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Abstract—We investigate the problem of identifying individual
link metrics in a communication network from accumulated
end-to-end metrics over selected measurement paths, under the
assumption that link metrics are additive and constant during
the measurement, and measurement paths cannot contain cycles.
According to linear algebra, all link metrics can be uniquely
identified when the number of linearly independent measurement
paths equals n, the number of links. It is, however, inefficient to
collect measurements from all possible paths, whose number can
grow exponentially in n, as the number of useful measurements
(from linearly independent paths) is at most n. The aim of this
paper is to develop efficient algorithms for constructing linearly
independent measurement paths and calculating link metrics. We
propose one algorithm which can construct n linearly indepen-
dent, cycle-free paths between monitors without examining all
candidate paths, whose complexity is quadratic in n. A further
benefit of the proposed algorithm is that the generated paths
satisfy a nested structure that allows linear-time computation of
link metrics without explicitly inverting the measurement matrix.
Our evaluations on both synthetic and real networks verify the
superior efficiency of the proposed algorithms, which are orders
of magnitude faster than benchmark solutions for large networks.

I. INTRODUCTION

Accurate and efficient monitoring of internal network state
(e.g., delays and loss rates on internal links) is essential for
various network operations such as route selection, resource
allocation, and fault diagnosis. Directly measuring the per-
formance of individual network elements (e.g., nodes/links)
is, however, not always feasible due to the overhead caused
by measurement traffic and the lack of support at internal
network elements for making such measurements [1]. These
limitations motivate the need for external approaches, where
we infer the states of internal network elements by measuring
the performance along selected paths from a subset of nodes
with monitoring capabilities, hereafter referred to as monitors.

Depending on the measurement technique, external
approaches can be classified as hop-by-hop approaches or
end-to-end approaches. The former rely on special diagnostic
tools such as traceroute, pathchar, clink, and pipechar [2] to
reveal fine-grained performance metrics of individual links by
sending active probes. These tools estimate link-level metrics
such as delays, losses, and bandwidths by exchanging Internet
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Control Message Protocol (ICMP) packets with each interme-
diate node. Their estimates, however, have known accuracy
issues due to asymmetry in routes and different priorities of
ICMP and data packets. Some intermediate nodes may even
be configured to ignore ICMP packets altogether. Moreover,
the measurement process generates a heavy traffic load that
competes for valuable network resources with data traffic.

Alternatively, end-to-end approach provides a light-weight
solution that only requires the measurement of end-to-end
performance metrics (e.g., end-to-end delays) between mon-
itors, and uses network tomography techniques to solve
for the corresponding metrics at individual links. Generally,
network tomography, originated by Vardi [3], refers to the
methodology of inferring fine-grained network characteristics
from aggregate measurements; in our context, the fine-grained
characteristics are individual link metrics, and the aggregate
measurements are end-to-end metrics on selected measurement
paths1. Since only end-to-end measurements are required,
network tomography can utilize passive measurements from
the transmissions of data packets [4], thus reducing traffic
overhead as well as avoiding the need for internal cooperation
or equal treatment of control/data packets.

A case of particular interest in network tomography is the
inference of additive link metrics, i.e., the end-to-end metric
over a path of multiple links is the sum of individual link
metrics. A typical example of an additive metric is delay,
while a multiplicative metric (e.g., packet delivery ratio) can
be expressed in an additive form using the log(·) function.
For additive metrics, we can formulate the problem as that
of solving a system of linear equations, where the unknown
variables are the link metrics, and the known constants are the
end-to-end path measurements, each equal to the sum of the
corresponding link metrics. The goal of network tomography
is essentially to solve this linear system of equations.

Most existing work on network tomography emphasizes
inferring as much as possible about link metrics from available
path measurements. However, past experience shows that it
is frequently impossible to uniquely identify all link metrics
from path measurements [5], [6], [7]. In the language of linear
algebra, this is because the linear system associated with the
measurement paths is noninvertible, i.e., the number of linearly
independent paths is smaller than the number of links. To make
the system invertible, we need to first ensure that there exists
a sufficient number of linearly independent paths. To this end,
we established in [8] necessary and sufficient conditions on
the structure of the network (including the topology and the

1The original work [3] addresses a different problem of inferring source-
destination traffic matrix from aggregate traffic at relay nodes. Both traffic
matrix estimation and link metric identification are representative applications
of network tomography [4].



placement of monitors) for it to be identifiable, i.e., the number
of linearly independent measurement paths equals the number
of links, where measurement paths are restricted to cycle-free
paths to conform with the requirement of routing protocols.

However, even if a network is known to be identifiable,
it is still a challenge to determine a minimum set of paths
to measure. Mathematically, this is because many paths
are linearly dependent in that they can be represented as
linear combinations of a subset of paths, and hence their
measurements do not provide further information about link
metrics. In general, the total number of candidate measurement
paths in a network with n links can be exponential in n, but
only (up to) n of them are linearly independent and thus useful
for link identification. A smart strategy for finding n linearly
independent paths will not only save resources in collecting
measurements, but also increase the efficiency of calculating
link metrics by discarding redundant linear equations.

In this paper, we investigate the following closely-related
problems in network tomography: (a) Given an arbitrary
identifiable network G with n links (verified by the condition
derived in [8]), how can we efficiently construct n linearly
independent, cycle-free paths between monitors? (b) Given
measurements on the constructed paths, how can we efficiently
calculate individual link metrics? The emphases in both prob-
lems are on efficiency; although one can enumerate all possible
paths until finding n linearly independent ones, such a method
will incur a large cost (exponential in n) and is thus unsuitable
for large networks. In both problems, we assume that the link
metrics are additive and constant. Note that a “constant” link
metric refers to one that either changes slowly relative to the
measurement process, or that is a statistical characteristic (e.g.,
mean, variance) of the link that stays constant over time2.

