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Abstract—We investigate the problem of identifying individual
link metrics in a communication network through measuring
accumulated end-to-end metrics over selected paths, under the
assumption that link metrics are additive (e.g., delay) and
constant in the measurement duration. Based on linear algebra,
we know that all the link metrics can be uniquely identified when
the number of linearly independent paths is equal to the number
of links in the network. There lacks, however, a fundamental
theory to relate the number of linearly independent paths (and
thus link identifiability) to externally observable parameters
such as network topology, number of monitoring nodes, and
routing restrictions. The aim of this paper, therefore, is to study
constraints on the network topology for identifying additive link
metrics, conditioned on the number of monitoring nodes being
fixed, and cycles being prohibited in constructing measurement
paths. Our first main result is that it is impossible to identify
all the link metrics in any network with a nontrivial topology
(having more than one link) using only two monitoring nodes;
nevertheless, the interior links not incident with any monitoring
node might be identifiable. Our second main result is a set of
necessary and sufficient conditions for identifying all the interior
links using two monitoring nodes. Furthermore, we show that
these conditions have a natural extension to identifying the entire
network using three or more monitoring nodes. To the best of
our knowledge, this is the first work providing fundamental
constraints on network topology for identifying additive link
metrics using end-to-end measurements on cycle-free paths.

I. INTRODUCTION

Accurate and timely knowledge of the internal state of a net-
work (e.g., delays on individual links) is essential for various
network operations such as route selection, resource allocation,
and fault diagnosis. Directly measuring the performance of
individual network elements (e.g., nodes/links) is, however, not
always feasible due to the traffic overhead of the measurement
process and the lack of support at internal network elements
for taking such measurements [1]. These limitations motivate
the need for external approaches, where we infer the states
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of internal network elements by measuring the performance
along selected paths.

Depending on the granularity of observations, external ap-
proaches are based on either hop-by-hop measurements or end-
to-end measurements. Hop-by-hop approaches rely on special
diagnostic tools to reveal fine-grained performance metrics
for each link on the probed paths. Standard tools for IP
networks include ping and traceroute: ping reports round-trip
loss and delay, and traceroute reports these metrics for each
hop on the probed path by gradually increasing the time-to-
live (TTL) field of probing packets. Traceroute has known
accuracy issues due to asymmetry in routes and differences
in the priorities of control and data packets. Its refinement,
pathchar [2], returns hop-by-hop link capacities, delays, and
loss rates. While providing fine-grained information, the hop-
by-hop approach requires a monitoring functionality, Internet
Control Message Protocol (ICMP), to be supported at each
internal node. Moreover, the probing packets will cause extra
traffic load and potentially congestion. In applications such as
military coalition networks, security policies may block hop-
by-hop measurements altogether.

Alternatively, end-to-end approaches provide a solution that
does not rely on the cooperation of internal network elements
or the equal treatment of control/data packets. They rely on
end-to-end performance metrics (e.g., end-to-end delays) expe-
rienced by data packets to solve for the corresponding hop-by-
hop metrics using network tomography. Network tomography,
originated by Vardi [3], refers to the methodology of inferring
internal network characteristics through controllable end-to-
end accumulated measurements. Without requiring special co-
operation from internal nodes, network tomography can utilize
passive measurements from data packets to obtain aggregate
path-level information [4], thus not affecting traffic load.

In many cases, link metrics are additive, i.e., the combined
metric over multiple links is the sum of individual link metrics.
For instance, delays are additive, while a multiplicative metric
(e.g., packet delivery ratio) can be expressed in an additive
form using log(·) function. For additive metrics, we can cast
the problem as a system of linear equations, where the un-
known variables are the link metrics, and the known constants
are the end-to-end path measurements, each equal to the sum
of the corresponding link metrics. Thus, network tomography



essentially solves for the inverse of this linear system.
Based on the model of link metrics, existing work can be

divided into algebraic and statistical approaches. Algebraic
approaches model link metrics as unknown constants, and use
linear algebraic techniques to compute link metrics from cu-
mulative path metrics [5, 6]. Statistical approaches model link
metrics as random variables with (partially) unknown probabil-
ity distributions, and apply various parametric/nonparametric
techniques to estimate the link metric distributions from real-
izations of path metrics [7, 1, 8].

