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I. INTRODUCTION

Selected lemmas and propositions in [1] are proved in detail
in this report. We first list the lemmas and propositions in
Section II and then give the corresponding proofs in Section
III. See the original paper [1] for terms and definitions.

II. LEMMAS AND PROPOSITIONS

Let H denote the interior graph of graph G, where two
monitoring nodes (m1 and m2) are employed. In this report,
Conditions 1⃝ and 2⃝ refer to the two following conditions.

1⃝ G−l is 2-edge-connected for each interior link l in H;
2⃝ G +m1m2 is 3-vertex-connected.

Lemma II.1. When the interior graph H of G is connected,
the corresponding measurement matrix R can be linearly
transformed to

Wm1a1 · · ·Wm1ak1
Wb1m2

· · ·Wbk2
m2

Wl1
· · ·Wlkh



1 1

B
1 1

...
. . .

1 1
−1 1

T
−1 1

...
. . .

−1 1

L

,

(1)

where the rest entries are zero, B is a k2×kh Boolean matrix1,
T is a (−1, 0, 1)-Matrix2 with dimensions (k1 − 1)× kh, and
L with kh columns is a matrix associated with all rows in the
restructured measurement matrix R involving only (Wli)

kh
i=1.

Proposition II.2. For graph G, if all link metrics in the
associated interior graph are identifiable through simple path
measurements, then G +m1m2 is 3-vertex-connected.

Proposition II.3. Using two monitoring nodes, the necessary
and sufficient condition for G + m1m2 being a 3-vertex-
connected graph is when 2 nodes are deleted in G, the remain-
ing graph is still connected, or every connected component
each has a monitoring node.

1Boolean matrix is a matrix each of whose entries is 0 or 1.
2(−1, 0, 1)-Matrix is a matrix each of whose entries is −1, 0, or 1.

...

...

Fig. 1. Reorganized graph G, where ai and bj can be the same node.

Lemma II.4. If graph G satisfies Conditions 1⃝ and 2⃝, for
any link vw in the interior graph of G, two cycles (C1 and C2)
can be discovered in G, such that

(a) C1 is a face3;
(b) vw is the only common link between C1 and C2;
(c) C1 and C2 have one common node at most, apart from v

and w;
(d) there exists path P1 connecting4 m∗

1 and a node on C1 −
v −w and P2 connecting m∗

2 and a node on C2 − v −w;
(e) P1 ∩ P2 = ∅;
(f) L(P1)∩L(C1 − v−w) = ∅, L(P2)∩L(C2 − v−w) = ∅;
(g) v, w /∈ V (P1) and v, w /∈ V (P2).

Proposition II.5. If graph G satisfies Conditions 1⃝ and 2⃝,
then

(a) for any face in graph G, there is at most one border-link
in this face;

(b) for any border-link vw in the interior graph of G, it can
discover a face without traversing m1 and m2;

(c) for every border-link vw on face C1 with L(C1) ⊆ L(H),
there exist paths P(m1, v) and P(m2, w) with P(m1, v)∩
P(m2, w) = ∅, P(m1, v)

◦
v ∩ C1 = ∅ and P(m2, w)

◦
w ∩

C1 = ∅.

III. PROOFS

A. Proof of Lemma II.1
Suppose that the two monitoring nodes m1 and m2 give

rise to a connected interior graph H in G (Fig. 1). Let
(li)

kh
i=1 := L(H) be the link set of H with kh := ||H||.

Consider the measurement matrix Rai
(i ∈ {1, · · · , k1}) cor-

responding to all possible paths m1 → ai → . . . → bj → m2
(j = 1, . . . , k2). Then Rai

is of the form

3In the sequel, C1 means a cycle as well as a face.
4Let m∗

1,m
∗
2 ∈ {m1,m2} with m∗

1 ̸= m∗
2 .
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Rai
=

Wm1ai
Wb1m2

· · ·Wbk2
m2

Wl1
· · ·Wlkh



1 1

Bi1
...

...
1 1
1 1

Bi2
...

...
1 1

...
. . .

...
1 1

Bik2
...