A. Related Work
Based on the model of link metrics, existing work on

network tomography can be broadly classified as algebraic
and statistical approaches. Algebraic approaches, as in this
paper, model link metrics as unknown constants, and use
techniques from linear algebra to compute link metrics from
path metrics [5], [6]. Statistical approaches model link metrics
as random variables with (partially) unknown probability
distributions, and apply various parametric/nonparametric
techniques to estimate the distributions from realizations of
path metrics [9], [1], [10].

When all nodes are allowed to participate in the measure-
ment process, multicast can be exploited as a measurement
method with broad coverage and low overhead [11], [12]. Sub-
trees and unicast are employed in [4], [13] as alternatives with
more flexibility in selecting receivers, but measurements are
still conducted along multicast trees.

When only selected nodes (i.e., monitors) can participate
in the measurement process, as assumed in this paper,
the problem becomes more challenging. When all but k
link metrics are zero, [14] propose schemes inspired by
compressive sensing to construct measurement paths to
identify the k non-zero link metrics. For arbitrary valued link
metrics, few positive results are known. If the network is
directed (links have different metrics in different directions),
[10] proves that not all link metrics are identifiable unless
every non-isolated node is a monitor, and [5] shows that
even if every node is a monitor, unique link identification is

2In this case, end-to-end measurements are also statistical characteristics,
e.g., path mean/variance. In the case of variance, we also need the indepen-
dence between link qualities to make the metric additive.

still impossible if measurements are restricted to cycles. If
the network is undirected (links have equal metrics in both
directions), [15] proposes an efficient algorithm to identify
link metrics, given that monitors can measure cycles or
paths containing cycles. A similar study in [16] characterizes
the minimum number of measurements needed to identify
a broader set of link metrics (including both additive and
nonadditive metrics), under the stronger assumption that
measurement paths can contain repeated links. Since routing
along cycles is typically prohibited by routing protocols, it
remains open what the solution becomes if only cycle-free
paths can be measured. Given measurements on n linearly
independent paths (n is the number of links), a general solution
for computing link metrics using classic linear system solvers
(e.g. Gaussian elimination with pivoting) takes O(n3) time
[17], which can be slow for large n. In this paper, we
overcome this drawback by developing efficient algorithms
for path construction and link identification in arbitrary
identifiable networks, employing only cycle-free paths.

B. Summary of Contributions
Our contributions are three-fold:
1) We develop an efficient algorithm to construct n linearly

independent, cycle-free paths between monitors in an arbitrary
identifiable network in O(mn) time (m is the number of nodes
and n the number of links), significantly improving on the
exponential complexity of brute-force methods. The algorithm
exploits the existence of three independent spanning trees,
a special property of identifiable networks derived from the
identifiability condition in [8] (see Theorem III.1).

2) Given measurements along the constructed paths, we de-
velop an algorithm to calculate the n link metrics in O(m+n)
time, improving on the O(n3) complexity of the existing
solution [17]. The algorithm exploits a nested structure of the
constructed paths to avoid the need to explicitly invert the
measurement matrix.

3) We compare the proposed algorithms against benchmark
solutions through simulations on both synthetic networks and
real ISP networks. The results verify the superior efficiency of
the proposed algorithms, which can be more than 100 times
faster than the benchmarks for large networks.

We note that not all link characteristics can be modeled as
additive metrics (e.g., bit error rates). Our goal in this paper
is to uniquely and efficiently identify additive link metrics;
studies for non-additive metrics are left to future work.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III summarizes the theoretical
foundations for developing algorithms. Section IV presents
our algorithms for path construction and link identification.
Evaluations of the proposed algorithms are given in Section V.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Models and Assumptions
We assume that the network topology is known and model it

as an undirected graph G = (V, L), where V and L are the sets
of nodes and links, respectively. Without loss of generality,
we assume G is connected, as different connected components
have to be monitored separately. Let m := |V | be the number
of nodes and n := |L| be the number of links in G. Each link
li ∈ L (i = 1, . . . , n) is associated with an unknown metric
wli that represents the average performance (e.g., average
delay) of this link, modeled as a constant. In this paper, we
assume that link metrics are symmetric in both directions,



TABLE I
MAIN NOTATIONS

Symbol Meaning
V (G), L(G) set of nodes/links in graph G

m, n number of nodes/links in G

G + l add a link: G + l = (V (G), L(G) ∪ {l}), where the
end-points of link l are in V (G)

G ∪ G′
graph union: G ∪G′

= (V (G)∪ V (G′), L(G)∪L(G′))

P
simple path, defined as a graph with V (P) =
{v0, . . . , vk} and L(P) = {v0v1, v1v2, . . . , vk−1vk},
where v0, . . . , vk are distinct nodes

µi µi ∈ V (G) is the i-th monitor in G
wl, cP metric of link l, sum metric of path P

i.e., if ij denotes the link from node i to node j, then links
ij and ji have the same metric. Table I summarizes the main
notation used in this paper (following the convention of [18]).

