Additive Link Metrics Identification: Proof of Selected Lemmas and Propositions

Liang Ma[†], Ting He[‡], Kin K. Leung[†], Ananthram Swami[§], and Don Towsley^{*}

[†]Imperial College, London, UK. Email: {1.ma10, kin.leung}@imperial.ac.uk

[‡]IBM T. J. Watson Research Center, Hawthorne, NY, USA. Email: the@us.ibm.com

[§]Army Research Laboratory, Adelphi, MD, USA. Email: ananthram.swami.civ@mail.mil

*University of Massachusetts, Amherst, MA, USA. Email: towsley@cs.umass.edu

I. INTRODUCTION

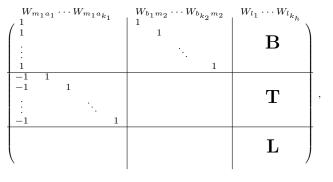
Selected lemmas and propositions in [1] are proved in detail in this report. We first list the lemmas and propositions in Section II and then give the corresponding proofs in Section III. See the original paper [1] for terms and definitions.

II. LEMMAS AND PROPOSITIONS

Let \mathcal{H} denote the interior graph of graph \mathcal{G} , where two monitoring nodes $(m_1 \text{ and } m_2)$ are employed. In this report, Conditions (1) and (2) refer to the two following conditions.

- ① $\mathcal{G}-l$ is 2-edge-connected for each interior link l in \mathcal{H} ;
- (2) $\mathcal{G} + m_1 m_2$ is 3-vertex-connected.

Lemma II.1. When the interior graph \mathcal{H} of \mathcal{G} is connected, the corresponding measurement matrix \mathbf{R} can be linearly transformed to



where the rest entries are zero, **B** is a $k_2 \times k_h$ Boolean matrix¹, **T** is a (-1, 0, 1)-Matrix² with dimensions $(k_1 - 1) \times k_h$, and **L** with k_h columns is a matrix associated with all rows in the restructured measurement matrix **R** involving only $(W_{l_i})_{i=1}^{k_h}$.

Proposition II.2. For graph \mathcal{G} , if all link metrics in the associated interior graph are identifiable through simple path measurements, then $\mathcal{G} + m_1m_2$ is 3-vertex-connected.

Proposition II.3. Using two monitoring nodes, the necessary and sufficient condition for $\mathcal{G} + m_1m_2$ being a 3-vertex-connected graph is when 2 nodes are deleted in \mathcal{G} , the remaining graph is still connected, *or* every connected component each has a monitoring node.

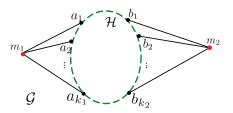


Fig. 1. Reorganized graph \mathcal{G} , where a_i and b_j can be the same node.

Lemma II.4. If graph \mathcal{G} satisfies Conditions (1) and (2), for any link vw in the interior graph of \mathcal{G} , two cycles (\mathcal{C}_1 and \mathcal{C}_2) can be discovered in \mathcal{G} , such that

- (a) C_1 is a face³;
- (b) vw is the only common link between C_1 and C_2 ;
- (c) C_1 and C_2 have *one* common node at most, apart from v and w;
- (d) there exists path \mathcal{P}_1 connecting m_1^* and a node on $\mathcal{C}_1 v w$ and \mathcal{P}_2 connecting m_2^* and a node on $\mathcal{C}_2 v w$;
- (e) $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset;$
- (f) $L(\mathcal{P}_1) \cap L(\mathcal{C}_1 v w) = \emptyset, \ L(\mathcal{P}_2) \cap L(\mathcal{C}_2 v w) = \emptyset;$
- (g) $v, w \notin V(\mathcal{P}_1)$ and $v, w \notin V(\mathcal{P}_2)$.

Proposition II.5. If graph \mathcal{G} satisfies Conditions (1) and (2), then

- (a) for any face in graph G, there is at most one border-link in this face;
- (b) for any border-link vw in the interior graph of G, it can discover a face without traversing m₁ and m₂;
- (c) for every border-link vw on face C_1 with $L(C_1) \subseteq L(\mathcal{H})$, there exist paths $\mathcal{P}(m_1, v)$ and $\mathcal{P}(m_2, w)$ with $\mathcal{P}(m_1, v) \cap \mathcal{P}(m_2, w) = \emptyset$, $\mathcal{P}(m_1, v) \stackrel{\circ}{v} \cap C_1 = \emptyset$ and $\mathcal{P}(m_2, w) \stackrel{\circ}{w} \cap C_1 = \emptyset$.

III. PROOFS

A. Proof of Lemma II.1

Suppose that the two monitoring nodes m_1 and m_2 give rise to a connected interior graph \mathcal{H} in \mathcal{G} (Fig. 1). Let $(l_i)_{i=1}^{k_h} := L(\mathcal{H})$ be the link set of \mathcal{H} with $k_h := ||\mathcal{H}||$. Consider the measurement matrix $\mathbf{R}_{\mathbf{a}_i}$ $(i \in \{1, \cdots, k_1\})$ corresponding to all possible paths $m_1 \to a_i \to \ldots \to b_j \to m_2$ $(j = 1, \ldots, k_2)$. Then $\mathbf{R}_{\mathbf{a}_i}$ is of the form

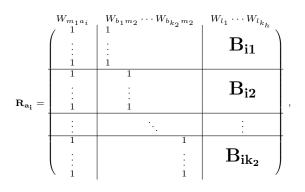
(1)

¹Boolean matrix is a matrix each of whose entries is 0 or 1.

