path may contain repeated nodes). Given all the
path measurements, we have a linear system:

Rw = c, (1)

where R = (Rij) is a γ×n measurement matrix, with each en-
try Rij ∈ {0, 1} indicating whether link j is present on path i.

We say a link is identifiable if the associated link metric
can be uniquely determined from path measurements; we say
network G is fully identifiable if all link metrics in G are
identifiable. By linear algebra, G is fully identifiable if and
only if R in (1) has full column rank, i.e., rank(R) = n.
In other words, to uniquely determine w, there must be n
linearly independent simple paths between monitors. However,
as illustrated in Section II-C, even if rank(R) < n, it is still
possible to identify some of the link metrics in w, i.e., G can be
partially identifiable. The number of identifiable links therefore
provides a quantitative measure of network identifiability.

B. Objective

The first objective of this paper is to determine, for an
arbitrary placement of two monitors in G, the set of links that
are identifiable. The second objective is to compute the optimal
monitor placement such that the number of identifiable links is
maximized. This maximum number of identifiable links thus
quantifies the identifiability of G.

C. Illustrative Example

Fig. 1 displays a sample network with two monitors (m1,
m2) and nine links (link 1–9). To determine the metrics of
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these links, eight m1 → m2 simple paths are constructed to
form the measurement matrix R:

P1 : 1 2 3

P2 : 6 7 8

P3 : 6 5 3

P4 : 1 2 5 7 8

P5 : 1 4 8

P6 : 6 7 4 2 3

P7 : 1 9 7 8

P8 : 6 9 2 3

V R =



1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0
0 0 1 0 1 1 0 0 0
1 1 0 0 1 0 1 1 0
1 0 0 1 0 0 0 1 0
0 1 1 1 0 1 1 0 0
1 0 0 0 0 0 1 1 1
0 1 1 0 0 1 0 0 1


, (2)

where Rij = 1 if and only if link j is on path i. Measuring
the performance along these paths provides a set of linear
equations Rw = c, where c is the vector of path metrics
measured at m2. In Fig. 1, it can be verified that measuring
any other path2 will not provide further information about the
link metrics since they are linearly dependent with the paths in
(2). In this example, R is non-invertible, and thus the metrics
in w cannot be fully identified. Nevertheless, measurements
of the paths in (2) provide sufficient information to identify
the metrics of five links: link 2, 4, 5, 7 and 9. Specially,
w2 = (c4 − c3 + c8 − c7)/2, w4 = (c5 − c1 + c6 − c2)/2,
w5 = (c3 − c1 + c4 − c2)/2, w7 = (c6 − c5 + c7 − c8)/2
and w9 = (c7 − c1 + c8 − c2)/2. Moreover, it can be verified
that if we change the locations of these two monitors, then
the number of identifiable links will be less than 5; therefore,
the monitor placement in Fig. 1 maximizes the number of
identifiable links.

III. CONDITIONS FOR COMPLETE IDENTIFIABILITY
USING TWO MONITORS

In previous work [7], we established the fundamental
topological conditions under which the network is (fully)
identifiable using two monitors. Our results were based on
a partition of the network as defined below.

Definition 1.
1) The interior graph H of G is the subgraph obtained by
removing the monitors (m1 and m2) and their incident links.
Links in H are called interior links (e.g., links 2, 4, 5, 7 and
9 in Fig. 1); the rest of the links are called exterior links (e.g.,
links 1, 3, 6 and 8 in Fig. 1).

Based on this partition, we established the following result
when only two monitors are used.

Theorem III.1. [7] None of the exterior links is identifiable.

Theorem III.2. [7] When the interior graph H of G is con-
nected, the necessary and sufficient conditions for identifying
all link metrics in H are

1⃝ The graph remaining after deleting any interior
link in G is 2-edge-connected;

2⃝ The augmented graph after adding link m1m2 (if
it does not exist) to G is 3-vertex-connected.

For graphs that do not satisfy conditions 1⃝– 2⃝, Theo-
rem III.2 only states that not all interior links can be identified;
it remains to be determined which subset of interior links
can be identified. Nevertheless, we will show that Theorems
III.1 and III.2 provide a foundation on which to address this
problem.