Certain nodes in V are monitors, which can initiate/collecte
measurements. We assume source routing at the monitors,
i.e., they can control the routing of measurement packets as
long as the path begins and ends at distinct monitors and does
not contain repeated nodes. In the language of graph theory,
we limit measurements to simple paths between monitors.
Let w = (wl1 , . . . , wln)

T denote the column vector of all
link metrics, and c = (cP1 , . . . , cPγ )

T the column vector of
all available path measurements, where γ is the number of
measurement paths and cPi is the sum of link metrics along
measurement path Pi. The measurements are linked to the
unknown link metrics by the following linear system:

Rw = c, (1)

where R = (Rij) is a γ × n measurement matrix, with each
entry Rij ∈ {0, 1} indicating whether link j is on path i. The
network tomography problem is to invert this linear system
to solve for w given R and c.

A link is identifiable if the associated link metric can be
uniquely determined from path measurements; network G is
identifiable if all links in G are identifiable. The linear system
model (1) implies that to uniquely determine w, R must have
full column rank, i.e., rank(R) = n. In other words, we must
find n linearly independent simple paths between monitors
to take measurements. This is highly nontrivial because: (i)
there may not exist n linearly independent simple paths in an
arbitrary network with arbitrarily placed monitors; (ii) even
if there exists a set of n linearly independent simple paths
(not necessarily unique), it remains a challenge to efficiently
discover such a set, as the total number of paths can grow
exponentially with n. The naive solution of taking measure-
ments along n arbitrarily selected paths is unlikely to uniquely
identify all link metrics; an alternative solution of enumerating
all possible paths until finding n linearly independent ones is
unlikely to scale to large networks due to its exponentially
growing complexity in n. It is therefore desirable to have a
method that achieves both full rank and efficiency.

B. Objective
Given an identifiable network G with κ (κ ≥ 3) monitors3,

the objective of this paper is to develop efficient algorithms
for constructing monitor-to-monitor measurement paths and
calculating each link metric in G.

C. Illustrative Example
Fig. 1 displays a sample network with three monitors (µ1–

µ3) and nine links (link 1–9). To identify all link metrics, nine

3Identifiability can be guaranteed by deploying monitors according to the
Minimum Monitor Placement algorithm in [8].
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Fig. 1. Sample network with three monitors: µ1, µ2, and µ3.
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Fig. 2. (a) G with κ (κ ≥ 3) monitors; (b) Gex with two virtual monitors.

measurement paths are constructed to form the measurement
matrix R:

µ1 → µ2 :6 5

6 9 2

1 4 7 5

µ1 → µ3 :1 4 8

6 7 8

6 9 4 8

µ2 → µ3 :3

5 7 8

2 4 8

V R =



0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0 0
1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0
0 1 0 1 0 0 0 1 0


,

where Rij = 1 if and only if link j is on path i. Given the
vector c of sum metrics measured on the constructed paths,
we have a linear system Rw = c. Since R is invertible in
this example, we can uniquely identify w by w = R−1c. If
path 65 (first row in R) is replaced by path 12, then the new
measurement matrix is not invertible, and thus cannot uniquely
identify all link metrics. A careful selection of measurement
paths is therefore crucial.

III. FUNDAMENTALS ON NETWORK IDENTIFIABILITY

A. Conditions for Identifiability
A prerequisite of any successful link identification method

is that the network contain a sufficient number of linearly
independent measurement paths. In our previous work [8], we
translated this requirement into explicit conditions on the net-
work topology and the placement of monitors as stated below.

Theorem III.1 ([8]). Given κ (κ ≥ 2) monitors deployed to
measure simple paths between monitors, we have that:

1) if κ = 2, then no nontrivial G (with n > 1) is identifiable
regardless of its topology and the placement of monitors;

2) if κ ≥ 3, then G is identifiable if and only if the associated
extended graph Gex (see Fig. 2) is 3-vertex-connected.

The extended graph Gex is constructed as follows: as illus-
trated in Fig. 2, given a network G with monitors µ1, · · · , µκ,
Gex is obtained by adding two virtual monitors µ′

1 and µ′
2, and

2κ virtual links between each pair of virtual-actual monitors.
The theorem states that the sufficient and necessary condition
for identifying all link metrics in G is that there are at least
3 monitors, and the extended graph remains connected after
removing two arbitrary nodes (i.e., it is 3-vertex-connected).

B. Test and Assurance of Identifiability
Besides being of theoretical value, the above result also

has direct application to algorithm design. A straightforward
application leads to an algorithm that tests the identifiability
of a given network G under a given monitor placement. This is
achieved by applying a classic algorithm [19] to test 3-vertex-
connectivity of Gex, with a complexity of only O(m + n).
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Fig. 4. Three internally vertex disjoint paths between v and r imply three
monitor-to-monitor simple paths: S1 ∪ S2, S1 ∪ S3, and S2 ∪ S3.

A more advanced application is in monitor placement, where
the objective is to achieve network identifiability with the
minimum number of monitors. The algorithm, called Minimum
Monitor Placement (MMP), decomposes G into subgraphs
with certain properties (triconnected components) and sequen-
tially places monitors in each subgraph to satisfy the condition
in Theorem III.1.2; see [8] for details. MMP is provably
optimal in that it minimizes the number of monitors required
to guarantee network identifiability. It is also efficient, with a
complexity of O(m+ n).

IV. ALGORITHM DESIGN

After verifying that the network is identifiable, i.e., there
exist n linearly independent simple paths between monitors,
the natural followup questions are: how can we efficiently find
n such paths, and how can we efficiently compute link metrics
from measurements on these paths? In this section, we first
provide the key idea behind our solutions and then formally
present the algorithms and analyze their complexity.

