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Abstract—We consider the problem of controlling mobile
data ferries for message delivery among disconnected, scattered
domains in a highly partitioned network. Existing work on
data ferry control mostly focuses on predetermined ferry routes,
assuming full observations at the ferry and no explicit Quality
of Service (QoS) constraints on the resulting communications.
In this paper, we aim at designing a QoS-enabled ferry control
solution, which handles both partial observations and bounded
message delays. To this end, we extend our previous work on
data ferry control with partial observations into a comprehensive
hierarchical framework called Switch-and-Navigate (SAN), which
consists of a global switch policy for determining the best domain
to visit and a local navigation policy per domain for searching
for nodes within individual domains. Under the assumption of
Markovian node mobility, both the global and the local control
problems are formulated as Partially Observable Markov Deci-
sion Processes (POMDPs) to maximize the discounted effective
throughput over all domains. Due to the fact that the optimal so-
lution to POMDP is PSPACE-hard, we develop heuristic policies
and further approximations for efficient computation. Simulation
results show that the proposed policies can significantly improve
the performance over predetermined alternatives.

I. INTRODUCTION

The demanding requirements of mobile ubiquitous com-
munications have promoted the development of Highly Par-
titioned Mobile Ad Hoc Networks (HP-MANET) in which
the network, self-organized without the aid of any established
infrastructures, is partitioned into several permanently discon-
nected autonomous domains due to physical obstacles, limited
radio transmission range, severe environmental conditions, or
simply security reasons. Applications of such networks can be
found in many challenged environments, such as battlefield
operations and disaster relief in large areas. Existing research
on Delay/Disruption-Tolerant Networking (DTN) (e.g., [1])
has focused on intermittently partitioned networks, assuming
the disconnected links will be reconnected or new routes
can be discovered, which makes the solutions inapplicable to
permanently partitioned networks. In these networks, to bridge
communications between disconnected domains, designated
communication nodes called data ferries have been proposed
to serve as a carrier to deliver messages from one domain to
another. Programmed to move in a predetermined or dynamic
pattern, data ferries are capable of self-navigating within
and between domains to collect and deliver messages upon
contacting regular nodes. Therefore, proper mobility control is

Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

Start 

Point

D1

D2

D3D4

d14
d13

d21

d43

d32

contact occurs in a domain

switch from one domain to another

local navigation

obstacle

Fig. 1. Example of Switch-and-Navigate: It follows a Switch-Search-Load-
Carry-and-Switch cycle

needed for data ferries to operate efficiently. A major challenge
in applying data ferries to military networks is that military
units exhibit high mobility, making it difficult to maintain
accurate node information at the data ferry. Moreover, unlike
traditional DTN, messages in military operations usually have
a finite lifetime, which must be considered in data ferry
control. In this paper, we aim to address these challenges by
designing control policies under finite delay constraints, with
the goal of optimizing the effective throughput in the network.

A. Related Work
Most existing work on data ferry control have concentrated

on the stationary or fully observable scenarios, where non-
ferry nodes are either stationary or always report their po-
sitions when moving. Focusing on the case of intra-domain
ferry control, algorithms and prototypes for mobile elements
scheduling were proposed in [2, 3]. Solutions in [4, 5] utilized
a mobile node to move randomly within a stationary sparse
network to deliver data opportunistically. Without requiring
global knowledge, authors of [6, 7] took advantage of non-
randomness of node movements to design proactive control
policies. Their solutions, however, require long-range radio
communications and the ability to change (non-ferry) node
trajectories, which are not feasible in many applications. The
authors of [8, 9] extended the Traveling Salesman Problem
(TSP) to reduce the delivery delay, but ignored the fact that
buffers in mobile nodes have a diverse collection of mes-
sages with non-identical residual lifetimes. A comprehensive
framework for dynamic ferry control was introduced in [10];
however, it assumed unit traveling time between any two
domains and unbounded message delays.