2Note that a path such as 674953 cannot be used for path measurement
because it contains a cycle.
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Fig. 2. Three cases in identifying links of a 3-vertex-connected subgraph D1.

IV. CHARACTERIZATION OF PARTIAL IDENTIFIABILITY
USING TWO MONITORS

In general, we may only be able to identify a subset of
the (interior) links using two monitors. To characterize such
partial identifiability, we develop an algorithm to determine the
subset of identifiable links for a given two-monitor placement.
We then propose an optimal two-monitor placement algorithm
to maximize the number of identifiable links.

A. Set of Identifiable Links for a Given Two-Monitor Place-
ment

1) Algorithm Overview: Our algorithm for determining the
set of identifiable links originates from a simple observation
rooted in Theorems III.1 and III.2: if the interior graph H
is 3-vertex-connected and connects to each monitor via at
least two exterior links, then G satisfies the conditions in
Theorem III.2, and hence the identifiability of all links can be
easily determined (all interior links are identifiable, all exterior
links are unidentifiable). Given an arbitrary network G, if we
decompose it into subgraphs such that each subgraph is 3-
vertex-connected, then the above observation can be applied
to determine link identifiability in each subgraph. Specifically,
as illustrated in Fig. 2, let D1 denote a subgraph of G that is
3-vertex-connected. Our observation applies to three cases:
(1) {m1,m2} /∈ D1 and ∃ internally vertex disjoint3 paths

P1 and P2 connecting m1 to different nodes in D1, and
paths P3 and P4 connecting m2 to different nodes in D1

(Fig. 2-a): Abstracting each path as a single link, we can
apply our observation to the graph D′

1 formed by these
four links together with D1 and the two monitors, which
implies that all links in D1 are identifiable.

(2) m1 /∈ D1 but m2 ∈ D1 (or vice versa) and ∃ internally
vertex disjoint paths P1 and P2 connecting m1 to different
nodes in D1 (Fig. 2-b): Our observation applies to the
graph D′

1 consisting of D1, m1, P1 and P2 (modeled as
single links), implying that all links in D1 except for those
incident to m2 are identifiable.

(3) {m1, m2} ∈ D1 (Fig. 2-c): Our observation applies to
D1, implying that all its links except for those incident to
m1 or m2 are identifiable. Note that due to the 3-vertex-
connectivity of D1, a monitor in D1 must connect to other
nodes in D1 via at least three links.
These three cases are not exclusive; we will show, however,

that they represent the majority of the cases (see explanations
of Algorithm 2). Our strategy is to first decompose the graph
into subgraphs falling into one of the above cases (plus some
boundary cases), and then determine the set of identifiable
links in each subgraph accordingly.

2) Algorithm Design: To formally present the proposed
algorithm, we introduce the following definition.

Definition 2. A k-connected component of G is a maximal
subgraph of G that is either (i) k-vertex-connected, or (ii) a

3That is, the paths are disjoint except at end-points.
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Fig. 3. Partitioning of a sample network. (a) Sample network G, (b)
Biconnected components of G, (c) Triconnected components of G.

Algorithm 1: Classification of Triconnected Components
input : Connected graph G
output: Triconnected components and their categories

1 partition G into biconnected components B1,B2, . . . [11] and
identify monitoring agents for each biconnected component;

2 foreach biconnected component Bi with 2 monitoring agents
do

3 partition Bi into triconnected components T1, T2, . . . [12];
4 foreach triconnected component Tj of Bi with |Tj | ≥ 3

do
5 determine the types of all 2-vertex cuts of Tj ;
6 if |Tj | = 3 then
7 record all neighboring triconnected components

connected to Tj through 2-vertex cuts;
8 end
9 determine the category of Tj ;

10 end
11 end

complete graph with up to k vertices. The case of k = 2 is
also called a biconnected component, and k = 3 a triconnected
component.

