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I. INTRODUCTION

Selected lemmas and propositions in [1] are proved in detail
in this report. We first list the lemmas and propositions in
Section II and then give the corresponding proofs in Section
III. See the original paper [1] for terms and definitions.

II. LEMMAS AND PROPOSITIONS

Let H denote the interior graph of graph G, where two
monitoring nodes (m; and my) are employed. In this report,
Conditions (D) and ) refer to the two following conditions.

@) G—1 is 2-edge-connected for each interior link [ in #;

) G + mimeo is 3-vertex-connected.

Lemma IL.1. When the interior graph H of G is connected,
the corresponding measurement matrix R can be linearly
transformed to
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where the rest entries are zero, B is a ks x kj, Boolean matrix!,
T is a (—1,0, 1)-Matrix*> with dimensions (k; — 1) x kj, and
L with &, columns is a matrix associated with all rows in the
restructured measurement matrix R, involving only (W, )%" .
Proposition I1.2. For graph G, if all link metrics in the
associated interior graph are identifiable through simple path
measurements, then G + mjms is 3-vertex-connected.

Proposition I1.3. Using two monitoring nodes, the necessary
and sufficient condition for G + mimy being a 3-vertex-
connected graph is when 2 nodes are deleted in G, the remain-
ing graph is still connected, or every connected component
each has a monitoring node.

1Boolean matrix is a matrix each of whose entries is 0 or 1.
2(—17 0, 1)-Matrix is a matrix each of whose entries is —1, 0, or 1.

Fig. 1. Reorganized graph G, where a; and b; can be the same node.

Lemma IL4. If graph G satisfies Conditions (I) and 2), for
any link vw in the interior graph of G, two cycles (C; and Cs)
can be discovered in G, such that

(a) C; is a face’;

(b) vw is the only common link between C; and Cs;

(c) €y and C; have one common node at most, apart from v
and w;

(d) there exists path P; connecting* m? and a node on C; —
v —w and P connecting m3 and a node on Cy — v — w;

(e) PrNPy=10;

) L(P)NLIC, —v—w) =0, L(P)NL(Cy —v—w) =0

(2) v,w ¢ V(Py) and v,w ¢ V(Pa).

Proposition IL5. If graph G satisfies Conditions () and (2,
then

(a) for any face in graph G, there is at most one border-link
in this face;

(b) for any border-link vw in the interior graph of G, it can
discover a face without traversing m; and mso;

(c) for every border-link vw on face C; with L(Cy) C L(H),
there exist paths P(mq,v) and P(ma, w) with P(mq,v)N
P(ma,w) = 0, P(my,v)o NCy = 0 and P(ma, w)w N
Cy=10.

III. PROOFS

A. Proof of Lemma II.1

Suppose that the two monitorin
rise to a connected interior graph H in G (Fig. 1). Let
(1) := L(H) be the link set of H with k; := |[[H]].
Consider the measurement matrix R, (¢ € {1,--- , k1 }) cor-
responding to all possible paths mq — a; — ... = b; = ma
(j=1,...,k2). Then Ry, is of the form

nodes m; and mso give

31n the sequel, C1 means a cycle as well as a face.
4Let mi,mb € {m1, ma} with m] # m3.
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where Bj; (j = 1,...,k2) with kj columns is the Boolean

matrix corresponding to all simple paths between a; and b;
in H (ie., the (p, ¢)-th entry indicates whether link I, in
‘H appears on the pth path between a; and b;). Note that
at least one such path exists, i.e., Bj; is nonempty, since H
is connected. Among all rows containing W, 4, and Wy,
in R,,, if we subtract the first row from the others, then
the other rows are only non-zero in entries corresponding to
(Wli)fil. Reorganizing these subtracted rows to the bottom,
we transform R, to

Woimg = Weyme Wiy "‘Wlkh
1 1 ri1
1 1 riz
, ; g :

Rﬂi = 1 1 Tiky ’ @
where ri; (7 = 1,..., ko) is the first row of By;, and Ly, is a
matrix derived from the subtraction operation. Combining all
R, (i € {1,---,k1}) in (2), the restructured measurement
matrix R is