 $^{^{2}(-1, 0, 1)}$ -Matrix is a matrix each of whose entries is -1, 0, or 1.

 $^{^3 \}text{In}$ the sequel, \mathcal{C}_1 means a cycle as well as a face.

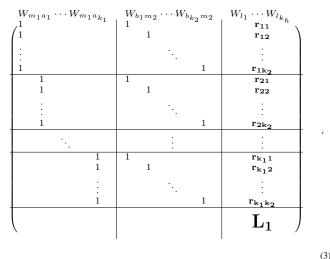
⁴Let $m_1^*, m_2^* \in \{m_1, m_2\}$ with $m_1^* \neq m_2^*$.



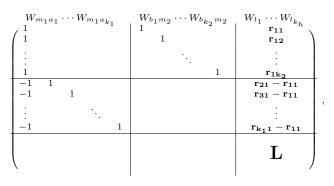
where $\mathbf{B_{ij}}$ $(j = 1, \ldots, k_2)$ with k_h columns is the Boolean matrix corresponding to all simple paths between a_i and b_j in \mathcal{H} (i.e., the (p, q)-th entry indicates whether link l_q in \mathcal{H} appears on the *p*th path between a_i and b_j). Note that at least one such path exists, i.e., $\mathbf{B_{ij}}$ is nonempty, since \mathcal{H} is connected. Among all rows containing $W_{m_1a_i}$ and $W_{b_jm_2}$ in $\mathbf{R_{a_i}}$, if we subtract the first row from the others, then the other rows are only non-zero in entries corresponding to $(W_{l_i})_{i=1}^{k_{i-1}}$. Reorganizing these subtracted rows to the bottom, we transform $\mathbf{R_{a_i}}$ to

$$\mathbf{R}_{\mathbf{a}_{i}}^{\prime} = \begin{pmatrix} W_{m_{1}a_{i}} & W_{b_{1}m_{2}} \cdots W_{b_{k_{2}}m_{2}} & W_{l_{1}} \cdots W_{l_{k_{h}}} \\ 1 & 1 & \mathbf{r}_{i_{1}} \\ \vdots & \ddots & \vdots \\ 1 & 1 & \mathbf{r}_{i_{2}} \\ \vdots & \ddots & \vdots \\ 1 & 1 & \mathbf{r}_{i_{k_{2}}} \\ \end{pmatrix}, \quad (2)$$

where $\mathbf{r_{ij}}$ $(j = 1, ..., k_2)$ is the first row of $\mathbf{B_{ij}}$, and $\mathbf{L_{a_i}}$ is a matrix derived from the subtraction operation. Combining all $\mathbf{R'_{a_i}}$ $(i \in \{1, ..., k_1\})$ in (2), the restructured measurement matrix \mathbf{R} is



where \mathbf{L}_1 is the matrix formed by arranging $\mathbf{L}_{\mathbf{a}_1}, \ldots, \mathbf{L}_{\mathbf{a}_{\mathbf{k}_1}}$ vertically. We apply the following linear transformations to (3): (i) first, subtracting row *i* from row $qk_2 + i$ for each $q = 1, \ldots, k_1 - 1$ and $i = 1, \ldots, k_2$; (ii) then, subtracting row $qk_2 + 1$ from row $qk_2 + i$ for each $q = 1, \ldots, k_1 - 1$ and $i = 2, \ldots, k_2$; (iii) finally, moving all rows containing $r_{ij} - r_{1j} - r_{i1}$ ($i = 2, \cdots, k_1$ and $j = 2, \cdots, k_2$) to the matrix bottom. Ignoring entries whose values are zeros $((W_{m_1a_i})_{i=1}^{k_1}$ and $(W_{b_jm_2})_{i=1}^{k_2}$ are not involved in the rows containing r_{ij} – $r_{1j}-r_{i1}$ $(i = 2, \dots, k_1 \text{ and } j = 2, \dots, k_2)$), (3) is transformed into



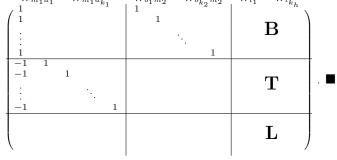
where

$$\mathbf{L} := \begin{pmatrix} w_{l_1} & w_{l_2} \cdots & w_{l_{k_h}} \\ \mathbf{L_1} \\ \mathbf{r}_{22} - \mathbf{r}_{12} - \mathbf{r}_{21} \\ \mathbf{r}_{23} - \mathbf{r}_{13} - \mathbf{r}_{21} \\ \vdots \\ \mathbf{r}_{2\mathbf{k}_2} - \mathbf{r}_{1\mathbf{k}_2} - \mathbf{r}_{21} \\ \mathbf{r}_{32} - \mathbf{r}_{12} - \mathbf{r}_{31} \\ \mathbf{r}_{33} - \mathbf{r}_{13} - \mathbf{r}_{31} \\ \vdots \\ \mathbf{r}_{3\mathbf{k}_2} - \mathbf{r}_{1\mathbf{k}_2} - \mathbf{r}_{31} \\ \vdots \\ \mathbf{r}_{\mathbf{k}_1 2} - \mathbf{r}_{12} - \mathbf{r}_{\mathbf{k}_1 1} \\ \mathbf{r}_{\mathbf{k}_1 3} - \mathbf{r}_{13} - \mathbf{r}_{\mathbf{k}_1 1} \\ \vdots \\ \mathbf{r}_{\mathbf{k}_1 \mathbf{k}_2} - \mathbf{r}_{1\mathbf{k}_2} - \mathbf{r}_{\mathbf{k}_1 \mathbf{1}} \end{pmatrix}$$