Existing work on network tomography emphasizes
extracting as much information about link metrics as possible
from available measurements. However, past experiences
show that it is frequently impossible to uniquely identify all
link metrics from path measurements [5, 6, 9]. For example,
if two links (not necessarily adjacent) are simultaneously
included/excluded by all measurement paths, then we can at
most identify their sum metric but not the individual metrics.
Generally, many measurement paths are linearly dependent in
that some paths are linear combinations of the rest, and hence
their measurements do not provide new information. From
the perspective of linear algebra, link metrics are uniquely
identifiable if and only if the number of linearly independent
measurement paths equals the number of links. There is,
however, a lack of basic understanding of the topological
conditions that ensure identifiability, even in the simplified
scenario of constant link metrics.

In this paper, we consider a fundamental but unsolved
problem: under what conditions can one uniquely identify
link metrics from end-to-end measurements, given that all
link metrics are additive and constant? Our “constant” link
metric has two interpretations: (i) the link metric changes
slowly relative to end-to-end measurements so that it can be
considered constant during the measurement process, or (ii) the
instantaneous link quality changes dynamically, but the metric
of interest is a statistical measure (e.g., mean, variance) that is
stable over time1. Although the answer to the above question
is straightforward in linear algebra (the number of linearly
independent paths equals the number of links), a useful answer
should be in terms of externally verifiable network properties
such as the network topology, the number/placement of mon-
itors, and the routing restrictions. To this end, we develop
necessary and sufficient conditions on network topology for
link metric identification, assuming that the number/placement
of monitors is fixed, and cycles are prohibited in constructing
measurement paths between the monitors.

A. Further Discussions on Related Work

With link metrics modeled as random variables, multicast,
if supported, is exploited as a measurement method with broad
coverage and low overhead [10, 11]. Sub-trees and unicast are
employed in [4, 12] as alternatives, due to the inflexibility
of multicasting to all receivers. Employing multicast, [4, 13]

1In this case, end-to-end measurements are also long-term statistics, e.g.,
path mean/variance. In the case of variance, we need the additional assumption
of independent link qualities to make the metric additive.

derive the necessary and sufficient conditions on the multicast
tree for identifying all link metric distributions. If most links
do not exhibit severe losses or delays, [7] proposes algorithms
to identify the worst performing links. A novel approach pro-
posed in [9] employs the Fourier transform of the observable
path metric distributions to estimate the unobservable link
metric distributions. All the above methods implicitly assume
the links to be identifiable, and the multicast-based methods
require multiple monitors to participate in the measurement
process. In contrast, we assume unicast measurements and
focus on establishing topological conditions for identifying all
link metrics using the minimum number of monitors.

When link metrics are constant, [6] shows that it is
challenging to solve the inverse problem due to the presence
of linearly dependent paths. If all but k link metrics are zero,
compressive sensing techniques are used to identify the k
non-zero link metrics [14, 15]. If all link metrics are binary
(normal/failed), [16] proves that the network must be (k+2)-
edge-connected to identify up to k failed links using one
monitor measuring cycles. For link metrics of arbitrary values,
few positive results are known. If the network is directed (links
have different metrics in different directions), [8] proves that
not all link metrics are identifiable unless every non-isolated
node is a monitor. Even if every node is a monitor, unique
link identification is still impossible if measurement paths
are constrained to cycles [5]. If the network is undirected
(links have equal metrics in both directions), [17] derives
the first necessary and sufficient conditions on the network
topology for identifying all link metrics, given that monitors
can measure cycles or paths possibly containing cycles. Since
routing along cycles is typically prohibited in real networks,
it remains open what the conditions become if only cycle-free
paths can be measured. In this regard, we investigate the
fundamental relationships between link identifiability, network
topology, and the number/placement of monitors.

B. Summary of Contributions

To the best of our knowledge, this is the first work studying
fundamental topological conditions for identifying additive
link metrics using end-to-end measurements on cycle-free
paths. Our contribution is three-fold:

1) We prove that it is generally impossible to identify all link
metrics using only two monitors, irrespective of the network
topology and the placement of monitors;

2) We establish necessary and sufficient conditions for
identifying the metrics of all interior links (links not incident
to any monitor) using two monitors: the network graph is
(i) 2-edge-connected after removing any interior link and
(ii) 3-vertex-connected after adding a direct link between
the monitors. These conditions are shown to be verifiable in
O(|L|(|V | + |L|)) time (|V | is the number of nodes and |L|
is the number of links);

3) We transform the above result into a necessary and suffi-
cient condition for identifying all link metrics using κ (κ ≥ 3)
monitors by embedding the network graph in an extended



TABLE I
NOTATIONS IN GRAPH THEORY

Symbol Meaning
V (G), L(G) set of nodes/links in graph G

|G| degree of graph G: |G| = |V (G)| (number of nodes)

||G|| order of graph G: ||G|| = |L(G)| (number of links)