The idea of efficient path construction and link identification
originates from the identifiability condition in Theorem III.1.2.
Since the condition is necessary, any identifiable network
G must have a 3-vertex-connected extended graph Gex. We
further extend Gex by adding another virtual node r and
connecting it to the virtual monitors µ′

1, µ
′
2 and any one of the

real monitors µi (for any i ∈ {1, . . . , κ}) with three virtual
links, as illustrated in Fig. 3; we refer to the new graph as
the r-extended graph, denoted by G∗

ex. It can be shown that
G∗
ex is also 3-vertex-connected. By Menger’s theorem [18],

this implies that there exist at least 3 internally vertex disjoint
simple paths between any two nodes in G∗

ex (i.e., the paths
are disjoint except at end-points). In particular, as illustrated
in Fig. 4, each non-monitor node v has (at least) 3 internally
vertex disjoint simple paths to the virtual node r. Since any
path to r must go through at least one (real) monitor, we can
truncate each path at the first monitor on the way to r (i.e.,
removing the sub-path from this monitor to r), which provides
three v-to-monitor paths S1, S2, and S3 that are disjoint except
at v. This allows us to construct three monitor-to-monitor paths
P1 := S1 ∪ S2, P2 := S1 ∪ S3, and P3 := S2 ∪ S3, each
being a simple path valid for taking measurements. Based on
measurements cPi (i = 1, 2, 3) from the constructed paths, we
can obtain the individual metrics of Si by solving the following
linear equations: {

cS1 + cS2 = cP1 ,
cS1 + cS3 = cP2 ,
cS2 + cS3 = cP3 ,

Algorithm 1: Spanning Tree-based Path Construction
(STPC)

input : Network G with κ monitors such that every link in G
is identifiable

output: Measurement paths in the form of (rows in) a
measurement matrix R

1 R = ∅;
2 Construct G∗ex from G; //see Fig. 3
3 Find three spanning trees T1, T2 and T3 of G∗ex that are

pairwise independent wrt r by the algorithm in [20];
4 foreach node v in G do
5 if v is a monitor then
6 Pv1 ← Sv1; Pv2 ← Sv2; Pv3 ← Sv3;
7 else
8 Pv1 ← Sv1 ∪ Sv2; Pv2 ← Sv2 ∪ Sv3;

Pv3 ← Sv3 ∪ Sv1;
9 end

10 Append all non-degenerate Pvi (i = 1, 2, 3) to R;
11 end
12 foreach link l not in T1 ∪ T2 ∪ T3 do
13 Find a simple monitor-to-monitor path Pl traversing l in

graph T1 ∪ T2 ∪ T3 + l (see Algorithm 2);
14 Append Pl to R;
15 end

where cSi (i = 1, 2, 3) is the path metric on Si. Repeating
this procedure for every node in G yields the metrics from
each node to three monitors. Furthermore, we will show a
way to construct these paths such that they are nested, i.e., if
a path from v to monitor µ2 goes through a neighbor u, as
illustrated in Fig. 4, then u must use the same path to connect
to µ2. Therefore, we can calculate the metric of link uv by
subtracting the u → µ2 path metric from the v → µ2 path
metric. We now present the algorithms in detail.

A. Spanning Tree-based Path Construction
Given an arbitrary network G, we propose an algorithm,

Spanning Tree-based Path Construction (STPC), to construct
linearly independent monitor-to-monitor paths, so that links
can be uniquely identified from measurements on these paths.
We assume that G is identifiable. This is guaranteed by de-
ploying monitors according to algorithm MMP in [8], although
STPC can also work with other monitor placements as long
as network identifiability is guaranteed. In essence, STPC ex-
ploits a property of identifiable networks in terms of spanning
trees. To this end, we introduce the following definition.

Definition 1. Two spanning trees of an undirected graph
G(V, L) are independent with respect to (wrt) a vertex r ∈ V
if the paths from v to r along these trees are internally vertex
disjoint for every vertex v ∈ V (v ̸= r).

For a 3-vertex-connected graph and any given vertex, Theo-
rem 6 in [20] states that there exist three spanning trees that are
pairwise independent wrt this vertex. In particular, since the
r-extended graph G∗

ex is guaranteed to be 3-vertex-connected
for any identifiable network, we will always be able to find
three spanning trees of G∗

ex that are pairwise independent wrt
r. These spanning trees provide three internally vertex disjoint
paths from each non-monitor node v to r. As previously
illustrated in Fig. 4, STPC constructs measurement paths by
truncating these node-to-r paths at monitors and then concate-
nating each pair of truncated paths to form a simple monitor-
to-monitor path in the original graph G. See Algorithm 1 for
details.

Specifically, STPC has two main steps: (1) constructing
measurement paths based on independent spanning trees, and
(2) constructing additional paths to measure links not in any
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Fig. 5. Constructing measurement path traversing a non-tree link vw.

Algorithm 2: Path Construction for Non-Tree Links
input : Trees T1, T2, T3 constructed in Algorithm 1 and a link

l = vw not in the trees
output: A simple monitor-to-monitor path Pl traversing l and

links in the trees
1 From the trees, find two paths ve2r and ve3r from v to r that

do not traverse w, and a path we1r from w to r that does not
traverse v;

2 On path we1r starting from w, find the first intersection node u
with either ve2r or ve3r;

3 if u = r then
4 Pl ← Sve2r ∪ l ∪ Swe1r;
5 else
6 Pl ← Sve3r ∪ l ∪ Swe11ue22r;
7 end

of the trees. The first step begins with the application of the
algorithm in [20] to find three spanning trees Ti (i = 1, 2, 3)
of G∗

ex that are independent wrt r (line 3). Based on these
spanning trees, STPC constructs paths to measure links in the
trees (lines 4-11). Let Svi (i = 1, 2, 3) denote a simple path
from node v to the first monitor µ (µ ̸= v) toward r in Ti. If no
such µ exists, then Svi represents a degenerate path containing
just a single node v. STPC iterates among all nodes in G: if
v is a monitor, then Svi (i = 1, 2, 3) are already monitor-to-
monitor simple paths (line 6); if v is not a monitor, then pairs
of Svi’s again form monitor-to-monitor simple paths, as Sv1,
Sv2, and Sv3 are disjoint except at v (line 8). Therefore, all
the constructed paths Pvi (i = 1, 2, 3) that are non-degenerate
(i.e., containing at least one link) are valid measurement paths,
and are thus added to the measurement matrix (line 10).