B. Summary of Contributions
In this paper, we address the problem of ferry mobility

control under partial observations and finite delay constraints.
Assuming Markovian node mobility in each domain, we
borrow the control framework of Partially Observable Markov



Decision Process (POMDP) [11] used in [10] and extend it to a
2-tier hierarchical policy, called Switch-and-Navigate (SAN),
with each layer modeled as a POMDP problem. As illustrated
in Fig. 1, a ferry controlled by SAN will search for the gateway
in the current domain according to the “Navigate” policy until
contact (the ferry and the gateway are in the same cell), after
which the ferry will exchange messages with the gateway and
then switch to another domain following the “Switch” policy.
In summary, our contributions are:

1) Extended control framework: Compared with [10], our
control framework is enriched with two extensions that sub-
stantially improve its practical value: finite message lifetime
and general inter-domain traveling delays. The first induces a
finite life cycle per message, decomposed into waiting time (at
source domain) and carrying time (at data ferry). Accordingly,
the controller state space is extended to include a (source-
domain) gateway buffer state per domain and a ferry buffer
state to keep track of the residual lifetimes of pending mes-
sages. The second relaxes the unit traveling delay assumption
in [10] to a general inter-domain distance (measured by trav-
eling time) matrix, thereby better modeling ferry operations in
the scenario of a large field and scattered domains.

2) Hierarchical control policies: Under the framework of
SAN, the solution in [10] is borrowed to provide efficient local
control (navigate) with only partial observation of the domain.
For global control (switch), we develop myopic and two-step
policies based on ferry and gateway buffer states, inter-domain
distances, and local control policies. Due to the extended con-
troller space, even the two-step policy can be too complicated
to compute, and thus we also propose a set of approximations
with various performance-complexity tradeoffs.

3) Performance evaluation: Our solution is compared with
the state-of-art solution of optimized predetermined control.
Through extensive simulations, we show that the proposed
two-step policy and its approximations outperform the opti-
mized predetermined policy in terms of discounted effective
throughput and message loss ratio.

The rest of the paper is organized as follows: Section
II formulates the problem. Section III reviews the basis of
POMDP, followed by the local and the global control policies
in Section IV and V. The optimized predetermined control
policy is given in Section VI, after which the simulation results
are presented in Section VII. Section VIII concludes the paper.

II. PROBLEM FORMULATION

A. Network Model
Suppose there are d̂ disjoint domains and only one ferry

in the network. Let D be the set of domain IDs, i.e.,
D = {1, ..., d̂} with Domain i denoted by Di.

Model of a Single Domain: In each domain, based on the
task requirements, the node movement is assumed to follow a
Markov chain with known transition matrix Pq(q ∈ D), which
will not be affected by the data ferry. To simplify the problem,
suppose each domain contains one gateway node which serves
as the source/destination of all inter-domain messages for
this domain. The task of the data ferry is to search for the
gateway in each targeted domain and exchange messages. To
facilitate control, each domain is divided into Nq(q ∈ D) non-
overlapping cells which constitute the state space Sq of the
Markov chain. The ferry and the gateway can communicate
with each other only within the same cell. In this paper, the
basic time unit is a slot, within which the gateway and the
ferry will move among the cells according to the gateway
mobility model and the ferry control policy. In the sequel, “at
t” is short for “at slot t”, and t is the global absolute time.

Model of Inter-domain Relationships: Suppose a constant
number of λi,q (q ̸= i) fixed-size messages with lifetime lmax

are generated for Dq in Di per slot1. We assume that each
domain diameter is much smaller than the distance between
any two domains, thus the domain layout can be modeled by
a distance matrix d = (dij)i,j∈D measured by the number of
slots the ferry takes to move from Di to Dj , whereas each
intra-domain movement is assumed to take a single slot.

B. Control Objective
The goal of the data ferry is to determine the best trajectory

for delivering as many messages as possible before they expire,
jointly considering run-time observations, inter-domain dis-
tances, and the number of messages and their residual lifetimes
in both the ferry and the gateway buffers. For this purpose, let
λπ

total be the discounted effective throughput under policy π:

λπ
total , E

[ ∞∑
t=1

Nπ(t)βt
]
, 0 < β < 1, (1)

where β is a given discount factor and Nπ(t) is the number
of messages delivered within their lifetimes at t. The goal of
this paper is to design a policy π to maximize λπ

total.