H interior graph (see Definition 1)

L(v) set of links incident to node v

N(v) set of neighbors of node v

G − l
delete a link: G − l = (V (G), L(G) \ {l}), where l ∈
L(G) and “\” is setminus

G + l
add a link: G + l = (V (G), L(G) ∪ {l}), where the
endpoints of link l are in V (G)

G − v
delete a node: G − v = (V (G) \ {v}, L(G) \ L(v)),
where v ∈ V (G)

Gs + v
add a node: Gs + v = (V (Gs) ∪ {v}, L(Gs) ∪ Lv),
where Gs is a subgraph of G, v ∈ V (G) \ V (Gs), and
Lv is the set of all links between v and nodes in V (Gs)

G \ G′ From G, delete all common nodes with G′ and their
incident links

G ∩ G′ intersection of graphs: G∩G′
= (V (G)∩V (G′), L(G)∩

L(G′))

G ∪ G′ union of graphs: G ∪ G′
= (V (G) ∪ V (G′), L(G) ∪

L(G′))

P(v0, vk)
simple path connecting nodes v0 and vk , defined as a
special graph with V (P) = {v0, . . . , vk} and L(P) =
{v0v1, v1v2, . . . , vk−1vk}

C cycle: if (v0, . . . , vk) (k ≥ 2) is a sequence of nodes on
a simple path P , then C = P + vkv0 is a cycle

F a non-separating cycle (see Definition 2)

mi mi ∈ V (G) is the i-th monitor in G
Wl, WP metric on link l and sum metric on path P

graph, with two virtual monitors connecting to all the real
monitors. This condition can be verified in O(|V |+ |L|) time;

We acknowledge that not all link characteristics can be
modeled as additive metrics (e.g., bit error rates). Our goal is
to characterize identifiable scenarios for additive link metrics;
whether a metric is additive or not is beyond the scope of
this paper. Once network identifiability is confirmed, linearly
independent paths have to be constructed between monitors
to take measurements; we will investigate efficient path
construction in future work.

The rest of the paper is organized as follows. Section II for-
mulates the problem. Section III summarizes our main results.
Sections IV–V present identifiability conditions for the case of
two monitors, and Section VI addresses the case of three or
more monitors. Algorithms for testing network identifiability
are presented in Section VII. Finally, Section VIII concludes
the paper.

II. PROBLEM FORMULATION

A. Models and Assumptions

We assume that the network topology is known and is
modeled as an undirected graph2 G = (V, L), where V and L
are the sets of nodes and links, respectively. Without loss of

2In this paper, the terms network and graph are used interchangeably.
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Fig. 1. Sample network with three monitors: m1, m2, and m3.

generality, we assume G is connected, as different connected
components have to be monitored separately. Denote the
link incident to nodes i and j by ij; links ij and ji are
assumed to have the same metric. Certain nodes in V are
monitors, where measurements can be initiated/collected. We
assume that each link in G has two distinct end-points (i.e.,
no self-loop), and there is at most one link connecting a pair
of nodes. Table I summarizes all graph theory notations used
in this paper (following the convention in [18]).

Let n := |L| be the number of links in G, {li}ni=1 the
link set in G, w = (Wl1 , . . . ,Wln)

T the column vector of all
link metrics, and c the column vector of path measurements.
Each element in c is the sum of link metrics along the
corresponding path. We assume that the monitors can control
the routing of measurement packets (i.e., source routing)
as long as the path starts and ends at distinct monitors and
does not contain repeated nodes. In the language of graph
theory, we limit measurements to simple paths (in contrast, a
non-simple path may contain repeated nodes). Given all the
path measurements, we have a linear system:

Rw = c, (1)

where R = (Rij) is a γ × n measurement matrix (γ is the
number of all simple paths between monitors), with each entry
Rij ∈ {0, 1} denoting whether link j is present on path i.

We say a link is identifiable if the associated link metric can
be uniquely determined from path measurements; we say the
network G is identifiable if all link metrics in G are identifiable.
Otherwise, the link or the network is said to be unidentifiable.
Given the above linear system, G is identifiable if and only if R
in (1) has full column rank, i.e., rank(R) = n. In other words,
to uniquely determine w, there must be n linearly independent
simple paths between monitors.

B. Objective

Given κ (κ ≥ 2) monitors, the objective of this paper is
to derive necessary and sufficient conditions on the network
topology and the placement of these monitors for identifying
all link metrics in G (or certain sub-graphs of G) by solving
the linear system (1).