W7711a1 "'Wmlakl Wb17n2 "'kaz'mQ Wll "'Wlkh
1 1 rii )
1 1 riz
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1 1 raz
1 1 1"2k2
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1 1 I‘klk2
L,
3
where Ly is the matrix formed by arranging La,, ..., La,,

vertically. We apply the following linear transformations to
(3): (i) first, subtracting row ¢ from row gko + ¢ for each
q=1,...,ky —1 and ¢ = 1,...,ko; (ii) then, subtracting
row gko + 1 from row gk, + ¢ for each ¢ = 1,...,k — 1
and @ = 2,..., ko; (iii) finally, moving all rows containing
Ti; — 115 —Ti1 (i=2,---,k andj=2,--- , ko) to the matrix
bottom. Ignoring entries whose values are zeros ((Wmlai)f;1
and (W, m, )?2:1 are not involved in the rows containing r;; —

ri;—ri (0 =2,--- ,kyand j = 2,--- , kg)), (3) is transformed
into

Winyay = Wmyag, Woymg = Weyomy Wiy "'Wlkh
1 ri
1 1 riz
1 1 !‘1k2
—1 1 rp; —rii
-1 1 rgy —rii
>
—1 1 Tkyj1 —T11
)
where
Wi, Wiy - Wlkh
r22 —I'i2 —Ir21
r2z —I'13 — rai
T2k, — ik, — I'21
rgz —I'i2 —rsi
rgg —riz —rai

T'sky — likg — T'31

k2 —T12 — Tkl
Tky3 —T13 — k1

Tkikg — Tikg — Fky1

Entries in r;; — rqy are of the value of -1, 0, or 1, since

rii
riz
each entry in rj; is O or 1. Therefore, B := : is
Tikoy
rz; —rii
rgi —rii
a ko x kp Boolean matrix, while T := : is a

Tkq1 — Tr11

(—1,0, 1)-Matrix with dimensions (k1 —1) x kj,. Consequently,
when the interior graph H of G is connected, the correspond-
ing measurement matrix R can be linearly transformed to
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Fig. 2.

G + m1ms is 3-vertex-connected.

B. Proof of Proposition I1.2

Suppose interior graph H of G is identifiable and G+mima
is not 3-vertex-connected, then the connectivity5 of G+mimag
is 1 or 2.

1) Consider the case that the connectivity of G + mimsy
is 1 and node r € V(G 4+ mymg) is deleted. According
to the assumption of H being a connected graph, G must
be 1-vertex-connected. First, if r is a monitoring node, the
resulting G + mimo —r = G — r is not disconnected since
‘H is connected. Second, we assume G is separated into
two components, denoted by D; and D, after deleting r
(r € V(#H)). If each of D; and D, contains a monitoring
node, then link mjimo connects D; and D, again. If one of
D; and D,, say D, does not have monitoring nodes in it,
then all m; — mq paths employing links in D; must both
enter and leave D; at r, thus forming a cycle in this path
construction. Therefore, the connectivity of graph G + mims
must be greater than 1.

2) Now we assume the connectivity of G+mims is 2. First,
Consider deleting one monitoring node and a non-monitoring
node (displayed in Fig. 2-a). If deleting r (r € V(H)) and
mg results in Dy being separated, then Dy and D- only have
one common node, denoted by r. In this case, m; must be in
Dy; otherwise, a cycle is formed when using links in D; to
construct m; — mo paths. However, even if all link metrics
in D; have been identified, (Wmi)?;l (a; # mg and k. > 2,
since G is proved to 2-edge-connected in [1] when its interior
graph is identifiable) are uncomputable, according to Corollary
II1.2 in [1]. This contradicts the claim that H is identifiable.
Second, if m; and mo are deleted, the remaining graph is
‘H, which is connected, according to the assumption that the
interior graph of G is connected. Third, now we consider
deleting r and s (r,s € V(H), r # s # m1 # mg). If
G is separated and each component has a monitoring node,
then mimo can connect these two components again. If the
separated component does not have monitoring nodes in it
(such as Dy in Fig. 2-b), then according to Corollary III1.2
in [11, (Wya,)¥ | and (Wy,)", are uncomputable even if
all link metrics in D; and D3 have been identified. This also
contradicts the claim that H is identifiable.