...
1 1

,

where Bij (j = 1, . . . , k2) with kh columns is the Boolean
matrix corresponding to all simple paths between ai and bj
in H (i.e., the (p, q)-th entry indicates whether link lq in
H appears on the pth path between ai and bj). Note that
at least one such path exists, i.e., Bij is nonempty, since H
is connected. Among all rows containing Wm1ai and Wbjm2

in Rai
, if we subtract the first row from the others, then

the other rows are only non-zero in entries corresponding to
(Wli)

kh
i=1. Reorganizing these subtracted rows to the bottom,

we transform Rai
to

R
′
ai

=

Wm1ai
Wb1m2

· · ·Wbk2
m2

Wl1
· · ·Wlkh



1 1 ri1
1 1 ri2
...

. . .
...

1 1 rik2

Lai

, (2)

where rij (j = 1, . . . , k2) is the first row of Bij, and Lai
is a

matrix derived from the subtraction operation. Combining all
R′

ai

(
i ∈ {1, · · · , k1}

)
in (2), the restructured measurement

matrix R is
Wm1a1 · · ·Wm1ak1

Wb1m2
· · ·Wbk2

m2
Wl1

· · ·Wlkh



1 1 r11

1 1 r12

...
. . .

...
1 1 r1k2

1 1 r21

1 1 r22

...
. . .

...
1 1 r2k2

. . .
...

...
1 1 rk11

1 1 rk12

...
. . .

...
1 1 rk1k2

L1

,

(3)

where L1 is the matrix formed by arranging La1 , . . . ,Lak1

vertically. We apply the following linear transformations to
(3): (i) first, subtracting row i from row qk2 + i for each
q = 1, . . . , k1 − 1 and i = 1, . . . , k2; (ii) then, subtracting
row qk2 + 1 from row qk2 + i for each q = 1, . . . , k1 − 1
and i = 2, . . . , k2; (iii) finally, moving all rows containing
rij−r1j−ri1 (i = 2, · · · , k1 and j = 2, · · · , k2) to the matrix
bottom. Ignoring entries whose values are zeros ((Wm1ai)

k1
i=1

and (Wbjm2)
k2
j=1 are not involved in the rows containing rij−

r1j−ri1 (i = 2, · · · , k1 and j = 2, · · · , k2)), (3) is transformed
into

Wm1a1 · · ·Wm1ak1
Wb1m2

· · ·Wbk2
m2

Wl1
· · ·Wlkh



1 1 r11

1 1 r12

...
. . .

...
1 1 r1k2
−1 1 r21 − r11

−1 1 r31 − r11

...
. . .

...
−1 1 rk11 − r11

L

,

(4)

where

L :=

Wl1
Wl2

· · · Wlkh



L1
r22 − r12 − r21

r23 − r13 − r21

...
r2k2

− r1k2
− r21

r32 − r12 − r31

r33 − r13 − r31

...
r3k2

− r1k2
− r31

...
rk12 − r12 − rk11

rk13 − r13 − rk11

...
rk1k2

− r1k2
− rk11

.

Entries in ri1 − r11 are of the value of -1, 0, or 1, since

each entry in rij is 0 or 1. Therefore, B :=




r11

r12

...
r1k2

is

a k2 × kh Boolean matrix, while T :=




r21 − r11

r31 − r11

...
rk11 − r11

is a

(−1, 0, 1)-Matrix with dimensions (k1−1)×kh. Consequently,
when the interior graph H of G is connected, the correspond-
ing measurement matrix R can be linearly transformed to

Wm1a1 · · ·Wm1ak1
Wb1m2

· · ·Wbk2
m2

Wl1
· · ·Wlkh


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B
1 1

...
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T
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−1 1
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...

(a)

...

...

(b)

Fig. 2. G +m1m2 is 3-vertex-connected.