C. Illustrative Example

Fig. 1 displays a sample network with 3 monitors (m1–
m3) and 9 links (link 1–9). To identify all 9 link metrics,
9 end-to-end paths (four m1 → m2 paths, three m1 → m3

paths and three m2 → m3 paths) are constructed to form the
measurement matrix R:
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m1
m2

a1
b1

a2 b2

a bk2k1

G

H

exterior   links
H: interior  graph

Fig. 2. Reorganizing graph G into monitors/exterior links and interior graph
(ai and bj may be the same node).

m1 → m2 :1 2

6 5

6 9 2

1 4 7 5

m1 → m3 :1 4 8

6 7 8

6 9 4 8

m2 → m3 :3

5 7 8

2 4 8

V R =



1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0 0
1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0
0 1 0 1 0 0 0 1 0


,

where Rij = 1 if and only if link j is on path i. Then we
have Rw = c, where c is the vector of measured metrics at
the destinations (m2 for the first four measurements and m3

for the rest six). In this example, R is invertible, and thus w
can be uniquely identified, i.e., w = R−1c. In Fig. 1, other
simple paths can be measured as well, although they do not
provide further information since the rank of the measurement
matrix is at most 9. However, if we remove a monitor, say
m2, then the remaining paths can no longer form an invertible
measurement matrix. Note that a path such as 67495 cannot
be used for path measurement because it contains a cycle.

III. MAIN RESULTS

Our main contributions are a set of necessary and suf-
ficient conditions for network identification that are explic-
itly expressed in terms of network topology and the num-
ber/placement of monitors. First, we establish a negative result
that no matter how we place the monitors, we cannot identify
all link metrics using only two monitors.

Theorem III.1. For any given network topology G with
||G|| ≥ 2, G is unidentifiable using two monitors to measure
simple paths, irrespective of the placement of the monitors.

Second, we examine the two-monitor case in more detail
and discover that the unidentifiability issue only applies to
a small subset of links, and that the majority of links can
be identified under certain conditions. Specifically, given two
monitors m1 and m2, we can reorganize G into two parts3 as
illustrated in Fig. 2.

Definition 1.
1) The interior graph H of G is the sub-graph obtained by
removing the monitors and their incident links, i.e., H := (V \
M,L \LM ) for M = {m1,m2} and LM = L(m1)∪L(m2).

3An area with a dashed border denotes a sub-graph (the nodes/links within
the dashed border are also part of the sub-graph), and a solid line denotes a
link/path/cycle.
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Fig. 3. (a) G with κ (κ ≥ 3) monitors; (b) Gex with two virtual monitors.

2) We refer to links incident to monitors, i.e., L(m1)∪L(m2),
as exterior links, and the rest of the links as interior links.

We show that the exterior links can never be identified using
two monitors (see Corollary IV.1), but the interior links can
be identified under the following conditions.

Theorem III.2. Assume that the interior graph H of G is
connected, and that two monitors m1 and m2 are used to
measure simple paths. The necessary and sufficient conditions
for identifying all link metrics in H are

1⃝ G − l is 2-edge-connected for every interior link l
in H, and

2⃝ G +m1m2 is 3-vertex-connected.

Third, we show that the above conditions can be naturally
extended to a necessary and sufficient condition for identifying
all link metrics in G using three or more monitors. Our con-
dition is based on an extended graph Gex of G constructed as
follows. As illustrated in Fig. 3, given a graph G with monitors
m1, · · · ,mκ, its extended graph Gex is obtained by adding two
virtual monitors m′

1 and m′
2, and 2κ virtual links between

each pair of virtual-actual monitors. The identifiability of G is
characterized by a simple condition on Gex as follows.

Theorem III.3. Assume that κ (κ ≥ 3) monitors are
used to measure simple paths. The necessary and sufficient
condition on the network topology G for identifying all link
metrics in G is that the associated extended graph Gex is
3-vertex-connected.

Finally, we develop efficient algorithms that can test whether
a given placement of monitors can identify all link metrics
(see Section VII) in linear time w.r.t. network size (specifically,
O(|V (G)|+|L(G)|)) and hence are suitable for large networks.

IV. UNIDENTIFIABILITY USING TWO MONITORS

At least two monitors are required to identify link metrics
through monitoring simple paths. In this section, we inves-
tigate if two monitors suffice to identify all link metrics in
the network. Suppose two distinct nodes are selected to serve
as monitors. Each measurement starts at one monitor and
terminates at the other via a controllable simple path. The
termination node then reports the end-to-end metric, which
becomes an entry in the measurement vector c. From the
perspective of graph theory, such a network can be represented
as G = ({m1,m2, v0, . . . , vk}, L), where m1 and m2 are the
monitors, {v0, . . . , vk} the non-monitors, and |L| = n. Let
m1m2 be the direct link incident to m1 and m2. Since m1m2

can be easily identified through a one-hop measurement, we



assume without loss of generality that m1m2 /∈ L(G) (i.e.,
there is no direct link) in the sequel unless otherwise specified.