III. THEORETICAL BASIS: POMDP
POMDP [11] is a general framework to model the decision

process in which a controller dynamically selects actions from
a set A to play on a system with a hidden state drawn
from S, which evolves stochastically according to transition
probabilities T , to earn reward r (a function of the state
and the action). Although it cannot observe the underlying
states directly, the controller gets hints on the states from
run-time observations in O, related to the states through con-
ditional observation probabilities Ω. The observations allow
the controller to maintain a probability distribution of the
current state (called belief b) over states S. A POMDP is
thus represented as a tuple (S,O,A,Ω, T , r), and the goal is
to compute a policy π of selecting actions based on belief,
i.e., a = π(b) ∈ A, such that the total discounted reward
Rπ = E[

∑∞
t=1 β

tr(bt, at, ot)] is maximized, where β ∈ (0, 1)
is a discount factor to ensure convergence. It is known from
[11] that the optimal policy π∗ is the solution to the Bellman
equation over the horizon T (duration of the control):

VT (bt) = βmax
a∈A

E
[
r(bt, a, ot) + VT−1(bt+1)

]
. (2)

The complexity is, however, PSPACE-hard even for finite T.
POMDP naturally suits the problem of data ferry control in

that it enables us to continuously control the movements of the
ferry in a changing environment (mobile gateways, message
generation and expiration) without requiring full observation
of the environment. In the sequel, we will give detailed
POMDP formulations for both the local and the global control
and develop efficient policies based on simplifications of Eq. 2.

IV. LOCAL CONTROL: NAVIGATE

In this section, we focus on the local control problem:
controlling the ferry to find the gateway in a given domain.
We only consider Dq (q ∈ D), assuming Dq has been selected
by the global control policy. In the language of POMDP, the
local control can be formulated as:

1This work can be extended to the case of random λi,q (only adding
complexity to computing Eq. 1).



1) Local state space: Sq (cells in Dq). The state s
(q)
t (s(q)t ∈

Sq) means that the gateway of Dq is in cell s(q)t at t.
2) Local observation space: Ol

q = {0, 1}, where each obser-
vation o

(q)
t ∈ Ol

q is an indicator of ferry-gateway contact at t.
3) Local action space: Action a

(q)
t specifies the destination

cell of the ferry at t. Since ferry navigation is over the entire
domain, a(q)t ∈ Al

q = Sq .
4) Observation probability: Since a contact occurs if and

only if the ferry and the gateway are in the same cell,
Ωl

q(o
(q)
t |s(q)t , a

(q)
t ) = 1 if and only if o

(q)
t = I

s
(q)
t =a

(q)
t

(I·
is the indicator function).

5) State transition probability: Under the Markovian mo-
bility with transition matrix2 Pq , T (s

(q)
t+1|s

(q)
t , a

(q)
t ) = (Pq)ij

for s(q)t = i and s
(q)
t+1 = j, regardless of ferry action a

(q)
t (the

motion of the gateway is independent of the ferry control).
6) Local reward function: The one-time reward at t is rlq,t =

1 if a contact occurs (we assume that the relevant payload can
be exchanged in a single contact) and rlq,t = 0 otherwise.

As it is PSPACE-hard to solve Eq. 2, we resort to the myopic
policy which only considers the one-time reward in the current
slot; nevertheless, it shows near-optimal performance in [10].
Let b(q)

t denote the posterior distribution of the gateway at t
just before an observation is taken (i.e., (b(q)t )s , Pr{s(q)t =

s|o(q)1 , . . . , o
(q)
t−1}). Then b(q)

t is updated as3:

b(q)
t+1 = o

(q)
t PT

q ea(q)
t

+ (1− o
(q)
t )PT

q (b
(q)
t )\a(q)

t
. (3)

Then the local myopic policy is shown in Eq. 4.

πMY
l (b(q)

t ) = arg max
a
(q)
t ∈Al

q

E[rl(b(q)
t , a

(q)
t , o

(q)
t )] = arg max

u∈Sq

(b
(q)
t )u

(4)

V. GLOBAL CONTROL: SWITCH

In this section, we consider the global control problem: se-
lecting the next domain to serve, considering inter-domain dis-
tances and traffic demands. We first introduce some notations
to describe the extended controller space, and then investigate
some heuristic policies and approximations based on Eq. 2.