Thus, the connectivity of G + mymso is greater than 2.

SThe greatest integer k such that G is k-vertex-connected is the connectivity

of G.

Therefore, G + mims is 3-vertex-connected when its interior
graph is identifiable. ]

C. Proof of Proposition 11.3

Necessary part.

1) If G is separated by deleting 2 non-monitoring nodes,
then each component must have a monitoring node; otherwise,
G + mymsy is 2-vertex-connected.

2) If one of these deleted 2 nodes is a monitoring node, say
mq, then mimso is deleted as well. Deleting any other node
except mo will not result in the separation of G. If separated,
G + myms is 2-vertex-connected.

3) If my and mo are deleted, we can obtain sub-graph #,
which is connected according to the assumption.

Sufficient part.

1) When 2 nodes are deleted in G, if it remains connected,
then G is 3-vertex-connected, so is G + mima.

2) If G is separated after deleting two nodes and each sep-
arated component has a monitoring node, then these compo-
nents are connected again by link m1ms. Therefore, G+mqimo
is 3-vertex-connected. |

D. Proof of Lemma 1.4

1) For vw € L(H), an H-path® P; from v to w can
be discovered for a 2-vertex-connected graph, according to
Proposition 3.1.3 [2] (G is a 2-vertex-connected graph, since
G +mymg is 3-vertex-connected), then a cycle C; = Py +vw
is formed. If zy € L(G) with z,y € V(Cy) and zy ¢ L(C}),
then use zy to replace Pc;(w,y) recursively, ie., C; =

Ci\ Pe; (x,y) + xy, until no such zy exists, where Pe; (z,y)
is the path from z to y in C; with vw ¢ L(P¢;(x,y)).
Finally, C{ = C{ is an induced cycle. If C{ is not a face,
then there exists separated component D (DN {my,ma} = 0,
when Cy is deleted), in which all paths from V(D) to m; or
mo must have three or more (since G + mymso is 3-vertex-
connected) common nodes with C{. For any v; € V(D),
degree’ d(vy) > 2, since G satisfies Condition (D). Fur-
thermore, there must be an inner path P;,(z1,22) incident
with 27 and x2 (x1,2z2 € V(C{)) and an interior node
vy € V(D) with vy € V(Pm(scl,xg)). Using P;p,(x1,z2) to
replace Pey (z1,72) (vw ¢ L(Pey (71,22))) in Cf recursively,

[e]
ie., Ci/ = Ci’ \ Pc{/(l‘l,aﬁg)upin(.’lﬁl,l‘g), until no such
Pin(x1,T2) exists. As a result, a face C; = C{ can be
discovered in G.

2) Suppose Cq satisfying (b) in Lemma II.4 cannot be
discovered, then C; must share some common links with
C1\ {vw}. Let s be one of these common links, then if vw is
deleted, all possible paths connecting v and w must traverse
link rs. In this case, rs becomes a bridge, contradicting
Condition (D).

3) Suppose there are always two common nodes no matter
what strategy is used to select the two cycles. Let r,s €

5P (||P|] > 1) is an H-path of graph H if P meets H exactly in its end
nodes.

TThe degree of node v is the number of links incident with v, denoted by
d(v).
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Fig. 3. Two cycles with two common nodes.

Fig. 4. Construction of two cycles.

V(C) N V(Cs) \ {v,m}, the two paths connecting r and
s in Dy are reis and regs (shown in Fig. 3). It has been
proved that re;s and reps cannot have common links, thus
;Qg #* ;‘92 If vw is deleted, any v — w paths must
first traverse r and then traverse s. Therefore, G is composed
of three components (D;, Dy and D3) and link vw with
V(D1 sz) = {’l”} V(DQ ﬂDg,) = {S} and V(Dl ﬂD;) = 0.
For Do, |V (reisUreas) \ {r,s}| > 1, since rels # 7‘625 and
[|(C1 —vw) N (Ce —vw)|| = 0. Similarly, |D; —r —v| > 1 and
|D3 — s — w| > 1. Only two of these three components can
have m; or mg. Thus, the third component without monitoring
nodes is separated when the two common nodes with adjacent
components are deleted, contradicting Lemma II.3.