A. Proof of Theorem III.1

Any G with ||G|| ≥ 2 can be reorganized as in4 Fig. 2.
We define a := {a1, a2, . . . , ak1} = N(m1) and b :=
{b1, b2, . . . , bk2} = N(m2) be the sets of neighbors of m1

and m2, respectively, where k1 := |a|, k2 := |b| and a, b can
overlap (m1,m2 /∈ a ∪ b).

Assuming that H is connected5 and all link metrics in H are
known, we can reduce any equation associated with a simple
path P between m1 and m2 to the form:

Wm1ai +Wbjm2 = ϕij (2)

for some ai ∈ a and bj ∈ b. This is obtained by rewriting
the original equation Wm1ai + WP′

ij
+ Wbjm2 = WPij

(P ′
ij is the segment of Pij in H) to place the unknowns to

the left-hand side, where ϕij := WPij − WP′
ij

. Thus, we
obtain k1 × k2 equations from all simple paths between m1

and m2, each corresponding to the sum of the metrics of
one link incident to m1 and one link incident to m2. The
corresponding reduced measurement matrix is (each column
corresponding to an unknown link metric):

R =

Wm1a1 · · ·Wm1ak1
Wb1m2

· · ·Wbk2
m2



1 1
1 1

...
. . .

1 1
1 1
1 1

...
. . .

1 1

. . .
...

1 1
1 1

...
. . .

1 1

,

where the blank entries are zero. We apply the following linear
transformations to R. For each q = 1, . . . , k1 − 1 and i =
2, . . . , k2, replace row(qk2 + i) by row(qk2 + i) − row(i) −
row(qk2 + 1) + row(1); it can be verified that the result is a
row of zeros. Ignoring rows of zeros, R transforms into

R
′
=

Wm1a1 · · ·Wm1ak1
Wb1m2

· · ·Wbk2
m2



1 1


k2

rows

1 1

...
. . .

1 1
1 1


k1 − 1

rows

1 1

. . .
1 1

,

(3)

where rows are linearly independent, and the number of rows
equals k1+k2−1. When H is not connected, some rows in R

4If certain links in G cannot be included in any possible paths constructed
from m1 to m2 in Fig. 2, then these links are unidentifiable, resulting in a
disconnected or one-edge-connected interior graph H.

5That is, any node in H is reachable from every other node within H.

may not exist because there is no simple path connecting the
corresponding nodes in a and b, and the rank of R may be even
smaller. Since there are k1+k2 unknown variables (Wm1ai)

k1
i=1

and (Wbjm2)
k2
j=1, they cannot be uniquely determined even if

all link metrics in H are already known. Therefore, G with
||G|| ≥ 2 is unidentifiable using two monitors. �

In fact, we can show a stronger result that none of the
exterior link metrics is identifiable.

Corollary IV.1. None of the exterior link metrics can be
identified when using two monitors to measure simple paths.

Proof: Assume all interior link metrics are known. From
the proof of Theorem III.1, we see that the transformed
measurement matrix R′ in (3) gives a maximum set of linearly
independent equations (one equation per row) regarding the
exterior link metrics (Wm1ai)

k1
i=1 and (Wbjm2)

k2
j=1. To identify

a metric, say Wm1ai , we must be able to find a subset of k ≥ 1
equations with k unknown variables, including Wm1ai . This
is, however, impossible with the equations in R′ as any subset
of k equations must contain at least k+1 unknown variables.
Therefore, none of the exterior link metrics can be identified.

B. Discussions on Paths with Cycles

At the end of Section III-B in [17], the authors raise the
question whether or not monitoring non-simple paths (i.e.,
paths that may contain cycles) between two monitors suffices
to identify all link metrics in the network. According to
Corollary IV.1, the exterior links cannot be identified even if
all the interior link metrics are known; allowing cycles in the
interior graph H provides no additional information regarding
the exterior links. Consequently, the answer to that question in
[17] is that monitoring (simple or non-simple) paths between
two monitors is not sufficient to identify all link metrics.