A. Definitions
1) Distance Matrix: d, where dij = dji, dii = 0 (i, j ∈ D).

In d, dij is the traveling distance from Di to Dj , normalized
by the ferry speed to the number of slots (might not meet the
triangle inequality due to obstacles).

2) Traffic Generation Matrix: Let λj (j ∈ D) be the d̂ ×
lmax traffic generation matrix of the gateway per slot in Dj

(Eq. 5). In λj , (λj)i,t is the number of messages destined to
Di from Dj with residual lifetime t, where (λj)i,lmax = λj,i

(described in § II-A) with (λj)j,lmax = 0 and (λj)i,t = 0 for
1 ≤ t < lmax since all new messages have the same lifetime.
To ensure feasibility, lmax is subject to lmax ≥ 1+ max

i,j,i̸=j
(dij).

λj ,


0 0 0 0 · · · 0 (λj)1,lmax

0 0 0 0 · · · 0 (λj)2,lmax

...
...

...
...

. . .
...

...
0 0 0 0 · · · 0 (λj)d̂,lmax

 (5)

2For a vector (matrix) X, Xi (Xij ) denotes its ith ((i, j)th) element.
3For a vector x, x′ = x\y means x′

z = xz/(1 − xy) for z ̸= y and
x′
y = 0. Let eu denote the unit vector with eu = 1.

t
t+1

action...

switch

...

Fig. 2. Update Procedure of Buffer States

3) Gateway and Ferry Buffer State: Let G(t) ,(
G1(t),G2(t), ...,Gd̂(t)

)
be the vector of gateway buffer

states, in which Gj(t) is the gateway buffer state in Dj at
t and F(t) the ferry buffer state at t, where

(
Gj(t)

)
i,k

and(
F (t)

)
i,k

denote the number of messages destined for Di with
residual lifetime k in buffer Gj and the ferry at t, respectively.

4) First Contact Time (FCT): FCT, represented as γ ,
(γi)

d̂
i=1, is the relative time which starts from the ferry entering

into a domain until the first contact with the gateway.
5) Inter-contact Time: Represented as ϕ, it is the time

between two consecutive contacts among all domains.
6) Round: The duration between two consecutive contacts

is called a round. Let Tτ denote the start of round τ .
According to the definition of the round, Tτ is also the end
of round τ − 1. Let ϕτ be the inter-contact time of round τ ,
then Tτ =

∑τ−1
i=1 ϕi.

Based on above notations, the tuple of the global controller
state is represented as: (F,G, b, DL), where DL is the domain
containing the data ferry at Tτ and b is the global belief vector
with b = (b(q))d̂q=1.

B. Bellman Equation for Global Control
The expression for discounted effective throughput, given in

Eq. 2, can be rewritten as Eq. 6, where T̃ is the total number of
rounds in the global control, ṼT̃ ,i , VT̃ (F(Tτ ),G(Tτ ), bTτ , i),
ṼT̃−1,j , VT̃−1(F(Tτ+1),G(Tτ+1),bTτ+1 , j) and ζγj denotes
the number of delivered messages when a contact occurs at
Tτ + γj + dij in Dj .

ṼT̃ ,i = max
j,j ̸=i

E
[
βγj+dij

(
ζγj + ṼT̃−1,j

)]
(6)

Since the solution to Eq. 6 is PSPACE-hard, heuristic global
policies are explored in this paper.

C. Update of the global belief vector

Let b(q)
0 be the steady-state distribution of Pq (the transition

matrix under the Markov model). The update of b starts with
b(q)
1 = b(q)

0 (q ∈ D). When t > 1, (i) If the ferry is in Dq (q ∈
D), b(q)

t is updated as Eq. 3; (ii) otherwise, b(q)
t+1 = PT

q b(q)
t .

D. Update of the Gateway and the Ferry Buffer State
Before discussing the update of all buffer states, we intro-

duce a lmax × lmax left shift matrix H with ones only on
the subdiagonal, and zeroes elsewhere. The message residual
lifetime in the buffer will subtract 1 per slot, which is
equivalent to left shifting of the buffer state matrix.