4) G is connected; therefore, (d) in Lemma I1.4 is true.

5) (). If all Py (m} € V(1)) must traverse msj, then m3
is a cutvertex® in G, contradicting Lemma IIL.3.

(ii). Let C; = vsw + vw. For any P; and Ps, if they must
have a common node, say r (see Fig. 4-a), then r cannot be
a cutvertex, because G is 2-vertex-connected. Therefore, there
must be another path employing v or w, say m3o01 - - - 05vg
(r ¢ V(m3oy - - - 05va)), to connect m} and g. m3o; - - - 05vg
might have common nodes (o1,---,05) with other paths.
However, if o4 or o5 is the common node, then P; and
P> do not need to traverse r to connect the two cycles. If
mbo; - - - osva must traverse (0;)3_;, then m} cannot connect
to the two cycles when r and o; are deleted, contradicting

8A vertex which separates two other vertices in the same graph is a
cutvertex.

Lemma I1.3. Thus, an m30;,v which does not have unavoidable
common nodes o1, 05 and o3 can be constructed. Therefore,
Cy can be reselected, i.e., Co = vojrosgw + vw with Py =
m3e101 and Py = mirs.

(iii). Let C; = vgw + vw (see Fig. 4-b). Suppose m} can
make use of both v and w, say m501v and m50;w, to connect
nodes on vgw. We have r, 03 ¢ V(mbo1v U mbow), since
P; and P, must traverse r to connect 5913} when v and w are
not used. In addition, it is impossible that m501v and mjo,w
must have an unavoidable common node, say o, with mje;r;
otherwise, m] cannot connect to g when oy and r are deleted.
Thus, m301v and m30;w which do not have common node 03
can be discovered. Then we reselect Cy, i.e., Co = vojw +vw
with Py = m3jez0; and Py

(iv). According to (ii) and (iii), P;, P2 and Cy can be
discovered to make sure P; and P do not have common
node r. However, if g and s in Fig. 4-b are the same node
(see Fig. 4-c), we can also prove it is impossible. In this
case, V(D) N V(D2) = {r} with my,my ¢ V(D;) and
my,mg & V(Ds). For the two cycles, we have |Dy| > 1 and
|D,| > 1 (since vw is the only common link between C; and
C>); therefore, nodes in D; (D3) without monitoring nodes are
separated when r and v (w) are deleted, contradicting Lemma
I1.3.

= mjejrosg.

(v). Therefore, P; and P, without common nodes can be
discovered. Accordingly, it is obvious that P; and P do
not have common links, since a common link means two
common nodes (end nodes of this link) between P; and Ps.
Consequently, P; and Py with P; NPy = () can be discovered.

6)If L(P)NL(C—v—w) # 0, simply use the first common
node as the end node of P.

7) We first consider P;. In G — m3, if /P; must traverse
an end node of vw, say v, to connect mj and a node on
C1 — v — w, then nodes on C; — v — w are disconnected to
mj] when v and mj are deleted, contradicting Lemma IL.3.
Thus, it is impossible that P; must traverse an end node of
vw. However, if P; cannot avoid one of v and w to connect
mj and C; — v — w, then two paths can be constructed. Let
vergw + vw be C; (see Fig. 4-d). The constructed two paths,
ccﬁecting m5 and g, are msestve;g and m3esteswg with

mjestvNvergw = 0 and mjesteswnveigw = O (If they have

intersections, P; does not have to traverse v and w to connect
o] (o) .

to a node on v@w). Thus, according to Lemma I1.3, g must

have a connection to mj, mjesg, with mjesgNmsest = 0 (if

miesgNmiest # (), then P; does not have to traverse v and w

to connect to a node on f?)el gﬁ)). Therefore, Co can be chosen
as Cy = vleow + vw with Py = msest and P = miesg.
These two cycles and paths enable vw to be a non-border-link
identifiable via the method proposed in Section IV-B1 of [1].
Therefore, non-border-link vw is capable of constructing two
cycles and Py, P2 with v,w ¢ V(P1) and v,w ¢ V(Pa).
When considering P5, the same conclusion can be obtained.
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Border link vw and xy cannot be in the same face.