V. IDENTIFIABILITY OF INTERIOR LINK METRICS USING
TWO MONITORS

In real networks, network administrators are more interested
in using end-to-end measurements to infer the qualities of
links that are at least one-hop away, since monitors can use
other techniques (e.g., RTS/CTS in 802.11 MAC) to estimate
their adjacent link metrics. Therefore, in this section, we
only focus on the interior graph H and derive necessary and
sufficient conditions on the network topology G for identifying
all the links in H using two monitors (m1 and m2).

Before going into details, we first point out that it is
sufficient to solve the case in which H is a connected graph.
This is because if H consists of KH (KH ≥ 2) connected
components Hi (i = 1, . . . ,KH ), we can decompose the
entire graph G into sub-graphs Gi := Hi + m1 + m2, with
G = ∪KH

i=1Gi (see the definition of graph union in Table I).
Since none of the m1 → m2 simple paths in Gi can traverse
Gj (i ̸= j), the identification of links within different Gi’s is
mutually independent. Therefore, in the rest of this section,
we assume H to be connected with ||H|| ≥ 1. Our result can
be applied to each Gi separately when H is disconnected.
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Fig. 4. Illustration of Condition 1⃝, where (d) is an enlarged view of
(c). Node sets {. . . , a1i, . . .} and {. . . , a2i, . . .}, {. . . , b1j , . . .} and
{. . . , b2j , . . .} in (d) may have overlap, respectively.

A. Proof of Theorem III.2: Necessary Part

Suppose all links in H are identifiable. We prove conditions
1⃝– 2⃝ by contradiction.

a) Let l1 ∈ L(H) be an arbitrary interior link. If G − l1
is disconnected, then l1 is a bridge6 in G (shown in Fig.
4-a). If each of G1 and G2 contains a monitor, then l1 is
unidentifiable by Lemma II.1 in [19]. If m1 and m2 are both
in G1 (or G2), then l1 cannot be employed by any measurement
path (otherwise, l1 will be used more than once), and is thus
unidentifiable. Both cases contradict the assumption.

b) Suppose there is a bridge l2 in G− l1. If l2 is an exterior
link, as shown in Fig. 4-b, then by Lemma II.1 in [19], its
adjacent interior links rai ∈ L(H) are unidentifiable, contra-
dicting the assumption that all interior links are identifiable.
Thus, l2 must be an interior link. Since by a), an interior
link cannot be a bridge in G, {l1, l2} must be an edge cut
as shown in Fig. 4-c/d. If both m1 and m2 are in G1 as in
Fig. 4-c, then all m1 → m2 paths traversing l1 must traverse
l2 as well. Thus we can at most identify Wl1 +Wl2 , but not
Wl1 and Wl2 individually. If m1 is in G1 and m2 is in G2 as in
Fig. 4-d, then all m1 → m2 paths must traverse either l1 or l2.
Consider the sub-graph of G formed by all simple m1 → m2

paths traversing l1. Since l1 must be a bridge in this sub-graph,
Lemma II.1 in [19] shows that l1 and its adjacent links a1ir1,
s1b1j cannot be identified from paths traversing l1; similar
argument applies to l2. Moreover, similar analysis as in the
proof of this lemma shows that none of these link metrics can
be identified by jointly considering measurements involving
l1 and l2. This contradicts the assumption that all the interior
links are identifiable.

Based on a) and b), we see that G − l1 must be 2-edge-
connected for any l1 ∈ L(H) (i.e., condition 1⃝ holds).

c) We can also prove condition 2⃝ by contradiction; see
Proposition II.2 in [19] for details.

B. Proof of Theorem III.2: Sufficient Part

Given conditions 1⃝– 2⃝, we need to show that all links in
H are identifiable. We first introduce two types of identifiable
links. The idea is to show that every interior link belongs to
one of these two types.

6A link separating its end-points is a bridge [18].

(a) cross-link (b) shortcut
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Fig. 5. Two types of identifiable links in H.

1) Cross-link: A cross-link connects nodes on two simple
paths between the monitors. Specifically, as shown in Fig.
5-a, link y is a cross-link if ∃ four m1 → m2 paths PA, PB ,
PC , and PD formed by simple paths7 P1, . . . ,P4:{

PA = P1 ∪ P2

PB = P3 ∪ P4

,

{
PC = P1 ∪ Py ∪ P4

PD = P3 ∪ Py ∪ P2

, (4)

such that {
|P1 ∩ P2| = 1

|P3 ∩ P4| = 1
,

{
|P2 ∩ P3| = 0

|P1 ∩ P4| = 0
. (5)