By this definition, a biconnected component can be either
a 2-vertex-connected subgraph or a single link (the case of
an isolated vertex is excluded by assuming G to be con-
nected). Similarly, a triconnected component can be 3-vertex-
connected, a triangle, or a single link. Intuitively, a biconnected
component is a subgraph connected to the rest of the graph by
cut-vertices4, and a triconnected component (within a bicon-
nected component) is a subgraph connected to the rest by 2-
vertex cuts5. For instance, Fig. 3-b shows the biconnected com-
ponents of Fig. 3-a, separated by cut-vertex h. Fig. 3-c shows
the triconnected components, separated by the above cut-vertex
and the 2-vertex cuts {a, b}, {a, f}, {a, e}, and {e, g}. Not
all subgraphs separated by 2-vertex cuts form triconnected
components according to Definition 2 (e.g., T2 in Fig. 3-c).
To fix this issue, we process the graph to add virtual links as
follows: for each 2-vertex cut whose vertices are not neighbors
(e.g., {a, f}), connect these vertices by a virtual link; repeat
this on the resulting graph until no such cut exists. It can be
verified that all subgraphs separated by cut-vertices or 2-vertex
cuts in the processed graph are triconnected components.

There exist fast algorithms to partition an arbitrary graph G
into biconnected components [11] and then into triconnected
components [12]. Note that the output of [12] is the set of
triconnected components of the processed G. Based on these
algorithms, we propose an algorithm, Determining Identifiable

4A cut-vertex is a vertex whose removal will disconnect the graph.
5A 2-vertex cut is a set of two vertices {v1, v2} such that removing v1 or

v2 alone does not disconnect G, but removing both disconnects G.
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Fig. 4. Monitoring agents: v1 and v2 are monitoring agents wrt B, but v3
is not.
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Fig. 5. Triconnected components T1, · · · , T5 within the same biconnected
component (m′

1, m′
2: monitoring agents).

Links under Two Monitors (DIL-2M) (see Algorithm 2), to
determine all identifiable links in G for a given two-monitor
placement. Before presenting this algorithm, we first introduce
an auxiliary algorithm (Algorithm 1), which builds upon the
graph partition algorithms [11], [12] to identify triconnected
components and classify them into various categories based on
their connectivity to the monitors. The classification is based
on the following two concepts.

Definition 3. A monitoring agent wrt a subgraph G′ is either
a monitor in G′ or a cut-vertex that separates G′ from a
monitor. A Type-k vertex cut (denoted by Type-k-VC) wrt a
triconnected component T is a 2-vertex cut {v1, v2} in T that
separates T from k monitoring agents (including monitoring
agents in {v1, v2}) in its parent biconnected component (i.e.,
the biconnected component containing T ).

We illustrate the concept of a monitoring agent in Fig. 4.
Consider the biconnected component B illustrated in Fig. 4,
which is separated from subgraphs Dj by cut-vertices vj
(j = 1, 2, 3). We say that v1 and v2 are monitoring agents
wrt B since D1 and D2 both contain monitors; v3 is not a
monitoring agent wrt B as D3 does not contain any monitors
(but it is a monitoring agent wrt D3). The significance of mon-
itoring agents is that they essentially serve as “monitors” for
identifying links in the corresponding biconnected component.

Lemma IV.1. Let B be a biconnected component with moni-
toring agents m′

1 and m′
2. The set of identifiable links in L(B)

does not depend on whether m′
1 or m′

2 are monitors or not,
except for link m′

1m
′
2 (if it exists). Link m′

1m
′
2 is identifiable

if and only if m′
1 and m′

2 are both monitors.

Proof: see [13].
Remark: Since each monitoring agent is associated with

at least one monitor, the number of monitoring agents wrt
a biconnected component cannot exceed the total number of
monitors (i.e., two). Clearly, for any biconnected component
with fewer than two monitoring agents, none of its links is
identifiable since all monitor-to-monitor paths going into this
component must leave through the same node, creating a cycle.
Therefore, it suffices to only consider biconnected components
with two monitoring agents.