B. Proof of Proposition II.2

Suppose interior graph H of G is identifiable and G+m1m2

is not 3-vertex-connected, then the connectivity5 of G+m1m2

is 1 or 2.
1) Consider the case that the connectivity of G + m1m2

is 1 and node r ∈ V (G + m1m2) is deleted. According
to the assumption of H being a connected graph, G must
be 1-vertex-connected. First, if r is a monitoring node, the
resulting G + m1m2 − r = G − r is not disconnected since
H is connected. Second, we assume G is separated into
two components, denoted by D1 and D2, after deleting r
(r ∈ V (H)). If each of D1 and D2 contains a monitoring
node, then link m1m2 connects D1 and D2 again. If one of
D1 and D2, say D1, does not have monitoring nodes in it,
then all m1 → m2 paths employing links in D1 must both
enter and leave D1 at r, thus forming a cycle in this path
construction. Therefore, the connectivity of graph G +m1m2

must be greater than 1.
2) Now we assume the connectivity of G+m1m2 is 2. First,

Consider deleting one monitoring node and a non-monitoring
node (displayed in Fig. 2-a). If deleting r (r ∈ V (H)) and
m2 results in D2 being separated, then D1 and D2 only have
one common node, denoted by r. In this case, m1 must be in
D1; otherwise, a cycle is formed when using links in D1 to
construct m1 → m2 paths. However, even if all link metrics
in D1 have been identified, (Wrai

)kr
i=1 (ai ̸= m2 and kr ≥ 2,

since G is proved to 2-edge-connected in [1] when its interior
graph is identifiable) are uncomputable, according to Corollary
III.2 in [1]. This contradicts the claim that H is identifiable.
Second, if m1 and m2 are deleted, the remaining graph is
H, which is connected, according to the assumption that the
interior graph of G is connected. Third, now we consider
deleting r and s (r, s ∈ V (H), r ̸= s ̸= m1 ̸= m2). If
G is separated and each component has a monitoring node,
then m1m2 can connect these two components again. If the
separated component does not have monitoring nodes in it
(such as D2 in Fig. 2-b), then according to Corollary III.2
in [1], (Wrai)

kr
i=1 and (Wsbi)

ks
i=1 are uncomputable even if

all link metrics in D1 and D3 have been identified. This also
contradicts the claim that H is identifiable.

Thus, the connectivity of G + m1m2 is greater than 2.

5The greatest integer k such that G is k-vertex-connected is the connectivity
of G.

Therefore, G +m1m2 is 3-vertex-connected when its interior
graph is identifiable. �
C. Proof of Proposition II.3

Necessary part.
1) If G is separated by deleting 2 non-monitoring nodes,

then each component must have a monitoring node; otherwise,
G +m1m2 is 2-vertex-connected.

2) If one of these deleted 2 nodes is a monitoring node, say
m1, then m1m2 is deleted as well. Deleting any other node
except m2 will not result in the separation of G. If separated,
G +m1m2 is 2-vertex-connected.

3) If m1 and m2 are deleted, we can obtain sub-graph H,
which is connected according to the assumption.

Sufficient part.
1) When 2 nodes are deleted in G, if it remains connected,

then G is 3-vertex-connected, so is G +m1m2.
2) If G is separated after deleting two nodes and each sep-

arated component has a monitoring node, then these compo-
nents are connected again by link m1m2. Therefore, G+m1m2

is 3-vertex-connected. �
D. Proof of Lemma II.4

1) For vw ∈ L(H), an H-path6 P1 from v to w can
be discovered for a 2-vertex-connected graph, according to
Proposition 3.1.3 [2] (G is a 2-vertex-connected graph, since
G+m1m2 is 3-vertex-connected), then a cycle C′

1 = P1+vw
is formed. If xy ∈ L(G) with x, y ∈ V (C′

1) and xy /∈ L(C′
1),

then use xy to replace PC′
1
(x, y) recursively, i.e., C′

1 =

C′
1 \

◦
PC′

1
(x, y) + xy, until no such xy exists, where PC′

1
(x, y)

is the path from x to y in C′
1 with vw /∈ L(PC′

1
(x, y)).