Entries in $\mathbf{r_{i1}} - \mathbf{r_{11}}$ are of the value of -1, 0, or 1, since each entry in $\mathbf{r_{ij}}$ is 0 or 1. Therefore, $\mathbf{B} := \begin{pmatrix} \mathbf{r_{11}} \\ \mathbf{r_{12}} \\ \vdots \\ \mathbf{r_{1kr}} \end{pmatrix}$ is

a
$$k_2 \times k_h$$
 Boolean matrix, while $\mathbf{T} := \begin{pmatrix} \mathbf{r}_{21} - \mathbf{r}_{11} \\ \mathbf{r}_{31} - \mathbf{r}_{11} \\ \vdots \\ \mathbf{r}_{k_11} - \mathbf{r}_{11} \end{pmatrix}$ is a

(-1, 0, 1)-Matrix with dimensions $(k_1 - 1) \times k_h$. Consequently, when the interior graph \mathcal{H} of \mathcal{G} is connected, the corresponding measurement matrix \mathbf{R} can be linearly transformed to $W_{m_1a_1} \cdots W_{m_1a_{k_1}} \cdots W_{b_1m_2} \cdots W_{b_k 2^{m_2}} \cdots W_{l_k 1} \cdots W_{l_{k_h}}$



(4)

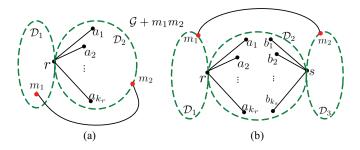


Fig. 2. $\mathcal{G} + m_1 m_2$ is 3-vertex-connected.

B. Proof of Proposition II.2

Suppose interior graph \mathcal{H} of \mathcal{G} is identifiable and $\mathcal{G}+m_1m_2$ is not 3-vertex-connected, then the *connectivity*⁵ of $\mathcal{G}+m_1m_2$ is 1 or 2.

1) Consider the case that the connectivity of $\mathcal{G} + m_1m_2$ is 1 and node $r \in V(\mathcal{G} + m_1m_2)$ is deleted. According to the assumption of \mathcal{H} being a connected graph, \mathcal{G} must be 1-vertex-connected. First, if r is a monitoring node, the resulting $\mathcal{G} + m_1m_2 - r = \mathcal{G} - r$ is not disconnected since \mathcal{H} is connected. Second, we assume \mathcal{G} is separated into two components, denoted by \mathcal{D}_1 and \mathcal{D}_2 , after deleting r $(r \in V(\mathcal{H}))$. If each of \mathcal{D}_1 and \mathcal{D}_2 contains a monitoring node, then link m_1m_2 connects \mathcal{D}_1 and \mathcal{D}_2 again. If one of \mathcal{D}_1 and \mathcal{D}_2 , say \mathcal{D}_1 , does not have monitoring nodes in it, then all $m_1 \to m_2$ paths employing links in \mathcal{D}_1 must both enter and leave \mathcal{D}_1 at r, thus forming a cycle in this path construction. Therefore, the connectivity of graph $\mathcal{G} + m_1m_2$ must be greater than 1.

2) Now we assume the connectivity of $\mathcal{G}+m_1m_2$ is 2. First, Consider deleting one monitoring node and a non-monitoring node (displayed in Fig. 2-a). If deleting $r \ (r \in V(\mathcal{H}))$ and m_2 results in \mathcal{D}_2 being separated, then \mathcal{D}_1 and \mathcal{D}_2 only have one common node, denoted by r. In this case, m_1 must be in \mathcal{D}_1 ; otherwise, a cycle is formed when using links in \mathcal{D}_1 to construct $m_1 \rightarrow m_2$ paths. However, even if all link metrics in \mathcal{D}_1 have been identified, $(W_{ra_i})_{i=1}^{k_r}$ $(a_i \neq m_2 \text{ and } k_r \geq 2,$ since \mathcal{G} is proved to 2-edge-connected in [1] when its interior graph is identifiable) are uncomputable, according to Corollary III.2 in [1]. This contradicts the claim that \mathcal{H} is identifiable. Second, if m_1 and m_2 are deleted, the remaining graph is \mathcal{H} , which is connected, according to the assumption that the interior graph of \mathcal{G} is connected. Third, now we consider deleting r and s $(r, s \in V(\mathcal{H}), r \neq s \neq m_1 \neq m_2)$. If \mathcal{G} is separated and each component has a monitoring node, then m_1m_2 can connect these two components again. If the separated component does not have monitoring nodes in it (such as \mathcal{D}_2 in Fig. 2-b), then according to Corollary III.2 in [1], $(W_{ra_i})_{i=1}^{k_r}$ and $(W_{sb_i})_{i=1}^{k_s}$ are uncomputable even if all link metrics in \mathcal{D}_1 and \mathcal{D}_3 have been identified. This also contradicts the claim that \mathcal{H} is identifiable.

Thus, the connectivity of $\mathcal{G} + m_1 m_2$ is greater than 2.

Therefore, $\mathcal{G} + m_1 m_2$ is 3-vertex-connected when its interior graph is identifiable.

C. Proof of Proposition II.3

Necessary part.