The second step constructs paths for links not in any of the
three trees (lines 12-15). For a non-tree link l, i.e., l not in
any Ti (i = 1, 2, 3), STPC invokes an auxiliary algorithm,
Algorithm 2, to construct a measurement path Pl through
l such that all the other links on this path belong to the
trees. Algorithm 2 utilizes a simple observation as follows. As
illustrated in Fig. 5, among the three internally vertex disjoint
paths from v to r along the three spanning trees, there exist
at least two paths, say ve2r and ve3r, that do not traverse
w; similarly, there exists at least one path from w to r, say
we1r, that does not traverse v (line 1). Starting from w, we
follow we1r until the first intersection u with either ve2r or
ve3r (line 2). If u = r as in Fig. 5 (a), then we1r and ve2r
(or ve3r) are disjoint except at r. Truncating these paths at
the first monitors toward r provides two disjoint paths, Swe1r

and Sve2r, that connect w and v to monitors. Connecting these
paths by link vw gives a simple path between monitors that
traverses only vw and links in the trees (line 4). If u ̸= r, we
assume without loss of generality that u is an internal node
on ve2r as illustrated in Fig. 5 (b), which divides path we1r
into sub-paths we11u and ue12r, and ve2r into ve21u and
ue22r. The new path formed by we11ue22r is disjoint with
ve3r except at r. Truncating paths we11ue22r and ve3r again
provides two disjoint paths Swe11ue22r and Sve3r connecting w
and v to monitors, which together with link vw form a simple
monitor-to-monitor path traversing only vw and links in the
trees (line 6). The validity of the algorithm is guaranteed by

the following lemma.

Lemma IV.1. Path Pl constructed by Algorithm 2 is a simple
monitor-to-monitor path traversing only l and links in the trees.

Proof: It is easy to see that Pl contains only one non-tree
link, link l. To verify it as a simple path, it suffices to show that
the following paths are disjoint except at r: ve2r and we1r if
u = r, or ve3r and we11ue22r if u ̸= r. The former is trivially
satisfied. For the latter, note that sub-path we11u is disjoint
with ve3r as u is the first intersection (and ve3r cannot contain
u since it is internally vertex disjoint with ve2r). Moreover,
sub-path ue22r is disjoint with ve3r except at r as ve2r and
ve3r are internally vertex disjoint. Thus, paths we11ue22r and
ve3r are disjoint except at r, completing the proof.

The correctness of STPC, i.e., the constructed measurement
matrix R has rank n, will be clear in Section IV-B when we
present an algorithm to explicitly compute all link metrics
from measurements on these paths. In general, further
processing is needed to find n linearly independent rows in R
that specify the final set of measurement paths, since R may
contain superfluous paths. However, we have a stronger result
showing that the final processing is as simple as eliminating
duplicate paths because all distinct paths (paths that differ in
at least one node) found by STPC are linearly independent.

Theorem IV.2. The number of distinct paths constructed by
STPC equals n, the number of links in G.

The proof of Theorem IV.2 is in [21]. Since only distinct
paths can be linearly independent, and the number of linearly
independent paths constructed by STPC equals n (as these
paths can uniquely identify the n links; see Section IV-B), The-
orem IV.2 implies that all distinct paths found by STPC are lin-
early independent. Removing duplicate rows in the constructed
R thus generates an n× n invertible measurement matrix.

B. Spanning Tree-based Link Identification
Given the paths constructed by STPC, we are now ready to

take measurements and compute link metrics. A straightfor-
ward approach is to invert the measurement matrix to solve
for the link metrics by w = R−1c (assuming R is invertible)4,
with a complexity of O(n3), which we seek to avoid. We will
show that the R generated by STPC has a special structure
that allows us to directly compute link metrics at a much
lower complexity. The algorithm, Spanning Tree-based Link
Identification (STLI), consists of three main steps as shown
in Algorithm 3: (1) computing node-to-monitor path metrics
(lines 1-3), (2) identifying links in the spanning trees (lines 4-
12), and (3) identifying the other links (lines 13-15). In the
sequel, we use cP to denote both measured path metric if P
is a monitor-to-monitor path, and calculated path metric if P
is a node-to-monitor path (although the input vector c only
contains measured path metrics).

The first step of STLI aims at computing the node-to-
monitor metric cSvi for every node v ∈ V and every i ∈
{1, 2, 3} (lines 1-3). From the path construction in steps 6
and 8 of STPC, we see that cSvi is directly measured if v is
a monitor. If v is not a monitor, we can construct three linear
equations based on measurements on Pvi (i = 1, 2, 3):

cSv1 + cSv2 = cPv1 ,

cSv2 + cSv3 = cPv2 ,

cSv3 + cSv1 = cPv3 ,

(2)

4Existing algorithms, e.g., Gaussian elimination [17], can directly solve for
w without computing R−1; their complexity, however, remain O(n3).