See Table I for definitions of graph union/intersection and | · |;
note that paths are also graphs. The constraints in (5) are used
to ensure that PA–PD are simple paths, e.g., |P1 ∩ P2| = 1
(P1, P2 have no common node other than v1) prevents cycles
in PA. This does not mean P1–P4 have to be disjoint, e.g.,
P1 and P3 can have common nodes. The cross-link y can be
identified by

Wy =
1

2
(WPC

+WPD
−WPA

−WPB
). (6)

2) Shortcut: A shortcut connects the endpoints of a simple
path whose metric is known. Specifically, as shown in Fig. 5-
b, link y is a shortcut if ∃ a simple path P3 whose metric has
been identified such that the following m1 → m2 paths can
be formed by simple paths P1, . . . ,P3:

PA = P1 ∪ Py ∪ P2, PB = P1 ∪ P3 ∪ P2, (7)

satisfying |P1 ∩ P3| = 1, |P2 ∩ P3| = 1, and |P1 ∩ P2| = 0.
Again the constraints are used to guarantee that PA–PB are
simple paths. The shortcut y can be identified by

Wy = WPA
−WPB

+WP3 . (8)

The key to the proof is to show that each interior link can
be categorized as either a cross-link or a shortcut. To this end,
we introduce a special kind of cycle as follows.

Definition 2. A non-separating cycle in G, denoted by F , is an
induced sub-graph8 such that: (i) F is a cycle (see definition
in Table I), and (ii) F does not separate any node from a
monitor, i.e., each connected component in G \ F contains at
least one monitor.

For example, there are four non-separating cycles in Fig. 6:
v1v2v3v1, v4v3v2v5v4, m1v1v3v4m1, and v5v2m2v5. Cycle

7Here Py is the 1-hop path traversing a link y.
8An induced sub-graph G′ of G is a sub-graph that contains all the original

links as long as both end-points of the links are in G′.
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Fig. 6. Sample network with identifiable interior graph.

(b) (c)

m2m1

m2

m1

v

w

v w v w

r

(a)

C2C1
C2

C1

C2

C1

P1
P2

P3

P4

Fig. 7. Possible cases of interior link vw: (a) Case A, (b) Case B-1, (c)
Case B-2.

v4v3v1v2v5v4 is not a non-separating cycle as it is not
induced (due to link v2v3), neither is v4m1v1v2v5v4 as it
separates v3 from monitors.

Our first observation is that if we can find two non-
separating cycles C1 and C2 as shown in Fig. 7-a, sharing
only the link of interest (vw) and each connecting to a different
monitor by a disjoint simple path, then link vw is a cross-link
and can be identified as in (6) (where PA–PD are constructed
by (4), using P1–P4 marked in the figure). The challenge is
that such cycles do not exist for every link. We have shown in
Lemma II.4 in [19] that two other cases may occur, as shown
in Fig. 7: (b) any path from C1−v−w to a monitor intersects
with C2−v−w, or (c) C1 and C2 have a common vertex other
than v and w. The lemma guarantees that these three cases are
complete, i.e., any interior link belongs to one of these cases.

Our second observation is that for any link not identifiable
by (6) (Case B-1 or B-2), we can find a detour path connecting
its endpoints, whose links are all cross-links and thus can be
identified by (6). Consider the example in Fig. 5-b. We show in
Lemma II.5 (a) in [19] that each Case-B (including B-1, B-2)
link y resides on a non-separating cycle P3+ y in the interior
graph, where all the other links on this cycle are of Case A
(cross-links). Furthermore, we show in Lemma II.5 (b) in [19]
that there exist disjoint simple paths P1 and P2 connecting
the end-points of this Case-B link to different monitors, each
intersecting with the cycle only at the end-point. Thus, the
Case-B link y is a shortcut and can be identified by (8) after
identifying all the Case-A links. Therefore, any interior link,
either Case-A or Case-B, is identifiable. See details in [19]. �

As an example, Fig. 6 displays a network satisfying Con-
ditions 1⃝ and 2⃝.

VI. IDENTIFIABILITY USING THREE OR MORE MONITORS

Since two monitors are not sufficient to identify all link
metrics in G, in this section, we explore the case of three
or more monitors. Lessons learned in Section V suggest that
it is easier to identify links that are one-hop away from the
monitors. This observation inspires us to construct an extended
graph Gex of G (see Fig. 3), so that all links of interest (actual
links in G) become one-hop away from the virtual monitors m′

1

and m′
2. This construction immediately converts the problem

of identifying G using κ monitors to a problem of identifying
the interior graph of Gex using 2 monitors. Therefore, we can
use Theorem III.2 to obtain the following result.