1) If \mathcal{G} is separated by deleting 2 non-monitoring nodes, then each component must have a monitoring node; otherwise, $\mathcal{G} + m_1 m_2$ is 2-vertex-connected.

2) If one of these deleted 2 nodes is a monitoring node, say m_1 , then m_1m_2 is deleted as well. Deleting any other node except m_2 will not result in the separation of G. If separated, $\mathcal{G} + m_1m_2$ is 2-vertex-connected.

3) If m_1 and m_2 are deleted, we can obtain sub-graph \mathcal{H} , which is connected according to the assumption.

Sufficient part.

1) When 2 nodes are deleted in \mathcal{G} , if it remains connected, then \mathcal{G} is 3-vertex-connected, so is $\mathcal{G} + m_1 m_2$.

2) If \mathcal{G} is separated after deleting two nodes and each separated component has a monitoring node, then these components are connected again by link m_1m_2 . Therefore, $\mathcal{G}+m_1m_2$ is 3-vertex-connected.

D. Proof of Lemma II.4

1) For $vw \in L(\mathcal{H})$, an H-path⁶ \mathcal{P}_1 from v to w can be discovered for a 2-vertex-connected graph, according to Proposition 3.1.3 [2] (\mathcal{G} is a 2-vertex-connected graph, since $\mathcal{G} + m_1 m_2$ is 3-vertex-connected), then a cycle $\mathcal{C}'_1 = \mathcal{P}_1 + vw$ is formed. If $xy \in L(\mathcal{G})$ with $x, y \in V(\mathcal{C}'_1)$ and $xy \notin L(\mathcal{C}'_1)$, then use xy to replace $\mathcal{P}_{\mathcal{C}'_1}(x,y)$ recursively, i.e., \mathcal{C}'_1 = $\mathcal{C}'_1 \setminus \overset{\circ}{\mathcal{P}}_{\mathcal{C}'_1}(x, y) + xy, \text{ until no such } xy \text{ exists, where } \mathcal{P}_{\mathcal{C}'_1}(x, y) \\ \text{ is the path from } x \text{ to } y \text{ in } \mathcal{C}'_1 \text{ with } vw \notin L(\mathcal{P}_{\mathcal{C}'_1}(x, y)).$ Finally, $C_1'' = C_1'$ is an induced cycle. If C_1'' is not a face, then there exists separated component \mathcal{D} ($\mathcal{D} \cap \{m_1, m_2\} = \emptyset$, when \mathcal{C}_1'' is deleted), in which all paths from $V(\mathcal{D})$ to m_1 or m_2 must have three or more (since $\mathcal{G} + m_1 m_2$ is 3-vertexconnected) common nodes with C_1'' . For any $v_1 \in V(\mathcal{D})$, degree⁷ $d(v_1) \geq 2$, since \mathcal{G} satisfies Condition (1). Furthermore, there must be an inner path $\mathcal{P}_{in}(x_1, x_2)$ incident with x_1 and x_2 $(x_1, x_2 \in V(\mathcal{C}''_1))$ and an interior node $v_2 \in V(\mathcal{D})$ with $v_2 \in V(\mathcal{P}_{in}(x_1, x_2))$. Using $\mathcal{P}_{in}(x_1, x_2)$ to replace $\mathcal{P}_{\mathcal{C}_{1}^{\prime\prime}}(x_{1}, x_{2})$ ($vw \notin L(\mathcal{P}_{\mathcal{C}_{1}^{\prime\prime}}(x_{1}, x_{2}))$) in $\mathcal{C}_{1}^{\prime\prime}$ recursively, i.e., $\mathcal{C}_1'' = \mathcal{C}_1'' \setminus \check{\mathcal{P}}_{\mathcal{C}_1''}(x_1, x_2) \bigcup \mathcal{P}_{in}(x_1, x_2)$, until no such $\mathcal{P}_{in}(x_1, x_2)$ exists. As a result, a face $\mathcal{C}_1 = \mathcal{C}_1''$ can be discovered in \mathcal{G} .

2) Suppose C_2 satisfying (b) in Lemma II.4 cannot be discovered, then C_2 must share some common links with $C_1 \setminus \{vw\}$. Let rs be one of these common links, then if vw is deleted, all possible paths connecting v and w must traverse link rs. In this case, rs becomes a bridge, contradicting Condition (1).

3) Suppose there are always two common nodes no matter what strategy is used to select the two cycles. Let $r,s \in$

 ${}^6\mathcal{P} \left(||\mathcal{P}|| \geq 1 \right)$ is an H-path of graph $\mathcal H$ if $\mathcal P$ meets $\mathcal H$ exactly in its end nodes.

⁵The greatest integer k such that \mathcal{G} is k-vertex-connected is the *connectivity* of \mathcal{G} .

⁷The *degree* of node v is the number of links incident with v, denoted by d(v).

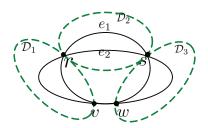


Fig. 3. Two cycles with two common nodes.

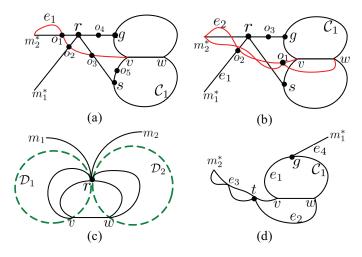


Fig. 4. Construction of two cycles.