Finally, C′′
1 = C′

1 is an induced cycle. If C′′
1 is not a face,

then there exists separated component D (D∩{m1,m2} = ∅,
when C′′

1 is deleted), in which all paths from V (D) to m1 or
m2 must have three or more (since G + m1m2 is 3-vertex-
connected) common nodes with C′′

1 . For any v1 ∈ V (D),
degree7 d(v1) ≥ 2, since G satisfies Condition 1⃝. Fur-
thermore, there must be an inner path Pin(x1, x2) incident
with x1 and x2 (x1, x2 ∈ V (C′′

1 )) and an interior node
v2 ∈ V (D) with v2 ∈ V

(
Pin(x1, x2)

)
. Using Pin(x1, x2) to

replace PC′′
1
(x1, x2) (vw /∈ L(PC′′

1
(x1, x2))) in C′′

1 recursively,

i.e., C′′
1 = C′′

1 \
◦
PC′′

1
(x1, x2)

∪
Pin(x1, x2), until no such

Pin(x1, x2) exists. As a result, a face C1 = C′′
1 can be

discovered in G.
2) Suppose C2 satisfying (b) in Lemma II.4 cannot be

discovered, then C2 must share some common links with
C1 \{vw}. Let rs be one of these common links, then if vw is
deleted, all possible paths connecting v and w must traverse
link rs. In this case, rs becomes a bridge, contradicting
Condition 1⃝.

3) Suppose there are always two common nodes no matter
what strategy is used to select the two cycles. Let r, s ∈

6P (||P|| ≥ 1) is an H-path of graph H if P meets H exactly in its end
nodes.

7The degree of node v is the number of links incident with v, denoted by
d(v).
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Fig. 3. Two cycles with two common nodes.

(a) (b)

(c) (d)

Fig. 4. Construction of two cycles.

V (C1) ∩ V (C2) \ {v,m}, the two paths connecting r and
s in D2 are re1s and re2s (shown in Fig. 3). It has been
proved that re1s and re2s cannot have common links, thus
◦
re1

◦
s ̸= ◦

re2
◦
s. If vw is deleted, any v → w paths must

first traverse r and then traverse s. Therefore, G is composed
of three components (D1, D2 and D3) and link vw with
V (D1∩D2) = {r}, V (D2∩D3) = {s} and V (D1∩D3) = ∅.
For D2, |V (re1s∪ re2s) \ {r, s}| ≥ 1, since

◦
re1

◦
s ̸= ◦

re2
◦
s and

||(C1−vw)∩ (C2−vw)|| = 0. Similarly, |D1−r−v| ≥ 1 and
|D3 − s − w| ≥ 1. Only two of these three components can
have m1 or m2. Thus, the third component without monitoring
nodes is separated when the two common nodes with adjacent
components are deleted, contradicting Lemma II.3.

4) G is connected; therefore, (d) in Lemma II.4 is true.
5) (i). If all P1 (m∗

1 ∈ V (P1)) must traverse m∗
2, then m∗

2

is a cutvertex8 in G, contradicting Lemma II.3.
(ii). Let C1 = vsw + vw. For any P1 and P2, if they must

have a common node, say r (see Fig. 4-a), then r cannot be
a cutvertex, because G is 2-vertex-connected. Therefore, there
must be another path employing v or w, say m∗

2o1 · · · o5vg
(r /∈ V (m∗

2o1 · · · o5va)), to connect m∗
2 and g. m∗

2o1 · · · o5vg
might have common nodes (o1, · · · , o5) with other paths.
However, if o4 or o5 is the common node, then P1 and
P2 do not need to traverse r to connect the two cycles. If
m∗

2o1 · · · o5va must traverse (oi)
3
i=1, then m∗

2 cannot connect
to the two cycles when r and oi are deleted, contradicting

8A vertex which separates two other vertices in the same graph is a
cutvertex.

Lemma II.3. Thus, an m∗
2o1v which does not have unavoidable

common nodes o1, o2 and o3 can be constructed. Therefore,
C2 can be reselected, i.e., C2 = vo1ro4gw + vw with P2 =
m∗

2e1o1 and P1 = m∗
1rs.

(iii). Let C1 = vgw + vw (see Fig. 4-b). Suppose m∗
2 can

make use of both v and w, say m∗
2o1v and m∗

2o1w, to connect
nodes on

◦
vg

◦
w. We have r, o3 /∈ V (m∗

2o1v ∪ m∗
2o1w), since

P1 and P2 must traverse r to connect
◦
vg

◦
w when v and w are

not used. In addition, it is impossible that m∗
2o1v and m∗

2o1w
must have an unavoidable common node, say o2, with m∗

1e1r;
otherwise, m∗

1 cannot connect to g when o2 and r are deleted.
Thus, m∗

2o1v and m∗
2o1w which do not have common node o2

can be discovered. Then we reselect C2, i.e., C2 = vo1w+ vw
with P2 = m∗

2e2o1 and P1 = m∗
1e1ro3g.