We illustrate the concept of a Type-k vertex cut in Fig. 5,
which contains a biconnected component consisting of five
triconnected components. Each triconnected component Ti in
Fig. 5 is separated from the rest by a set of 2-vertex cuts,
each cut separating Ti from k ∈ {0, 1, 2} monitoring agents.
The value of k determines the type of this cut. Specifically, in
Fig. 5, we have: (i) Type-1-VC {a, b} wrt T1, (ii) Type-2-VC
{c, d} wrt T2, (iii) Type-1-VC {a, b}, Type-1-VC {d, e}, and
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Algorithm 2: Determining Identifiable Links under Two
Monitors (DIL-2M)

input : Connected graph G
output: All identifiable links in G

1 partition G into triconnected components and determine the
category of each triconnected component by Algorithm 1;

2 if ∃ direct link lm1m2 connecting m1 and m2 then
3 lm1m2 is identifiable;
4 end
5 foreach triconnected component Ti within a biconnected

component with 2 monitoring agents do
6 if Ti is in Category 1 then
7 all links in Ti except for the ones incident to the

monitoring agent are identifiable;
8 else if Ti is in Category 2 then
9 all links in Ti except for the ones incident to the

monitoring agents or the vertices in the Type-2-VC
are identifiable;

10 else if Ti is in Category 3 then
11 all links in Ti are identifiable;
12 else
13 Ti must be of Category 4 (identified by Algorithm 3);
14 end
15 end

Type-0-VC {c, d} wrt T3, (iv) Type-1-VC {d, e} and Type-1-
VC {m′

2, g} wrt T4, and (v) Type-2-VC {m′
2, g} wrt T5.

Based on these two concepts, Algorithm 1 categorizes each
triconnected component of G. It first decomposes G into bicon-
nected components using the algorithm in [11] and identifies
the monitoring agents for each biconnected component (line 1).
Each biconnected component of interest (with two monitoring
agents) is further decomposed into triconnected components
using the algorithm in [12] (line 3). Since Lemma IV.1
already establishes the necessary and sufficient condition for
identifying a degenerate triconnected component consisting of
a single link (both end-points must be monitors), we only
need to consider triconnected components with three or more
nodes (lines 4-10). For each such triconnected component,
we determine the types of all its 2-vertex cuts (wrt itself) by
counting the number of monitoring agents on the other side of
each 2-vertex cut (within the parent biconnected component).
For triconnected components with exactly three nodes (i.e.,
triangles), additional information is recorded (line 7), the
purpose of which will be explained later in Algorithm 3.
Based on the monitoring agents and the types of 2-vertex cuts,
Algorithm 1 classifies each triconnected component into one
of the following four categories (line 9):

(i) Category 1: containing only one monitoring agent and at
least one Type-1-VC, e.g., T1 and T4 in Fig. 5;

(ii) Category 2: containing one Type-2-VC, e.g., T2 and T5
in Fig. 5, or containing two monitoring agents;

(iii) Category 3: a 3-vertex-connected component containing
two Type-1-VCs and no monitoring agent, e.g., T3 in
Fig. 5;

(iv) Category 4: a triangle component containing two Type-
1-VCs and no monitoring agent.

We have proved [13] that each triconnected component
with three or more nodes falls into one of these four categories.

Now we formally present DIL-2M (Algorithm 2). Algorith-
m 2 determines identifiable links one triconnected component
at a time based on the category of the triconnected component
(lines 6-14). These steps are best understood in comparison
with the illustration in Fig. 2. Viewing the monitoring agents
as real monitors (by Lemma IV.1), Category 1, 2, and 3 are

Algorithm 3: Determining Identifiable Links in Triangles
input : Triangle component T of Category 4 with two

Type-1-VCs {v1, v2} and {v1, v3}, and a set S1 (S2)
of its immediately neighboring triconnected
components connected to T via {v1, v2} ({v1, v3})

output: Identifiable links in T
1 v1v2 (v1v3) is identifiable if it is a real link;
2 if (link v1v2 is real OR |S1| ≥ 2 OR one component in S1 is

3-vertex-connected) AND (link v1v3 is real OR |S2| ≥ 2 OR
one component in S2 is 3-vertex-connected) then