 $V(\mathcal{C}_1) \cap V(\mathcal{C}_2) \setminus \{v, m\}$, the two paths connecting r and s in \mathcal{D}_2 are $r\underline{e_1}s$ and $r\underline{e_2}s$ (shown in Fig. 3). It has been proved that $r\underline{e_1}s$ and $r\underline{e_2}s$ cannot have common links, thus $\mathring{r}\underline{e_1}\mathring{s} \neq \mathring{r}\underline{e_2}\mathring{s}$. If vw is deleted, any $v \to w$ paths must first traverse r and then traverse s. Therefore, \mathcal{G} is composed of three components $(\mathcal{D}_1, \mathcal{D}_2 \text{ and } \mathcal{D}_3)$ and link vw with $V(\mathcal{D}_1 \cap \mathcal{D}_2) = \{r\}, V(\mathcal{D}_2 \cap \mathcal{D}_3) = \{s\}$ and $V(\mathcal{D}_1 \cap \mathcal{D}_3) = \emptyset$. For $\mathcal{D}_2, |V(r\underline{e_1}s \cup r\underline{e_2}s) \setminus \{r, s\}| \ge 1$, since $\mathring{r}\underline{e_1}\mathring{s} \neq \mathring{r}\underline{e_2}\mathring{s}$ and $||\mathcal{C}_1 - vw) \cap (\mathcal{C}_2 - vw)|| = 0$. Similarly, $|\mathcal{D}_1 - r - v| \ge 1$ and $|\mathcal{D}_3 - s - w| \ge 1$. Only two of these three components can have m_1 or m_2 . Thus, the third component without monitoring nodes is separated when the two common nodes with adjacent components are deleted, contradicting Lemma II.3.

4) G is connected; therefore, (d) in Lemma II.4 is true.

5) (i). If all \mathcal{P}_1 $(m_1^* \in V(\mathcal{P}_1))$ must traverse m_2^* , then m_2^* is a cutvertex⁸ in \mathcal{G} , contradicting Lemma II.3.

(ii). Let $C_1 = v\underline{s}w + vw$. For any \mathcal{P}_1 and \mathcal{P}_2 , if they must have a common node, say r (see Fig. 4-a), then r cannot be a cutvertex, because \mathcal{G} is 2-vertex-connected. Therefore, there must be another path employing v or w, say $m_2^* \underline{o_1 \cdots o_5 vg}$ $(r \notin V(m_2^* \underline{o_1} \cdots \underline{o_5 va}))$, to connect m_2^* and g. $m_2^* \underline{o_1} \cdots \underline{o_5 vg}$ might have common nodes (o_1, \cdots, o_5) with other paths. However, if o_4 or o_5 is the connect the two cycles. If $m_2^* \underline{o_1 \cdots o_5 va}$ must traverse $(o_i)_{i=1}^3$, then m_2^* cannot connect to the two cycles when r and o_i are deleted, contradicting Lemma II.3. Thus, an $m_2^* \underline{o_1} v$ which does not have unavoidable common nodes o_1 , o_2 and o_3 can be constructed. Therefore, C_2 can be reselected, i.e., $C_2 = v \underline{o_1 r o_4 g} w + v w$ with $\mathcal{P}_2 = m_2^* \underline{e_1} o_1$ and $\mathcal{P}_1 = m_1^* \underline{r} s$.

(iii). Let $C_1 = v\underline{g}w + vw$ (see Fig. 4-b). Suppose m_2^* can make use of both v and w, say $m_2^*\underline{o_1}v$ and $m_2^*\underline{o_1}w$, to connect nodes on $\mathring{v}\underline{g}\mathring{w}$. We have $r, o_3 \notin V(m_2^*\underline{o_1}v \cup m_2^*\underline{o_1}w)$, since \mathcal{P}_1 and \mathcal{P}_2 must traverse r to connect $\mathring{v}\underline{g}\mathring{w}$ when v and w are not used. In addition, it is impossible that $m_2^*\underline{o_1}v$ and $m_2^*\underline{o_1}w$ must have an unavoidable common node, say o_2 , with $m_1^*\underline{e_1}r$; otherwise, m_1^* cannot connect to g when o_2 and r are deleted. Thus, $m_2^*\underline{o_1}v$ and $m_2^*\underline{o_1}w$ which do not have common node o_2 can be discovered. Then we reselect C_2 , i.e., $C_2 = v\underline{o_1}w + vw$ with $\mathcal{P}_2 = m_2^*\underline{e_2}o_1$ and $\mathcal{P}_1 = m_1^*\underline{e_1}ro_3g$.

(iv). According to (ii) and (iii), \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{C}_2 can be discovered to make sure \mathcal{P}_1 and \mathcal{P}_2 do not have common node r. However, if g and s in Fig. 4-b are the same node (see Fig. 4-c), we can also prove it is impossible. In this case, $V(\mathcal{D}_1) \cap V(\mathcal{D}_2) = \{r\}$ with $m_1, m_2 \notin V(\mathcal{D}_1)$ and $m_1, m_2 \notin V(\mathcal{D}_2)$. For the two cycles, we have $|\mathcal{D}_1| \ge 1$ and $|\mathcal{D}_2| \ge 1$ (since vw is the only common link between \mathcal{C}_1 and \mathcal{C}_2); therefore, nodes in $\mathcal{D}_1(\mathcal{D}_2)$ without monitoring nodes are separated when r and v (w) are deleted, contradicting Lemma II.3.