(iv). According to (ii) and (iii), P1, P2 and C2 can be
discovered to make sure P1 and P2 do not have common
node r. However, if g and s in Fig. 4-b are the same node
(see Fig. 4-c), we can also prove it is impossible. In this
case, V (D1) ∩ V (D2) = {r} with m1,m2 /∈ V (D1) and
m1,m2 /∈ V (D2). For the two cycles, we have |D1| ≥ 1 and
|D2| ≥ 1 (since vw is the only common link between C1 and
C2); therefore, nodes in D1 (D2) without monitoring nodes are
separated when r and v (w) are deleted, contradicting Lemma
II.3.

(v). Therefore, P1 and P2 without common nodes can be
discovered. Accordingly, it is obvious that P1 and P2 do
not have common links, since a common link means two
common nodes (end nodes of this link) between P1 and P2.
Consequently, P1 and P2 with P1∩P2 = ∅ can be discovered.

6) If L(P)∩L(C−v−w) ̸= ∅, simply use the first common
node as the end node of P .

7) We first consider P1. In G − m∗
2, if P1 must traverse

an end node of vw, say v, to connect m∗
1 and a node on

C1 − v − w, then nodes on C1 − v − w are disconnected to
m∗

1 when v and m∗
2 are deleted, contradicting Lemma II.3.

Thus, it is impossible that P1 must traverse an end node of
vw. However, if P1 cannot avoid one of v and w to connect
m∗

1 and C1 − v − w, then two paths can be constructed. Let
ve1gw+ vw be C1 (see Fig. 4-d). The constructed two paths,
connecting m∗

2 and g, are m∗
2e3tve1g and m∗

2e3te2wg with
m∗

2e3tv∩
◦
ve1g

◦
w = ∅ and m∗

2e3te2w∩◦
ve1g

◦
w = ∅ (If they have

intersections, P1 does not have to traverse v and w to connect
to a node on

◦
ve1g

◦
w). Thus, according to Lemma II.3, g must

have a connection to m∗
1, m∗

1e4g, with m∗
1e4g∩m∗

2e3t = ∅ (if
m∗

1e4g∩m∗
2e3t ̸= ∅, then P1 does not have to traverse v and w

to connect to a node on
◦
ve1g

◦
w). Therefore, C2 can be chosen

as C2 = vte2w + vw with P2 = m∗
2e3t and P1 = m∗

1e4g.
These two cycles and paths enable vw to be a non-border-link
identifiable via the method proposed in Section IV-B1 of [1].
Therefore, non-border-link vw is capable of constructing two
cycles and P1, P2 with v, w /∈ V (P1) and v, w /∈ V (P2).
When considering P2, the same conclusion can be obtained.
�
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(a)

s

s

(b)

(  )

(c) (d)

(e) (f)

Fig. 5. Border link vw and xy cannot be in the same face.

E. Proof of Proposition II.5-(a)

Using the method to calculate Type 1 identifiable link
(Section IV-B1 of [1]), all non-border-links in H can be
identified. While for border-links, they can be categorized into
two classes: (i) Class 1. V (C1 ∩ C2) = {v, w} and all P1

must have a common node with C2 − v − w, and (ii) Class
2. V (C1 ∩ C2) = {v, w, r}, where r is another unavoidable
common node.

Let vw be the border-link in H and vw ∈ L(C1). All
other links on C1 can use the same face, because C′

2 of other
links cannot be disconnected to monitoring nodes when C1 is
deleted.