Algorithm 3: Spanning Tree-based Link Identification
(STLI)

input : Measurement paths and spanning trees Ti (i = 1, 2, 3)
constructed by Algorithm 1, measurements c on the
paths

output: Vector w of link metrics in G
1 foreach node v in G do
2 Compute cSvi from measurements cPvi (i = 1, 2, 3) by (2);
3 end
4 foreach tree Ti (i = 1, 2, 3) do
5 foreach link vw in tree Ti (v is closer to r) do
6 if v is a monitor then
7 wvw = cSwi ;
8 else
9 wvw = cSwi − cSvi ;

10 end
11 end
12 end
13 foreach link l not in T1 ∪ T2 ∪ T3 do
14 Compute wl by subtracting metrics of the other links on Pl

from cPl ;
15 end

from which we can compute cSvi (i = 1, 2, 3).
The second step aims at solving for metrics of all links in the

trees (lines 4-12). Consider a link vw in tree Ti (i ∈ {1, 2, 3}),
where v is one hop closer to r. If v is a monitor, then the node-
to-monitor path Swi will only contain link vw, and thus its
metric is also the metric of vw (line 7). If v is not a monitor,
then the node-to-monitor path Svi must be a sub-path of Swi,
shorter by just link vw, and thus the difference in their metrics
equals the metric of vw (line 9).

The final step addresses links not in the trees (lines 13-15).
Since the measurement path Pl for each non-tree link l only
contains l and links in the trees (Lemma IV.1), we just need to
subtract from cPl

the metrics of these tree links as identified
in the second step to compute the metric of l (line 14).

Besides computing link metrics, STLI also serves as a
constructive proof that the paths constructed by STPC can
uniquely identify all links, i.e., the generated R has rank n.

C. Complexity Analysis
We now analyze the complexity of the proposed algorithms.

STPC has an overall complexity of O(mn). Specifically,
the complexity of spanning tree construction in line 3 is
O(m|L(G∗

ex)|) [20], which is O(mn) since |L(G∗
ex)| =

O(|L(G)|) = O(n). For lines 4-11, paths Pvi (i = 1, 2, 3) can
be constructed in O(m) time for each node v; thus, lines 4-
11 take O(m2) time. Finally, lines 12-15 invoke Algorithm 2
O(n) times, and each invocation takes time O(m). Combining
the above yields an overall complexity of O(nm). We point
out that it is possible to save some computation by removing
redundant links in G∗

ex using an O(m+ n)-time algorithm in
Section 4 of [20], which reduces the number of links to O(m)
while maintaining the 3-vertex-connectivity. This step reduces
the complexity of spanning tree construction to O(m2), but
the overall complexity remains the same.

Given measurements on the constructed paths, STLI
can compute link metrics in O(m + n) time. Specifically,
computing cSvi (lines 1-3) takes O(m) time. Then computing
the metric of each link in the spanning trees (lines 6-10) takes
only constant time, and there are O(m) links in the trees,
making the complexity of lines 4-12 O(m). Finally, computing
the metrics of non-tree links (lines 13-15) takes O(n) time as
explained below. Thus, the overall complexity is O(m+ n).

At first sight, it may seem that line 14 takes O(m) time as
there are O(m) link metrics to subtract, making the overall

complexity of STLI O(nm). However, we observe that this
step can be implemented in constant time using the knowledge
of cSvi as follows. Consider the two cases in constructing Pl

as illustrated in Fig. 5. Suppose that path we1r belongs to tree
Ti1 , ve2r to Ti2 , and ve3r to Ti3 (i1, i2, i3 ∈ {1, 2, 3}, i2 ̸= i3).
In case Fig. 5 (a), the measurement path Pl is a concatenation
of link l, path Svi2 , and path Swi1 , and thus the metric of
link l can be computed by wl = cPl

− cSvi2
− cSwi1

. In case
Fig. 5 (b), if the first monitor along path we11ue22r appears
before or at u (e.g., µa), then Pl consists of l, Svi3 , and Swi1 ,
and thus wl = cPl

− cSvi3
− cSwi1

; if the first monitor appears
after u (e.g., µb), then Pl consists of l, Svi3 , we11u, and Sui2 ,
and thus wl = cPl

− cSvi3
− (cSwi1

− cSui1
) − cSui2

(since
the metric of we11u equals cSwi1

− cSui1
). In all the cases, wl

can be computed in constant time.
The above complexity results are well aligned with needs

in practice. Path construction only needs to be performed once
for a given topology, and thus can tolerate a higher complexity.
In contrast, link identification needs to be performed more fre-
quently to keep monitoring the health of links. In this regard,
STLI in conjunction with STPC enables fast identification of
link metrics that can scale to large networks.

V. PERFORMANCE EVALUATION

To evaluate the performance of STPC and STLI, we conduct
a set of simulations on both randomly-generated and real
network topologies. Given a network topology, we first apply
the optimal monitor placement algorithm MMP in [8] to select
a subset of nodes as monitors so that the network is guaranteed
to be identifiable. We then apply the proposed algorithms
to construct measurement paths between the placed monitors
and compute link metrics from measurements on these paths.
The focus of our evaluations is on the efficiency, measured
by the average running time, of the proposed algorithms in
comparison to benchmarks. For path construction, we also
evaluate the cost of measuring the constructed paths, in terms
of average path length (i.e., number of hops).