3 v2v3 is identifiable if it is a real link;
4 end

equivalent to the cases in Fig. 2-b, Fig. 2-c, and Fig. 2-
a, respectively. This is because the 2-vertex-connectivity of
the parent biconnected component ensures the existence of
pairwise internally vertex disjoint paths {P1,P2,P3,P4} as
shown in Fig. 2-a–b; see [13] for detailed proofs. Moreover,
Theorem III.1 (together with the observation that no link
is identifiable in a biconnected component with fewer than
two monitoring agents) guarantees that links not classified as
identifiable by DIL-2M are unidentifiable, i.e., it determines all
the identifiable links. The complete proof of the correctness of
Algorithm 2 is detailed in [13].

Remark: Note that the two Type-1-VCs in Category 3
can have one common node, which does not alter the i-
dentifiability of links in a triconnected component of this
category. For Category 2, the direct link (if any) connecting
the 2 monitoring agents or the 2 vertices in the Type-2-VC
cannot be immediately determined in the current triconnected
component; nevertheless, it can be determined in a neighboring
triconnected component, e.g., in Fig. 5, the identifiability of
link cd cannot be determined in T2, but can be determined in
T3 (as identifiable).

Category 4 is a special case requiring separate treatment.
Consider the case that D1 in Fig. 2-a is a triangle, and a and
c are the same node. We cannot directly apply Theorem III.2
to D′

1 as D1 may contain virtual links (see the explanation of
Definition 2). To handle this case, we introduce another auxil-
iary algorithm, Algorithm 3. The key question that Algorithm 3
answers is: when virtual links are used in identifying a link,
are there real paths in neighboring components to replace these
virtual links? Let the two Type-1-VCs in triangle T be {v1, v2}
and {v1, v3}. To identify v2v3, the path replacement of v1v2 or
v1v3 (if they are virtual) may involve monitoring agents, which
implies that Condition 2⃝ in Theorem III.2 is not satisfied (see
the proof in [13]). However, any path replacement of v2v3 in
neighboring components of T does not involve monitoring
agents. Thus, this freedom of path selections benefits the
identification of {v1, v2} and {v1, v3}. In fact, v1v2 and v1v3
(if any) are always identifiable (line 1). To identify v2v3, line 2
of Algorithm 3 specifies the conditions to ensure the existence
of path replacements that do not contain any monitoring
agents. Note that for Categories 1–3, even if the associated
triconnected component contains virtual links, the conclusions
in lines 7, 9, and 11 still hold (see the proof in [13]).

3) Complexity Analysis: In Algorithm 1, partitioning G
into biconnected components (line 1) and then triconnected
components (line 3) takes O(V (G) + L(G)) time [11], [12].
The classification of triconnected components (lines 4-10) can
be performed during the partitioning with a constant-factor
increase in the complexity. Therefore, Algorithm 1 (also line 1
of Algorithm 2) has O(|V (G)| + |L(G)|) time complexity. In
Algorithm 2, lines 2-4 take O(1) time. The complexity of
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TABLE II. ISP NETWORKS

ISP n |V | κ nmax nmax/n nmaxκ/(2n)
Abovenet (US) 294 182 117 126 0.43 25.1

EBONE (Europe) 381 172 55 286 0.75 20.7
Tiscali (Europe) 404 240 138 200 0.49 34.2

Exodus (US) 434 201 85 295 0.68 28.9
Telstra (Australia) 758 318 164 480 0.63 51.9

AT&T (US) 2078 631 208 1708 0.82 85.5
Sprintlink (US) 2268 604 163 2037 0.90 73.2

Verio (US) 2821 960 408 2210 0.78 159.7
Level3 (US) 5298 624 94 5146 0.97 45.6

lines 5-15 is O(|L(Ti)|) for each triconnected component Ti
under consideration (Algorithm 3 takes O(1) time). Therefore,
the overall complexity of Algorithm 2 is O(|V (G)|+ |L(G)|).