(v). Therefore, \mathcal{P}_1 and \mathcal{P}_2 without common nodes can be discovered. Accordingly, it is obvious that \mathcal{P}_1 and \mathcal{P}_2 do not have common links, since a common link means two common nodes (end nodes of this link) between \mathcal{P}_1 and \mathcal{P}_2 . Consequently, \mathcal{P}_1 and \mathcal{P}_2 with $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$ can be discovered.

6) If $L(\mathcal{P}) \cap L(\mathcal{C} - v - w) \neq \emptyset$, simply use the first common node as the end node of \mathcal{P} .

7) We first consider \mathcal{P}_1 . In $\mathcal{G} - m_2^*$, if \mathcal{P}_1 must traverse an end node of vw, say v, to connect m_1^* and a node on $C_1 - v - w$, then nodes on $C_1 - v - w$ are disconnected to m_1^* when v and m_2^* are deleted, contradicting Lemma II.3. Thus, it is impossible that \mathcal{P}_1 must traverse an end node of vw. However, if \mathcal{P}_1 cannot avoid one of v and w to connect m_1^* and $\mathcal{C}_1 - v - w$, then two paths can be constructed. Let $ve_1gw + vw$ be C_1 (see Fig. 4-d). The constructed two paths, connecting m_2^* and g, are $m_2^*e_3tve_1g$ and $m_2^*e_3te_2wg$ with $m_2^* e_3 tv \cap \mathring{v} e_1 g \mathring{w} = \emptyset$ and $m_2^* e_3 te_2 w \cap \mathring{v} e_1 g \mathring{w} = \emptyset$ (If they have intersections, \mathcal{P}_1 does not have to traverse v and w to connect to a node on $\check{v}e_1 g\check{w}$). Thus, according to Lemma II.3, g must have a connection to m_1^* , $m_1^*e_4g$, with $m_1^*e_4g \cap m_2^*e_3t = \emptyset$ (if $m_1^*e_4g \cap m_2^*e_3t \neq \emptyset$, then \mathcal{P}_1 does not have to traverse v and w to connect to a node on $\tilde{v}e_1g\tilde{w}$). Therefore, C_2 can be chosen as $\mathcal{C}_2 = v\underline{t}\underline{e_2}w + vw$ with $\mathcal{P}_2 = m_2^*\underline{e_3}t$ and $\mathcal{P}_1 = m_1^*\underline{e_4}g$. These two cycles and paths enable vw to be a non-border-link identifiable via the method proposed in Section IV-B1 of [1]. Therefore, non-border-link vw is capable of constructing two cycles and \mathcal{P}_1 , \mathcal{P}_2 with $v, w \notin V(\mathcal{P}_1)$ and $v, w \notin V(\mathcal{P}_2)$. When considering \mathcal{P}_2 , the same conclusion can be obtained.

 $^{^{8}}$ A vertex which separates two other vertices in the same graph is a *cutvertex*.

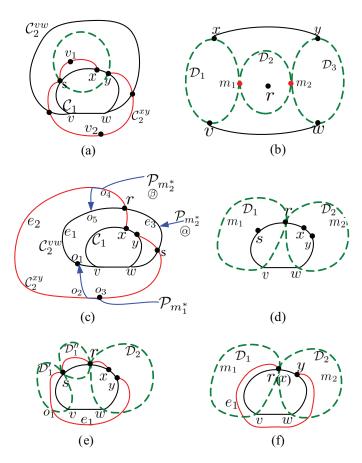


Fig. 5. Border link vw and xy cannot be in the same face.

E. Proof of Proposition II.5-(a)

Using the method to calculate Type 1 identifiable link (Section IV-B1 of [1]), all non-border-links in \mathcal{H} can be identified. While for border-links, they can be categorized into two classes: (i) Class 1. $V(\mathcal{C}_1 \cap \mathcal{C}_2) = \{v, w\}$ and all \mathcal{P}_1 must have a common node with $\mathcal{C}_2 - v - w$, and (ii) Class 2. $V(\mathcal{C}_1 \cap \mathcal{C}_2) = \{v, w, r\}$, where r is another unavoidable common node.

Let vw be the border-link in \mathcal{H} and $vw \in L(\mathcal{C}_1)$. All other links on \mathcal{C}_1 can use the same face, because \mathcal{C}'_2 of other links cannot be disconnected to monitoring nodes when \mathcal{C}_1 is deleted.

1) Let vw be a border-link of Class 1.

(i). In Fig. 5-a, suppose xy is border-link of Class 2 on C_1 , then there is a common node s (there is at most one common node apart from x and y, proved in Lemma II.4) on C_1 and C_2^{xy} . Since C_1 is an induced graph, there must be a node, say v_1 , on $s\underline{v_1}x$ and a node, say v_2 , on $s\underline{v_2}y$. For all paths connecting v_1 and monitoring nodes, they must traverse s or y. Therefore, v_1 cannot have other connections to C_2 via bypassing s and y. Meanwhile, if v_1 has a path to one monitoring node in $\mathcal{G} \setminus C_2^{vw}$, then x has a path to the same monitoring node in $\mathcal{G} \setminus C_2^{vw}$ as well, contradicting the assumption that vw is a Class 1 borderlink. Thus, when s and y are deleted, v_1 is separated from m_1 and m_2 , contradicting Lemma II.3. This conclusion also holds when xy and s have common nodes with vw. As the position of s alters, however, the separated node might change. For instance, when s = w, v_2 is separated from m_1 and m_2 when x and w are deleted. Therefore, xy cannot be a border-link of Class 2 on face C_1 .