As a benchmark for STPC, we use the following algorithm5,
referred to as Random Walk-based Path Construction (RWPC).
Given an identifiable network G, RWPC repeats the following
steps until the rank of the constructed measurement matrix R
equals n (starting from R = ∅):

(i) starting from a randomly selected monitor, follow a
random walker until it hits another monitor;

(ii) remove cycles from the path taken by the random walker
to generate a simple monitor-to-monitor path;

(iii) if the generated path is linearly independent wrt existing
paths in R, append it to R; otherwise, discard the path.

RWPC is essentially a randomized algorithm that examines
one path at each iteration until n linearly independent paths
are found. In practice, RWPC may iterate indefinitely for large
networks. To control its running time, we impose a maximum
number of iterations IMAX, and force RWPC to terminate after
IMAX iterations. Consequently, we also measure its success rate
rsucc, defined as the fraction of Monte Carlo runs during
which RWPC successfully finds n linearly independent paths
within IMAX iterations (the success rate of STPC is always one).
Limiting the number of iterations leads to underestimating
the actual running time of RWPC in constructing n linearly

5Existing path-construction solutions cannot be used as benchmarks since
they are not comparable to STPC for these two reasons: (i) most solutions
assume given routing rather than controlled routing as assumed in this paper,
(ii) even under controlled routing assumption, existing path construction
algorithms may contain cycles, which is prohibited in this paper.



independent paths, but it allows us to apply the algorithm to
large networks.

As a benchmark for STLI, we use the general solution [4]
of inverting the measurement matrix: w = R−1c, referred to
as Matrix Inversion-based Link Identification (MILI). Here R
is an invertible matrix computed by RWPC if it is successful,
or STPC otherwise.

Our simulation results include the following metrics:
(a) κ, κ: minimum number of monitors selected by MMP and

its average (for randomly generated topologies);
(b) rsucc: success rate of RWPC;
(c) Υ: rank(R)/n for RWPC when it is unsuccessful;
(d) tSTPC, tRWPC: average running times of STPC and RWPC;
(e) tSTLI, tMILI: average running times of STLI and MILI;
(f) hSTPC, hRWPC: average lengths of the n paths constructed by

STPC and RWPC (when successful).
The simulation is implemented in Matlab R2010a and
performed on a computer with Intel Core i5-2540M CPU @
2.60GHz, 4.00 GB memory, and 64-bit Win7 OS.

A. Random Topologies
We first evaluate the proposed algorithms on synthetic

topologies generated according to three different random graph
models: Erdös-Rényi (ER) graphs, Random geometric (RG)
graphs, and Barabási-Albert (BA) graphs. For each model, we
fix the number of nodes to 150, and randomly generate 100
graph realizations6, which are then fed to the path construction
algorithms. For each generated link, we randomly generate a
link metric between 0 and 1, which is then used to compute
path metrics. Here IMAX is set to 3 × n. We now explain the
models and the corresponding results separately.

1) Erdös-Rényi (ER) graph: The ER graph is a simple
random graph generated by independently connecting each
pair of nodes by a link with a fixed probability p. The result
is a purely random topology where all graphs with an equal
number of links are equally likely to be selected. It is known
[22] that p0 = logm/m is a sharp threshold for the graph to
be connected with high probability, which implies a minimum
value of p (p = 0.0334 for m = 150).

2) Random geometric (RG) graph: The RG graph is fre-
quently used to model the topology of wireless ad hoc
networks. It generates a random graph by first randomly
distributing nodes in a unit square, and then connecting each
pair of nodes by a link if their distance is no larger than
a threshold dc, which denotes node communication range.
The resulting topology contains well-connected subgraphs in
densely populated areas and poorly-connected subgraphs in
sparsely populated areas. It is known that dc ≥

√
logm/(πm)

ensures a connected graph with high probability [23], which
gives a minimum range of dc = 0.1031 for m = 150.

3) Barabási-Albert (BA) graphs: The BA graph [24] is
used to model many naturally occurring networks, e.g., In-
ternet, citation networks, and social networks. To generate a
BA graph, we begin with a small connected graph G0 :=
({v1, v2, v3, v4}, {v1v2, v1v3, v1v4}) and add nodes sequen-
tially. For each new node v, we connect v to ϱ existing nodes
such that the probability of connecting to node w is propor-
tional to the degree of w. If the number of existing nodes is
smaller than ϱ, then v connects to all the existing nodes.

Simulation results are presented in Table II, where each row
corresponds to a random graph model, with results averaged
over 100 graph realizations. Since the number of links n

6All these realizations are checked before use to ensure they are connected.

and the number of monitors κ vary across realizations, we
present the average values denoted by n and κ. We have tuned
parameters of each model to make the number of generated
links roughly the same. In Table II, most graphs are 3-
vertex-connected, thus requiring only 3 monitors to achieve
identifiability (see Theorem III.1). From the results, we see
that RWPC finds all linearly independent paths successfully for
ER and BA graphs, but fails most of the time for RG graphs.
This is because node degrees vary significantly in RG graphs,
and once the random walker hits a low-degree node, it has only
a few paths to reach monitors, resulting in a high probability
of generating duplicate paths. In fact, RWPC can quickly find
a majority (> 90%) of the linearly independent paths for RG
graphs, but its efficiency drops sharply as the path set grows
since most of the newly generated paths are linearly dependent
with existing ones. In contrast, STPC only generates paths
that are guaranteed to be useful in identifying additional links,
thus significantly improving the efficiency. The improvement
allows STPC to achieve a significantly smaller running time
than RWPC, especially for RG graphs where we see a 45-
fold speedup. Note that this is only an underestimate as
RWPC often fails to find all the linearly independent paths for
RG graphs, and the actual speedup is even bigger. Our link
identification algorithm STLI also shows superior efficiency,
reducing the running time of MILI by an order of magnitude.
A further observation is that tSTPC, tSTLI, and tMILI are roughly
the same for different types of graphs, as their complexity
are only determined by the size of the network (measured by
n), whereas the running time tRWPC is sensitive to the specific
topology. Meanwhile, we notice that STPC tends to generate
paths that are longer than those generated by RWPC, espe-
cially for BA graphs. This is because STPC restricts paths to
the spanning trees, selecting a longer path along spanning trees
even if alternative shorter paths exist, while the random walker
in RWPC is likely to take shorter paths to monitors. This is an
intentional design in STPC to ensure linear independence of
the constructed paths; the problem of minimizing path length
while guaranteeing linear independence is left for future work.
In addition to these results, we have also simulated random
graphs with a different number of links and observed similar
comparisons; see Section IV in [21] for details.