4) Example: The sample network in Fig. 3-a has 2 bi-
connected components B1 and B2 (Fig. 3-b) with monitor-
ing agents {m1, h} and {h,m2}, respectively. There are 5
triconnected components in B1 (Fig. 3-c), where {T1, T5},
{T3}, {T4} and {T2} belong to Categories 1, 2, 3 and
4, respectively. Moreover, B2 itself is a Category 2 tri-
connected component. Therefore, the identifiable links are
{ab, bf, cd, ae, ag, fe, fg, eg, ei, gi, gj, ij}.

B. Optimal Two-Monitor Placement

Algorithm 2 allows us to determine the number of identi-
fiable links in an arbitrary network with a given placement of
two monitors in O(|V (G)|+ |L(G)|) time. This enables us to
maximize the number of identifiable links using a simple algo-
rithm, referred to as Optimal Monitor Placement (OMP), that
works as follows. OMP enumerates all possible placements of
m1 and m2 in G and computes the number of identifiable links
for each placement so as to determine the optimal placement
with the maximum number of identifiable links. Since there
are

(|V (G)|
2

)
possible two-monitor placements, the complexity

of OMP is O(|V (G)|3 + |V (G)|2|L(G)|).

V. EVALUATIONS ON ISP TOPOLOGIES

We evaluate OMP on the Internet Service Provider (ISP)
topologies collected by the Rocketfuel project [14], which rep-
resent physical connections between backbone/gateway routers
of several ISPs6 around the globe. Given a network topology,
OMP is applied to compute the maximum number of identifi-
able links (nmax) that can be achieved by two monitors as well
as the corresponding monitor placement7. For comparison, we
also calculate the minimum number of monitors (denoted by κ)
required to identify all link metrics in the same network via the
MMP algorithm proposed in [7]. The focus of the evaluation
is on the identification ratio, i.e., the fraction of links that can
be identified (nmax/n).

Simulation results are presented in Table II, where |V | is
the number of nodes and we sort the networks according to
the number of links (i.e., n). We notice that to identify all
link metrics, a large fraction of nodes must serve as monitors,
ranging from 30% (EBONE, AT&T, Sprintlink) to more than

6ISP networks have undergone changes since Rocketfuel project, one
notable change being the presence of parallel links between the same node
pairs. Although we assume simple graphs, it is easy to see that if one link is
identifiable, then all parallel links between the same node pair are identifiable
as long as monitors can control which link the probe traverses.

7To bound running time, only 2000 randomly chosen monitor placements
are tested for the four largest networks (AT&T, Sprintlink, Verio, and Level3),
and we select the placement with the largest number of identifiable links.

60% (Abovenet). This is because ISP networks contain a
large number of gateway routers to connect to customers or
other ISPs, which appear as dangling nodes that have to be
selected as monitors; see MMP in [7] for detailed explanations.
In contrast, OMP can identify a significant portion of the
links using only two monitors, achieving an identification ratio
greater than 0.4 for all the networks and as large as 0.97
for Level3. This is because most ISP networks contain at
least one densely-connected subnetwork (likely the backbone
network) which tends to be 3-vertex-connected, thus allowing
a properly placed monitor pair to identify all links in this
subnetwork analogous to the case of Fig. 2 (where D1 is large
enough to cover most links in G). Moreover, OMP also exhibits
superior performance in terms of cost efficiency measured by
the number of identifiable links per monitor, i.e., n/κ for MMP
and nmax/2 for OMP. We see from their ratio nmaxκ/(2n)
that OMP improves the cost efficiency by more than 20 times
for all ISPs, and as much as 159 times for Verio (even with
underestimated nmax for the last four networks). Over all, OMP
has better performance for large, densely-connected networks.

VI. CONCLUSION

We studied the network tomography problem of iden-
tifying additive link metrics from end-to-end measurements
using two monitors. We quantitatively characterized network
identifiability by developing efficient algorithms to determine
and then maximize the number of identifiable links in an
arbitrary network using two monitors. Simulations driven by
real networks show that although a large number of monitors
are needed to identify all the links, a majority of the links can
be identified using only two monitors, suggesting the efficacy
of endhost-based tomographic solutions.
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