Fig. 5.

E. Proof of Proposition I1.5-(a)

Using the method to calculate Type 1 identifiable link
(Section IV-B1 of [1]), all non-border-links in H can be
identified. While for border-links, they can be categorized into
two classes: (i) Class 1. V(C; N C2) = {v,w} and all P,
must have a common node with Co — v — w, and (ii) Class
2. V(C1 NCsy) = {v,w,r}, where r is another unavoidable
common node.

Let vw be the border-link in % and vw € L(Cy). All
other links on C; can use the same face, because C} of other
links cannot be disconnected to monitoring nodes when C; is
deleted.

1) Let vw be a border-link of Class 1.

(). In Fig. 5-a, suppose zy is border-link of Class 2 on Cy,
then there is a common node s (there is at most one common
node apart from x and y, proved in Lemma I1.4) on C; and C5"”.
Since C; is an induced graph, there must be a node, say vy, on
sviz and a node, say vo, on svpy. For all paths connecting vy
and monitoring nodes, they must traverse s or y. Therefore,
v1 cannot have other connections to Cy via bypassing s and y.
Meanwhile, if v; has a path to one monitoring node in G\C3",
then x has a path to the same monitoring node in G \ C{% as
well, contradicting the assumption that vw is a Class 1 border-
link. Thus, when s and y are deleted, v; is separated from m4
and mo, contradicting Lemma IL.3. This conclusion also holds

when zy and s have common nodes with vw. As the position
of s alters, however, the separated node might change. For
instance, when s = w, v9 is separated from m; and mo when
x and w are deleted. Therefore, xy cannot be a border-link of
Class 2 on face C;.

(ii). Suppose there is another border-link xy of Class 1 and
both C¥* and C5¥ must traverse my and ms. Then graph G can
be reorganized as Fig. 5-b, which is composed of component
Dy, Ds, D3 and link vw, zy. There is at least one node,
say r, in Dy, because we have assumed direct link mims
does not exist in G. Thus, the graph is disconnected when m4
and mq are deleted, contradicting Lemma I1.3. Therefore, it is
impossible that C3* and C5¥ must traverse both m; and ms.

(iii). Since vw is a Class 1 border-link, all possible P; must
intersect C3*. Thus, there exist path P,,: := P(m],v1) and
Py := P(m3,v) with vy, v3 € V(C3%) and Prpx NPpz = 0
(If Py NPryy # 0, the common node is a cutvertex). Suppose
there is another border-link zy of Class 1 on C; (see Fig. 5-c).
Then the associated C5Y (V(C3Y NC;) = {z,y}) must have
two intersections (since both vw and zy are Class 1 border-
link) with C3", say r and s (we have proved that r and s
cannot be both monitoring nodes in the previous step). Since
xy is another Class 1 border-link, if Pm; connects to ;Mg,

it must have intersections with 726722 say the intersection is
o3 (the number of intersections maybe greater than one, say
both 0o and o03). In addition, we have o3 # r # s, since
if o3 overlaps with r or s, then it means v cannot connect
to monitoring nodes when r and s are deleted, which is
impossible. In Fig. 5-c, let 0; be another node, which can
be equal to v, on C3". Now we consider the locations of Pms{
and Ppz. If Ppz ends at regs (location @ in Fig. 5-¢), then
Pz cannot end at e vws, because xy can select xrezsy+xy
as C;”, and then path mjo30201v connecting mj and v does
not intersect with the newly selected Cy?, resulting xy to be
a non-border-link, contradicting the assumption that zy is a
border-link. Therefore, Pm{ also ends at ’?'6732 In this case,
however, v is disconnected to monitoring nodes when r and
s (r and s cannot be both monitoring nodes) are deleted,
contradicting Lemma II.3. Now we change the location of
Pins. If no Ppx and Pz end at regs, then both Pp,: and
Py (location (@ in Fig. 5-¢) end at re;vws. In this case, C3Y
can be reselected, i.e., C;¥ = zrezsy+ay with P3¥ = mbosr
and P"Y = mjo300010. Thus, zy with PyYYNPyY = 0, a Type
1 identifiable link (Section IV-B1 of [1]), is not a border-link,
contradicting the assumption of zy being a border-link. This
conclusion also holds when y = w (or x = v). Thus, C{"
cannot have another border-link of Class 1.