B. ISP Topologies
We also test these algorithms on real network topologies.

We use the Internet Service Provider (ISP) topologies from
the Rocketfuel project [25], which represent physical con-
nections between backbone/gateway routers of several major
ISPs around the globe. The available data do not include
link performance metrics; thus, we simulate link metrics by
randomly generated numbers between 0 and 1. We point
out that the performance of the algorithms is independent
of the values of link metrics. Since RWPC is a randomized
algorithm, we repeat it for multiple Monte Carlo runs for each
ISP topology and report average performance; the number
of Monte Carlo runs is 100 unless otherwise stated. In this
simulation, we set IMAX = 8 × n since we observe that
IMAX = 3× n results in zero success rate for RWPC.

Simulation results are presented in Table III, where we
sort the networks according to their number of links (i.e., n).
We notice that all networks need a significantly higher ratio
of monitors compared with the synthetic networks (Table II),
ranging from 30% (EBONE, AT&T, Sprintlink) to more than
60% (Abovenet). This is because ISP networks contain a large
number of gateway routers to connect to customers or other
ISPs, which appear as dangling nodes that have to be selected



TABLE II
RANDOM GRAPHS (ER: p = 0.0656, RG: dc = 0.15554, BA: ϱ = 5, IMAX = 3× n)

graph n m κ rsucc Υ tSTPC (s) tRWPC (s) tSTLI (ms) tMILI (ms) hSTPC hRWPC

ER 736.46 150 3 100.00% NA 20.2 372.61 7.39 74.58 22.16 14.35
RG 739.57 150 3.57 28.00% 91.43% 20.49 918.42 8.09 74.16 29.16 21.44
BA 732 150 3 100.00% NA 19.61 395.71 7.70 70.82 21.65 9.41

TABLE III
ISP TOPOLOGIES (IMAX = 8× n FOR THE FIRST 5 NETWORKS, AND IMAX = ∞ FOR THE LAST 3)

ISP n m κ rsucc Υ tSTPC (s) tRWPC (s) tSTLI (ms) tMILI (ms) hSTPC hRWPC

Abovenet 294 182 117 80.00% 99.61% 10.12 58.20 2.46 5.08 5.68 4.03
EBONE 381 172 55 75.00% 99.69% 13.65 139.37 3.78 11.06 9.61 7.00
Tiscali 404 240 138 70.00% 99.67% 28.07 171.58 3.81 10.71 7.05 4.89
Exodus 434 201 85 67.00% 99.76% 21.13 226.15 4.13 14.49 8.26 6.13
Telstra 758 318 164 24.00% 99.76% 80.38 2999.96 6.70 118.17 7.86 6.22
AT&T 2078 631 208 NA NA 685.46 131.1 hrs 19.50 1302.85 23.48 11.33

Sprintlink 2268 604 163 NA NA 608.18 46.8 hrs 20.52 1560.55 15.03 11.06
Verio 2821 960 408 NA NA 697.86 170.3 hrs 29.15 3366.79 13.22 8.97

as monitors; see MMP in [8] for detailed explanations.
STPC again significantly outperforms RWPC with a speedup
ranging from 6 fold (Abovenet, Tiscali) to 879 fold (Verio).
In fact, RWPC becomes so slow for the largest three networks
(AT&T, Sprintlink and Verio) that it is unable to complete
a successful Monte Carlo run (rsucc = 0%) even after 40
hours. To find out the time RWPC takes to find n linearly
independent paths, we remove the limitation on the number of
iterations (IMAX = ∞) and let it run until success. RWPC takes
up to 7 days (Verio) to complete a single Monte Carlo run7,
which is in sharp contrast with STPC that finds n linearly
independent paths in 10 minutes. For link identification, STLI
also outperforms MILI with a speedup ranging from 2 fold
(Abovenet) to 115 fold (Verio). Over all, we observe that the
running-time advantages of STPC and STLI both increase
with the size of the network, while the success rate and the
efficiency of RWPC decay. As in the synthetic simulations,
we again observe a relatively larger path length for STPC.
However, the increase in path length is only moderate
compared with the decrease in running time, and this is likely
the cost needed to ensure linear independence of the paths.

VI. CONCLUSION

We studied the problem of network tomography from an
algorithmic perspective, proposing efficient algorithms for
constructing measurement paths and uniquely identifying link
metrics from path measurements. The proposed algorithms uti-
lize a special structure of identifiable networks in the form of
independent spanning trees to strategically construct linearly
independent measurement paths and compute link metrics
without explicitly inverting the measurement matrix. Extensive
simulations on both synthetic and real networks show that
the proposed algorithms can guarantee unique identification
of link metrics while being orders of magnitude faster than
existing solutions for large networks.
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