1) Let vw be a border-link of Class 1.
(i). In Fig. 5-a, suppose xy is border-link of Class 2 on C1,

then there is a common node s (there is at most one common
node apart from x and y, proved in Lemma II.4) on C1 and Cxy

2 .
Since C1 is an induced graph, there must be a node, say v1, on
sv1x and a node, say v2, on sv2y. For all paths connecting v1
and monitoring nodes, they must traverse s or y. Therefore,
v1 cannot have other connections to C2 via bypassing s and y.
Meanwhile, if v1 has a path to one monitoring node in G\Cvw

2 ,
then x has a path to the same monitoring node in G \ Cvw

2 as
well, contradicting the assumption that vw is a Class 1 border-
link. Thus, when s and y are deleted, v1 is separated from m1

and m2, contradicting Lemma II.3. This conclusion also holds

when xy and s have common nodes with vw. As the position
of s alters, however, the separated node might change. For
instance, when s = w, v2 is separated from m1 and m2 when
x and w are deleted. Therefore, xy cannot be a border-link of
Class 2 on face C1.

(ii). Suppose there is another border-link xy of Class 1 and
both Cvw

2 and Cxy
2 must traverse m1 and m2. Then graph G can

be reorganized as Fig. 5-b, which is composed of component
D1, D2, D3 and link vw, xy. There is at least one node,
say r, in D2, because we have assumed direct link m1m2

does not exist in G. Thus, the graph is disconnected when m1

and m2 are deleted, contradicting Lemma II.3. Therefore, it is
impossible that Cvw

2 and Cxy
2 must traverse both m1 and m2.

(iii). Since vw is a Class 1 border-link, all possible P1 must
intersect Cvw

2 . Thus, there exist path Pm∗
1
:= P(m∗

1, v1) and
Pm∗

2
:= P(m∗

2, v2) with v1, v2 ∈ V (Cvw
2 ) and Pm∗

1
∩Pm∗

2
= ∅

(If Pm∗
1
∩Pm∗

2
̸= ∅, the common node is a cutvertex). Suppose

there is another border-link xy of Class 1 on C1 (see Fig. 5-c).
Then the associated Cxy

2 (V (Cxy
2 ∩ C1) = {x, y}) must have

two intersections (since both vw and xy are Class 1 border-
link) with Cvw

2 , say r and s (we have proved that r and s
cannot be both monitoring nodes in the previous step). Since
xy is another Class 1 border-link, if Pm∗

1
connects to

◦
re1vw

◦
s,

it must have intersections with
◦
re2

◦
s, say the intersection is

o3 (the number of intersections maybe greater than one, say
both o2 and o3). In addition, we have o3 ̸= r ̸= s, since
if o3 overlaps with r or s, then it means v cannot connect
to monitoring nodes when r and s are deleted, which is
impossible. In Fig. 5-c, let o1 be another node, which can
be equal to v, on Cvw

2 . Now we consider the locations of Pm∗
1

and Pm∗
2
. If Pm∗

2
ends at re3s (location α⃝ in Fig. 5-c), then

Pm∗
1

cannot end at
◦
re1vw

◦
s, because xy can select xre3sy+xy

as Cxy
2 , and then path m∗

1o3o2o1v connecting m∗
1 and v does

not intersect with the newly selected Cxy
2 , resulting xy to be

a non-border-link, contradicting the assumption that xy is a
border-link. Therefore, Pm∗

1
also ends at

◦
re3

◦
s. In this case,

however, v is disconnected to monitoring nodes when r and
s (r and s cannot be both monitoring nodes) are deleted,
contradicting Lemma II.3. Now we change the location of
Pm∗

2
. If no Pm∗

1
and Pm∗

2
end at re3s, then both Pm∗

1
and

Pm∗
2

(location β⃝ in Fig. 5-c) end at
◦
re1vw

◦
s. In this case, Cxy

2

can be reselected, i.e., Cxy
2 = xre3sy+xy with Pxy

2 = m∗
2o4r

and Pxy
1 = m∗

1o3o2o1v. Thus, xy with Pxy
1 ∩Pxy

2 = ∅, a Type
1 identifiable link (Section IV-B1 of [1]), is not a border-link,
contradicting the assumption of xy being a border-link. This
conclusion also holds when y = w (or x = v). Thus, Cvw

1

cannot have another border-link of Class 1.
2) Let vw be a border-link of Class 2. For vw, suppose all

cycles must traverse r, then G consists of component D1 D2

and link vw (see Fig. 5-d). In addition, each of D1 and D2 has
a monitoring node in it; otherwise, D1 (D2) is separated from
monitoring nodes when r and v (w) are deleted, contradicting
Lemma II.3.