(ii). Suppose there is another border-link xy of Class 1 and both C_2^{vw} and C_2^{xy} must traverse m_1 and m_2 . Then graph \mathcal{G} can be reorganized as Fig. 5-b, which is composed of component \mathcal{D}_1 , \mathcal{D}_2 , \mathcal{D}_3 and link vw, xy. There is at least one node, say r, in \mathcal{D}_2 , because we have assumed direct link m_1m_2 does not exist in \mathcal{G} . Thus, the graph is disconnected when m_1 and m_2 are deleted, contradicting Lemma II.3. Therefore, it is impossible that C_2^{vw} and C_2^{xy} must traverse both m_1 and m_2 .

(iii). Since vw is a Class 1 border-link, all possible \mathcal{P}_1 must intersect \mathcal{C}_2^{vw} . Thus, there exist path $\mathcal{P}_{m_1^*} := \mathcal{P}(m_1^*, v_1)$ and $\mathcal{P}_{m_2^*} := \mathcal{P}(m_2^*, v_2) \text{ with } v_1, v_2 \in V(\mathcal{C}_2^{vw}) \text{ and } \mathcal{P}_{m_1^*} \cap \mathcal{P}_{m_2^*} = \emptyset$ (If $\mathcal{P}_{m_1^*} \cap \mathcal{P}_{m_2^*} \neq \emptyset$, the common node is a cutvertex). Suppose there is another border-link xy of Class 1 on C_1 (see Fig. 5-c). Then the associated C_2^{xy} ($V(C_2^{xy} \cap C_1) = \{x, y\}$) must have two intersections (since both vw and xy are Class 1 borderlink) with \mathcal{C}_2^{vw} , say r and s (we have proved that r and s cannot be both monitoring nodes in the previous step). Since xy is another Class 1 border-link, if $\mathcal{P}_{m_1^*}$ connects to $\check{r}\underline{e_1vw}\check{s}$, it must have intersections with $\mathring{r}e_2\mathring{s}$, say the intersection is o_3 (the number of intersections maybe greater than one, say both o_2 and o_3). In addition, we have $o_3 \neq r \neq s$, since if o_3 overlaps with r or s, then it means v cannot connect to monitoring nodes when r and s are deleted, which is impossible. In Fig. 5-c, let o_1 be another node, which can be equal to v, on \mathcal{C}_2^{vw} . Now we consider the locations of $\mathcal{P}_{m_1^*}$ and $\mathcal{P}_{m_2^*}$. If $\mathcal{P}_{m_2^*}$ ends at $r\underline{e_3}s$ (location (a) in Fig. 5-c), then $\mathcal{P}_{m_1^*}$ cannot end at $\ddot{r}e_1vw\ddot{s}$, because xy can select xre_3sy+xy as $\dot{\mathcal{C}}_2^{xy}$, and then path $\overline{m_1^*}o_3o_2o_1v$ connecting m_1^* and v does not intersect with the newly selected \mathcal{C}_2^{xy} , resulting xy to be a non-border-link, contradicting the assumption that xy is a border-link. Therefore, $\mathcal{P}_{m_1^*}$ also ends at $\overset{\circ}{r}\underline{e_3}\overset{\circ}{s}$. In this case, however, v is disconnected to monitoring nodes when r and s (r and s cannot be both monitoring nodes) are deleted, contradicting Lemma II.3. Now we change the location of $\mathcal{P}_{m_2^*}$. If no $\mathcal{P}_{m_1^*}$ and $\mathcal{P}_{m_2^*}$ end at $r\underline{e_3}s$, then both $\mathcal{P}_{m_1^*}$ and $\mathcal{P}_{m_2^*}$ (location \mathfrak{B} in Fig. 5-c) end at $\overline{\hat{r}_{e_1} v w} \overset{\circ}{s}$. In this case, \mathcal{C}_2^{xy} can be reselected, i.e., $\mathcal{C}_2^{xy} = x \underline{r} \underline{e}_3 \underline{s} \underline{y} + x \underline{y}$ with $\mathcal{P}_2^{xy} = m_2^* \underline{o}_4 \underline{r}$ and $\mathcal{P}_1^{xy} = m_1^* \underline{o}_3 \underline{o}_2 \underline{o}_1 v$. Thus, $x \underline{y}$ with $\mathcal{P}_1^{xy} \cap \mathcal{P}_2^{xy} = \emptyset$, a Type 1 identifiable link (Section IV-B1 of [1]), is not a border-link, contradicting the assumption of xy being a border-link. This conclusion also holds when y = w (or x = v). Thus, \mathcal{C}_1^{vw} cannot have another border-link of Class 1.

2) Let vw be a border-link of Class 2. For vw, suppose all cycles must traverse r, then \mathcal{G} consists of component $\mathcal{D}_1 \mathcal{D}_2$ and link vw (see Fig. 5-d). In addition, each of \mathcal{D}_1 and \mathcal{D}_2 has a monitoring node in it; otherwise, $\mathcal{D}_1 (\mathcal{D}_2)$ is separated from monitoring nodes when r and v (w) are deleted, contradicting Lemma II.3.