Lemma VI.1. Employing κ (κ ≥ 3) monitors to measure
simple paths, the necessary and sufficient condition on the
network topology G for identifying all link metrics in G is that
the associated extended graph Gex has an identifiable interior
graph, i.e., Gex satisfies Conditions 1⃝ and 2⃝ in Theorem III.2.

Proof: Since G is the interior graph of Gex, it suffices to
show that the information obtained by the real monitors is the
same as that obtained by the virtual monitors. First, it is easy
to see that for any m′

1 → m′
2 measurement Wm′

1mi···mjm′
2

involving links in G, the information relevant for identifying
G is captured by an mi → mj measurement Wmi···mj (i, j ∈
{1, · · · , κ}, i ̸= j). It remains to show that any measurement
between the real monitors m1, . . . ,mκ can be obtained from
measurements between m′

1 and m′
2. To this end, consider a

path m1e1mi (i ∈ {2, · · · , κ}) as shown in Fig. 3-b. Four
simple paths between m′

1 and m′
2 can be constructed: PA =

m′
1mim

′
2, PB = m′

1m1m
′
2, PC = m′

1mie1m1m
′
2, and PD =

m′
1m1e1mim

′
2. Viewing m1e1mi as a “cross-link”, Wm1e1mi

can be computed from measurements on these four paths via
(6) (replacing Wy by Wm1e1mi ).

Furthermore, the special structure of Gex allows us to con-
solidate the two conditions 1⃝ and 2⃝ into a single condition
as stated in Theorem III.3, whose proof is given below.

A. Proof of Theorem III.3

Based on the construction of Gex, we can prove (see Propo-
sition II.7–II.8 in [19]) that Gex satisfies Conditions 1⃝ and 2⃝
in Theorem III.2 if and only if Gex is both 3-edge-connected
and 3-vertex-connected. According to Proposition 1.4.2 in
[18], a 3-vertex-connected graph is also 3-edge-connected.
Thus, the necessary and sufficient conditions in Lemma VI.1
can be simplified to Gex being 3-vertex-connected. �

VII. TESTING AND ENSURING IDENTIFIABILITY

The conditions we have derived have broader impact than
mere theoretical interest. A major benefit of characterizing
network identifiability in terms of network topology is that
we can leverage existing graph-processing algorithms to ef-
ficiently test or ensure the identifiability of a given network.
In this section, we present efficient algorithms that can test
the identifiability of a given network under given monitor
placement.

A. Efficient Identifiability Test

The first question we want to answer is: given a network
topology G and a placement of κ ≥ 2 monitors, how can we ef-
ficiently determine if G is identifiable or not? If κ = 2, then we
know from Theorem III.1 that it is impossible to identify the
entire G. Nevertheless, we can test whether the interior graph
is identifiable using Conditions 1⃝ and 2⃝ in Theorem III.2,
which transform into multiple tests of edge/vertex connectivity.



The problem of determining whether a given graph is k-
edge/vertex-connected has been well studied. Specifically, fast
algorithms have been proposed to test if a graph is: (i) 2-edge-
connected [20], or (ii) 3-vertex-connected [21], both in time
O(|V | + |L|) (|V |: number of nodes; |L|: number of links).
Using these algorithms, we can test the identifiability of the
interior graph of G as follows:

1) for each interior link l: apply the 2-edge-connectivity test
in [20] to G − l; G is unidentifiable if the test fails;

2) apply the 3-vertex-connectivity test in [21] to G+m1m2;
G is unidentifiable if the test fails;

G is identifiable if all the tests succeed. The overall complexity
is O(|L(G)|(|V (G)|+ |L(G)|)).

Similarly, if κ ≥ 3, then we can test the identifiability of
the entire G using the condition in Theorem III.3:

1) construct the extended graph Gex as in Fig. 3;
2) apply the 3-vertex-connectivity test in [21] to Gex; G

is identifiable if the test succeeds, and unidentifiable
otherwise.

The complexity of this algorithm is O(|V (Gex)|+ |L(Gex)|),
which can be reduced9 to O(|V (G)|+ |L(G)|).

VIII. CONCLUSION

In this paper, we explore the fundamental conditions on
network topology for identifying link metrics using end-to-
end measurements along simple paths. We show that it is
impossible to identify all the links with only two monitors,
irrespective of the network topology and the placement of
monitors. In some cases, however, it is possible to identify the
interior links that are at least one hop away from the monitors,
for which we derive the necessary and sufficient conditions.
We further study the case of three or more monitors and
develop the corresponding necessary and sufficient conditions
for identifying all link metrics. All these conditions can be
verified efficiently.
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