The gateway and the ferry buffer state experience a two-
phase update, i.e., before and after the observation is taken,
but both at the end of the slot (illustrated in Fig. 2).

Let G
′
(t + 1) and F

′
(t + 1) denote the gateway and the

ferry buffer states at t+ 1 before the observation is taken. At
the gateway, Gj(t) (j ∈ D) is first left shifted, after which
the corresponding traffic generation matrix is added (Eq. 7).
If a contact is observed by the end of slot t+1, messages are



collected and Gj(t+ 1) is reset to 0; otherwise, Gj(t+ 1) is
the same as G

′

j(t+ 1) (Eq. 8).

G
′

j(t+ 1) = Gj(t)H + λj , (7)

Gj(t+ 1) =

{
G

′

j(t+ 1), o
(j)
t = 0,

0, o
(j)
t = 1.

(8)

Similarly, F(t) is first left shifted before the observation is
taken at t+1 (Eq. 9). After the observation, if a contact occurs
in Dj (j ∈ D), the jth row in the ferry buffer state is reset
to 0 and new messages are collected from Dj (Eq. 10, where
Rj is the identity matrix except that row j is 0).

F
′
(t+ 1) = F(t)H, (9)

F(t+ 1) =

{
F

′
(t+ 1), o

(j)
t = 0,

RjF
′
(t+ 1) + G

′

j(t+ 1), o
(j)
t = 1.

(10)

E. Heuristic Global Policies
We now elaborate on the Myopic (MY) and Two-step

(TS) Global Policies. Let pπl
i,t , max

u
(b

(i)
t )u be the contact

probability in Di at t under the local myopic policy. Then the
distribution of γi (FCT in Di) is obtained by Pr(γi = t) =
pπl
i,t

∏t−1
m=1

(
1− pπl

i,m

)
.

1) Myopic Policy (MY): In the myopic policy, the decision
is made to only optimize the discounted amount of messages
delivered in the current round. Suppose at Tτ , the ferry is
in Di. Then the ferry calculates how many messages can be
delivered to any other domain Dj (j ∈ D

∩
j ̸= i):

Y MY
j = E[βγj+dijζγj ] =

∞∑
γj=1

(
Pr(γj)β

γj+dijζγj

)
, (11)

where ζγj
=

∑lmax

m=1

(
F

′
(Tτ + dij + γj)

)
j,m

. Therefore, the
global myopic policy for switching from Di is:

πMY
g (Di) = arg max

j,j ̸=i
Y MY
j . (12)

2) Two-Step Policy (TS): For the two-step policy, not
only messages delivered in the current round, but also those
delivered in the next round should be considered. Instead
of considering multiple rounds (Eq. 6), only two rounds are
considered in TS. Suppose the ferry is in Di at Tτ and in Dj
at Tτ+1, where Tτ+1 = Tτ + dij + γj , then

Ṽ1,j = max
k,k ̸=j

E
[
βγk+djk

lmax∑
m=1

(
F

′
(Tτ+1 + djk + γk)

)
k,m

]
,

(13)

Y TS
j = E

[
βγj+dij

(
ζγj + Ṽ1,j

)]
, (14)

where Ṽ1,j denotes V1(F(Tτ+1),G(Tτ+1), bTτ+1 , j). The
global two-step policy for switching from Di is:

πTS
g (Di) = arg max

j,j ̸=i
Y TS
j . (15)

After an actual contact in Dj (selected by Eq. 15). The ferry
will follow the above two-step policy to determine the next
domain based on the newly updated buffer states and beliefs.

F. Steady-state-based Approximations of Global Policies

In a vast open area, since d̂ and Nq (q ∈ D) are relatively
large and the inter-domain distance is greater than 1, b(q)

t will
approach b(q)

0 each time the ferry returns to Dq . Therefore,
to reduce the complexity of control, we reset the belief to the
steady state distribution at the beginning of each round, i.e.,
b(q)
Tτ

≡ b(q)
0 (q ∈ D), although local belief updates within a

round still follows Eq. 3. The corresponding steady-state-based
myopic and two-step policies are denoted by S-MY and S-TS,
respectively.