2) Let vw be a border-link of Class 2. For vw, suppose all
cycles must traverse 7, then G consists of component D1 Do
and link vw (see Fig. 5-d). In addition, each of D; and D, has
a monitoring node in it; otherwise, Dy (D) is separated from
monitoring nodes when r and v (w) are deleted, contradicting
Lemma I1.3.

(i). Suppose xzy € L(D5) (see Fig. 5-¢) is a Class 2 border-
link on the same face Cy, all C§ Y must traverse a node, say s,
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Fig. 6. Border-links and monitoring nodes do not in the same face.

on(Cq.If sis on 55?‘, D; is further split into two components
(D} and DY), contradicting the claim that C; and C3Y cannot
have two common nodes. Thus, s cannot be on %g? Ifs=ror
s = v or s = w, then path o€,y is required. Since vw is Class
2 border-link, 0 e1y must traverse r as well, resulting C5¥ —zy
containing a cycle, contradicting the basic requirement in [1].
To avoid employing cycles, C3¥ must be in Do, in which case
nodes, say s (see Fig. 5-d) with s € V(C1ND1),on C; —v—w
has a connection to m; without intersecting C5¥. When s €
V(?wyﬁ)) (s#x,s#yorx=rory=worzy <€ L(Dq),
the same conclusion can be made. Thus, xy cannot be a Class
2 border-link.

(ii). Suppose zy € L(D2) (see Fig. 5-f) is a Class 1 border-
link on the same face C;, we have r = x or r = y, since C;
and C; Y cannot have common nodes, apart from z and y. If
r = x, there should be path re;y and re;y cannot have any
links outside D; and Dy; therefore, re;y C Ds. In this case,
there is a path P(mj,v) (r ¢ V(P(mj,v)). If r must be on
P(m7,v), then v is disconnected to monitoring nodes when r
and w are deleted.) connecting m] and v without intersecting
reyy, contradicting the assumption that xy is a Class 1 border-
link. The same conclusion can be obtained when r = y. Thus,
zy cannot be a Class 1 border-link.

Therefore, a face with a border-link cannot have another
border-link. ]

FE. Proof of Proposition 11.5-(b)

If vw belongs to Class 1, then all paths connecting nodes on
C; —v—w and monitoring nodes must intersect Co. Therefore,
my and mo cannot be on Cy. If vw belongs to Class 2 and
all paths (besides direct link vw) connecting v and w must
traverse a monitoring node, say mq, then it means r = my
in Fig. 5-d. Thus, ms is in either D; or Ds (each component
at least has two links; otherwise, the single link becomes a
bridge when vw is deleted). Suppose my is in D;, then Do
is separated from monitoring nodes when r (r = my) and
v are deleted, contradicting Lemma II.3. Then obviously, it
is impossible that C; must traverse both m; and ms. Now
suppose either m; or my must be on C;. Without loss of
generality, let my € V(D2) be on C; (see Fig. 6). If mo is
at location (@), then D; is separated from monitoring nodes
when r and w are deleted. If mo is at location (), then C; =
vesreqw + vw is reselected. If mo is at location (3), then
C, = veyreqw+vw is reselected. Therefore, for every border-
link vw € L(H), it can discover a face without traversing m;
and mo. |

G. Proof of Proposition I1.5-(c)

P(mi,v) and P(mj,w) exist, since G is a 2-vertex-
connected graph. If P(mj,v) N P(mb,w) # 0, let r €
V(P(ms,v)NP(m5,w)), then v and w cannot connect to mj
or m; when r is deleted, contradicting Lemma II.3. Based on
Proposition IL5-(b), m*, m3 ¢ V(Cy). If P(m?%, v)v must have
a common node, say s, with Cy, then mJ cannot connect to v
when s is deleted. Thus, P(m},v) with P(m},v)vNC; = 0
can be found. Analogously, P(mj, w) with P(m3, w)wNC; =
() can also be found. [ |
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