(i). Suppose $xy \in L(\mathcal{D}_2)$ (see Fig. 5-e) is a Class 2 borderlink on the same face \mathcal{C}_1 , all \mathcal{C}_2^{xy} must traverse a node, say s,

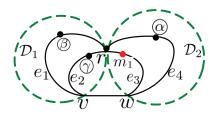


Fig. 6. Border-links and monitoring nodes do not in the same face.

on C_1 . If s is on $\mathring{v}\underline{s}\mathring{r}$, \mathcal{D}_1 is further split into two components $(\mathcal{D}'_1 \text{ and } \mathcal{D}''_1)$, contradicting the claim that C_1 and C_2^{xy} cannot have two common nodes. Thus, s cannot be on $\mathring{v}\underline{s}\mathring{r}$. If s = r or s = v or s = w, then path $o_1\underline{e_1}y$ is required. Since vw is Class 2 border-link, $o_1\underline{e_1}y$ must traverse r as well, resulting $C_2^{xy} - xy$ containing a cycle, contradicting the basic requirement in [1]. To avoid employing cycles, C_2^{xy} must be in \mathcal{D}_2 , in which case nodes, say s (see Fig. 5-d) with $s \in V(C_1 \cap D_1)$, on $C_1 - v - w$ has a connection to m_1 without intersecting C_2^{xy} . When $s \in V(\mathring{r}\underline{xy}\mathring{w})$ ($s \neq x, s \neq y$) or x = r or y = w or $xy \in L(\mathcal{D}_1)$, the same conclusion can be made. Thus, xy cannot be a Class 2 border-link.

(ii). Suppose $xy \in L(\mathcal{D}_2)$ (see Fig. 5-f) is a Class 1 borderlink on the same face \mathcal{C}_1 , we have r = x or r = y, since \mathcal{C}_1 and \mathcal{C}_2^{xy} cannot have common nodes, apart from x and y. If r = x, there should be path $r\underline{e_1}y$ and $r\underline{e_1}y$ cannot have any links outside \mathcal{D}_1 and \mathcal{D}_2 ; therefore, $r\underline{e_1}y \subset \mathcal{D}_2$. In this case, there is a path $\mathcal{P}(m_1^*, v)$ ($r \notin V(\mathcal{P}(m_1^*, v))$). If r must be on $\mathcal{P}(m_1^*, v)$, then v is disconnected to monitoring nodes when rand w are deleted.) connecting m_1^* and v without intersecting $r\underline{e_1}y$, contradicting the assumption that xy is a Class 1 borderlink. The same conclusion can be obtained when r = y. Thus, xy cannot be a Class 1 border-link.

Therefore, a face with a border-link cannot have another border-link.

F. Proof of Proposition II.5-(b)

If vw belongs to Class 1, then all paths connecting nodes on $C_1 - v - w$ and monitoring nodes must intersect C_2 . Therefore, m_1 and m_2 cannot be on \mathcal{C}_1 . If vw belongs to Class 2 and all paths (besides direct link vw) connecting v and w must traverse a monitoring node, say m_1 , then it means $r = m_1$ in Fig. 5-d. Thus, m_2 is in either \mathcal{D}_1 or \mathcal{D}_2 (each component at least has two links; otherwise, the single link becomes a bridge when vw is deleted). Suppose m_2 is in \mathcal{D}_1 , then \mathcal{D}_2 is separated from monitoring nodes when r ($r = m_1$) and v are deleted, contradicting Lemma II.3. Then obviously, it is impossible that C_1 must traverse both m_1 and m_2 . Now suppose either m_1 or m_2 must be on C_1 . Without loss of generality, let $m_1 \in V(\mathcal{D}_2)$ be on \mathcal{C}_1 (see Fig. 6). If m_2 is at location $\hat{\omega}$, then \mathcal{D}_1 is separated from monitoring nodes when r and w are deleted. If m_2 is at location β , then $C_1 =$ $ve_2re_4w + vw$ is reselected. If m_2 is at location \hat{Q} , then $C_1 = ve_1 re_4 w + vw$ is reselected. Therefore, for every borderlink $vw \in L(\mathcal{H})$, it can discover a face without traversing m_1 and m_2 .

G. Proof of Proposition II.5-(c)

 $\mathcal{P}(m_1^*, v)$ and $\mathcal{P}(m_2^*, w)$ exist, since \mathcal{G} is a 2-vertexconnected graph. If $\mathcal{P}(m_1^*, v) \cap \mathcal{P}(m_2^*, w) \neq \emptyset$, let $r \in V(\mathcal{P}(m_1^*, v) \cap \mathcal{P}(m_2^*, w))$, then v and w cannot connect to m_1^* or m_2^* when r is deleted, contradicting Lemma II.3. Based on Proposition II.5-(b), $m_1^*, m_2^* \notin V(\mathcal{C}_1)$. If $\mathcal{P}(m_1^*, v) \overset{\circ}{v}$ must have a common node, say s, with \mathcal{C}_1 , then m_1^* cannot connect to vwhen s is deleted. Thus, $\mathcal{P}(m_1^*, v)$ with $\mathcal{P}(m_1^*, v) \overset{\circ}{v} \cap \mathcal{C}_1 = \emptyset$ can be found. Analogously, $\mathcal{P}(m_2^*, w)$ with $\mathcal{P}(m_2^*, w) \overset{\circ}{w} \cap \mathcal{C}_1 = \emptyset$ \emptyset can also be found.

REFERENCES

- L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, "Topological constraints on identifying additive link metrics via end-to-end paths measurements," *submitted to Annual Conference of The International Technology Alliance (ACITA)*, 2012.
- [2] R. Diestel, Graph theory. Springer-Verlag Heidelberg, New York, 2005.