G. Further Approximations of S-TS
Substantial computation is still required for S-TS. There-

fore, several further approximations are investigated: (i)
the FCT in Dq is approximated by its average γq =∑∞

γq=1 γq Pr(γq) under πMY
l (starting from the steady state);

(ii) discount β is ignored.
1) S-TS approximation with γ in the 2nd step (S-TSA2):

For the second step in S-TSA2, we assume the average FCT
γk in Dk is used to calculate V1:

Ṽ S−TSA2

1,j = max
k,k ̸=j

lmax∑
m=1

(
F

′
(Tτ+1 + djk + γk)

)
k,m

. (16)

Therefor, the S-TSA2 policy is

πS−TSA2

g (Di) = arg max
j,j ̸=i

E
[(

ζγj + Ṽ S−TSA2

1,j

)]
. (17)

2) S-TSA2 with γ in the 1st step (S-TSA1,2): Like S-TSA2,
S-TSA1,2 assumes the FCT in the 1st step is also the average
FCT γj in Dj . Then the S-TSA1,2 policy is

πS−TSA1,2

g (Di) = arg max
j,j ̸=i

Y S−TSA1,2

j , (18)

where Y S−TSA1,2

j =
lmax∑
m=1

(
F

′
(Tτ+dij+γj)

)
j,m

+Ṽ S−TSA2

1,j .

VI. BENCHMARK: PREDETERMINED CONTROL

For comparison, we examine the alternative approach of
predetermined control, where the state-of-the-art solution is
Optimized Way-Points (OPWP) [8]. In OPWP, the ferry care-
fully chooses some way-points and waits at each of these way-
points for a fixed number of slots to achieve a specified min-
imum cumulative contact probability pi. The trajectory of the
ferry is formed by connecting these way-points by a shortest
path, given by classical TSP algorithms. In this paper, each
domain only contains one gateway and different domains have
no overlap. Therefore, OPWP will be revised for this scenario.

Way-Points and Waiting Times: For each Di, the ferry will
choose a set of cells s(i)opwp and the corresponding waiting times
w(i). In OPWP, the initial gateway distribution is assumed to
be the steady-state distribution whenever the ferry moves to
a new way-point (a cell). Based on this assumption, the First
Visit Time (FVT) for cell s in Di, denoted by σ

(i)
s , is defined

as the first time the gateway enters cell s (starting from time 0),
where its initial distribution is the steady-state distribution. Let
b(i,s)
t be the gateway distribution at t after the ferry waits at

cell s for t−1 slots without contact, and denote the distribution
of FVT by Pri(s, t) , Pr(σ

(i)
s = t|b(i,s)

1 = b(i)
0 ). Similar

to the belief update in πMY
l , we can compute Pri(s, t) by

Pri(s, t) = p
(i,s)
t

∏t−1
m=1(1 − p

(i,s)
m ), where p

(i,s)
t = (b

(i,s)
t )s



Algorithm 1: Way-Points selection in Di

Initialization: For each cell s in Di, set w(i)
s = 0.

While
∑

s∈Si

∑w
(i)
s

t=1 Pri(s, t) < pi

s∗ = arg max
s

Pri(s, w
(i)
s + 1)

w
(i)
s∗ ← w

(i)
s∗ + 1

TABLE I
COMPUTATIONAL COMPLEXITIES OF GLOBAL POLICIES

S-MY Ω
(
(d̂− 1)lmax

)
S-TS Ω

(
(d̂− 1)2l2max

)
S-TSA2 Ω

(
(d̂− 1)2lmax

)
S-TSA1,2 Ω

(
(d̂− 1)2

)
OPWP O

(
1
)

and b
(i,s)
t+1 = PT

i (b
(i,s)
t )\s. The physical meaning of p

(i,s)
t is

the conditional probability for the gateway to visit cell s at
t, assuming no visit before t. According to [8], the objective
function of the way-point and waiting time selection in Di is:

min
∑
s∈Si

w(i)
s

subject to
∑
s∈Si

w(i)
s∑

t=1

Pri(s, t) ≥ pi,

(19)

and all domains have the same pi.
Lemma VI.1: Pri(s, t) is monotonic, non-increasing with t.
Proof: See Appendix. �
Lemma VI.1 shows that the probability of contact in cell s

at t becomes smaller with increasing t. Therefore, the waiting
times can be selected by the greedy algorithm Algorithm 1,
and the way-points are simply the cells with positive waiting
times. The order of visiting these way-points is arbitrary since
it is assumed that the ferry is able to move to any cell in a
domain within 1 slot.