(i). Suppose xy ∈ L(D2) (see Fig. 5-e) is a Class 2 border-
link on the same face C1, all Cxy

2 must traverse a node, say s,

5



Technical Report, Dept. of EEE, Imperial College, London, UK, May, 2012.

Fig. 6. Border-links and monitoring nodes do not in the same face.

on C1. If s is on
◦
vs

◦
r, D1 is further split into two components

(D′
1 and D′′

1 ), contradicting the claim that C1 and Cxy
2 cannot

have two common nodes. Thus, s cannot be on
◦
vs

◦
r. If s = r or

s = v or s = w, then path o1e1y is required. Since vw is Class
2 border-link, o1e1y must traverse r as well, resulting Cxy

2 −xy
containing a cycle, contradicting the basic requirement in [1].
To avoid employing cycles, Cxy

2 must be in D2, in which case
nodes, say s (see Fig. 5-d) with s ∈ V (C1∩D1), on C1−v−w
has a connection to m1 without intersecting Cxy

2 . When s ∈
V (

◦
rxy

◦
w) (s ̸= x, s ̸= y) or x = r or y = w or xy ∈ L(D1),

the same conclusion can be made. Thus, xy cannot be a Class
2 border-link.

(ii). Suppose xy ∈ L(D2) (see Fig. 5-f) is a Class 1 border-
link on the same face C1, we have r = x or r = y, since C1
and Cxy

2 cannot have common nodes, apart from x and y. If
r = x, there should be path re1y and re1y cannot have any
links outside D1 and D2; therefore, re1y ⊂ D2. In this case,
there is a path P(m∗

1, v) (r /∈ V (P(m∗
1, v)). If r must be on

P(m∗
1, v), then v is disconnected to monitoring nodes when r

and w are deleted.) connecting m∗
1 and v without intersecting

re1y, contradicting the assumption that xy is a Class 1 border-
link. The same conclusion can be obtained when r = y. Thus,
xy cannot be a Class 1 border-link.

Therefore, a face with a border-link cannot have another
border-link. �

F. Proof of Proposition II.5-(b)

If vw belongs to Class 1, then all paths connecting nodes on
C1−v−w and monitoring nodes must intersect C2. Therefore,
m1 and m2 cannot be on C1. If vw belongs to Class 2 and
all paths (besides direct link vw) connecting v and w must
traverse a monitoring node, say m1, then it means r = m1

in Fig. 5-d. Thus, m2 is in either D1 or D2 (each component
at least has two links; otherwise, the single link becomes a
bridge when vw is deleted). Suppose m2 is in D1, then D2

is separated from monitoring nodes when r (r = m1) and
v are deleted, contradicting Lemma II.3. Then obviously, it
is impossible that C1 must traverse both m1 and m2. Now
suppose either m1 or m2 must be on C1. Without loss of
generality, let m1 ∈ V (D2) be on C1 (see Fig. 6). If m2 is
at location α⃝, then D1 is separated from monitoring nodes
when r and w are deleted. If m2 is at location β⃝, then C1 =
ve2re4w + vw is reselected. If m2 is at location γ⃝, then
C1 = ve1re4w+vw is reselected. Therefore, for every border-
link vw ∈ L(H), it can discover a face without traversing m1

and m2. �

G. Proof of Proposition II.5-(c)

P(m∗
1, v) and P(m∗

2, w) exist, since G is a 2-vertex-
connected graph. If P(m∗

1, v) ∩ P(m∗
2, w) ̸= ∅, let r ∈

V (P(m∗
1, v)∩P(m∗

2, w)), then v and w cannot connect to m∗
1

or m∗
2 when r is deleted, contradicting Lemma II.3. Based on

Proposition II.5-(b), m∗
1,m

∗
2 /∈ V (C1). If P(m∗

1, v)
◦
v must have

a common node, say s, with C1, then m∗
1 cannot connect to v

when s is deleted. Thus, P(m∗
1, v) with P(m∗

1, v)
◦
v ∩ C1 = ∅

can be found. Analogously, P(m∗
2, w) with P(m∗

2, w)
◦
w∩C1 =

∅ can also be found. �
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