Connecting Paths: Since the distances between domains do
not necessarily satisfy the triangle inequality, the problem
of computing inter-domain paths is a general TSP problem,
but can nevertheless be solved optimally (by brute force) if
the number of domains is small. After the shortest path is
determined, the ferry will follow this path to visit each domain
and each way-point within it repeatedly. In addition, the best
value of pi can be chosen via simulations (See Fig. 3).

Since OPWP is predetermined, it does not require any
on-line calculations. For the global MY, TS, and their ap-
proximations, on-line calculations are required; nevertheless,
using run-time observations can enable dynamic adaptation
to serve the gateways more efficiently. A comparison of
the computational complexity for all the steady-state-based
policies is summarized in Table. I.

VII. SIMULATION RESULTS

In this section, the performance of the proposed hierarchical
policies are evaluated and compared with the predetermined
policy OPWP.

A. Gateway Mobility Model
Suppose the gateway in Dq follows a 2-D random walk

whose transition matrix Pq is governed by an activeness
parameter ξq and a tightness parameter ηq as in [10]. Here
ξq denotes the likelihood for the gateway to move to other
cells: ξq ,

∑
j ̸=i(Pq)ij , whereas ηq denotes the bias in its

moving directions, with (Pq)ij ∝ e−ηq||h−j||1 , where h is the
home cell (chosen to be the domain center) and ||h − j||1 is
the taxicab distance between cells h and j.
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Fig. 3. Best cumulative probability pi in OPWP

B. Parameter Settings
Let L be the traffic demand matrix, where Lij = (λi)j,lmax

in Eq. 5. Then the settings of L and the distance matrix d are

L =


0 0 0.5 2 1 1
1 0 2 2 1.5 0
1.5 1 0 3 0 0.5
1 1 0 0 2 0
1 0 1 1 0 0
0 1 3 0 1.5 0

 ,

d =


0 3 3 5 1 1
3 0 5 5 1 2
3 5 0 4 2 3
5 5 4 0 2 1
1 1 2 2 0 4
1 2 3 1 4 0

 .

(20)

In addition, d̂ = 6, lmax = 90, β = 0.98, and the simulation
time is 160 slots. For other parameters, we consider both
the homogeneous (Fig. 4) and heterogenous (Fig. 5) domain
settings to evaluate the proposed policies. Using the same
parameter setting, the discounted effective throughput under
OPWP is plotted in Fig. 3 for various pi, which shows OPWP
performs best when pi = 0.9 for both homogeneous and
heterogenous domain settings. Accordingly, pi = 0.9 will be
used to compare OPWP and SAN. Moreover, since d̂ is small,
the method of exhaustive enumeration is used to compute the
shortest inter-domain path in OPWP.

C. Performance Comparison
The simulation results are sketched in Fig. 4 and Fig. 5. The

results show that the performance of TS is the best, yielding
significant improvement over OPWP, whereas MY cannot beat
OPWP in the long run due to its shortsighted decisions. S-
TS, S-TSA2 and S-TSA1,2 sacrifice some performance gain in
exchange for computation efficiency, but they still outperform
OPWP. A closer look at Fig. 4(b) and Fig. 5(b) shows that
the message loss ratio gradually declines for all SAN policies
but not for OPWP. This illustrates the capability of dynamic
policies to learn the run-time situation through observations.
The steady-state-based approximations S-MY, S-TS resemble
the original closely. The further approximations S-TSA2 and
S-TSA1,2 maintain the performance advantage of TS with
much less computation, especially for S-TSA1,2 with only
Ω
(
(d̂− 1)2

)
complexity. Although the number of contacts of

OPWP is comparable to that of SAN policies (Fig. 4(c) and
Fig. 5(c)), its message delivery rate is lower because it neglects
the buffer states of the ferry and the gateways. In summary, the
dynamic SAN policy outperforms the predetermined OPWP
policy with just two-step optimization, even under certain
approximations. However, this is in sharp contrast with the
results in [10], where myopic policy already outperforms the
best predetermined policy, which shows the significance of
planning over multiple steps when relaying delay-sensitive
messages among scattered domains.



0 50 100 150
0

50

100

150

200

250

300

350

400

450

t

D
is

co
un

te
d 

E
ffe

ct
iv

e 
T

hr
ou

gh
pu

t

 

 

MY
S−MY
TS
S−TS

S−TSA2

S−TSA1,2

OPWP

(a) Discounted effective throughput

60 80 100 120 140 160
0

2

4

6

8

10

12

14

t

N
o.

 o
f L

os
t M

es
sa

ge
s 

pe
r 

S
lo

t

 

 

MY
S−MY
TS
S−TS

S−TSA2

S−TSA1,2

OPWP

(b) Message loss ratio

0

1

2

3

4

5

MY S−MY TS S−TS
S−TSA

2

S−TSA
1,2

OPWP

T
ot

al
 N

o.
 o

f C
on

ta
ct

s 
at

 t=
16

0

 

 

D
1

D
2

D
3

D
4

D
5

D
6

(c) Number of contacts in each domain

Fig. 4. Homogeneous domain settings: Nq ≡ 9, ξq ≡ 0.5, ηq ≡ 0.03, pq ≡ 0.9, q ∈ D, 240 Monte Carlo runs.
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Fig. 5. Heterogeneous domain settings: N , (Nq)d̂q=1 = (9, 16, 4, 25, 16, 9), ξ , (ξq)d̂q=1 = (0.7, 0.4, 0.6, 0.8, 0.9, 0.3), η , (ηq)d̂q=1 =
(0.1, 0.03, 0.05, 0.08, 0.3, 0.2), pq ≡ 0.9 (q ∈ D), 240 Monte Carlo runs.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a hierarchical control framework of Switch-
and-Navigate (SAN) for controlling a data ferry in a highly
partitioned mobile network with bounded delay constraints. In
SAN, the global control utilizes the buffer states and the beliefs
of gateway locations in all domains to select the best domain to
switch to. When the ferry enters a domain, the local control is
activated to navigate the ferry for fast searching of the gateway.
Simulation results show that SAN outperforms the best known
predetermined policy with just one-step lookahead. Moreover,
approximation policies are developed for better computational
efficiency in practical applications. In the future, the scenario
of joint control of multiple ferries will be explored.
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APPENDIX

Proof of Lemma VI.1: Considering domain Di, let z be
a zero row vector except zs = 1. For a given cell s in Di
(subscript and superscript i are dropped for simplicity),

p
(s)
1 = zb0, p

(s)
2 =

z(PT Rs)b0

1− p
(s)
1

, ... , p
(s)
t =

z(PT Rs)
t−1b0∏t−1

j=1(1− p
(s)
j )

.

(21)
Plug Eq.21 into Pr(s, t), Pr(σ(s) = t|b(s)

1 = b0) =
z(PT Rs)

t−1b0 (t ≥ 1). Let column vector ct , (PT Rs)
t−1b0,

then Pr(s, t) = (ct)s. Since I−Rs is a square 0 matrix except
(I −Rs)s,s = 1,

c1 − c2 = b0 − PT Rsb0 = PT (I − Rs)b0 ≽ 0. (22)

Using induction, supposing ct−1 − ct ≽ 0, then

ct − ct+1 = (PT Rs)
t−1b0 − (PT Rs)

tb0

= (PT Rs)(ct−1 − ct) ≽ 0.
(23)

Thus, Pr(s, t) − Pr(s, t + 1) = (ct)s − (ct+1)s ≥ 0 for all
t ≥ 1. Consequently, Pr(s, t) is a monotone non-increasing
function with t for any given s. �


