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ABSTRACT

In this paper we present a set of theoretical results regard-
ing inference algorithms for hierarchical Bayesian networks.
More specifically we focus on a specific type of networks
which result in highly sparse models for the input. Bayesian
inference in these networks usually is based on optimising a
non-convex cost function of the model parameters. We extend
previous work done in this field by providing some global per-
formance guarantees regarding this cost function. This is the
starting point for redesigning the aforementioned algorithms
by employing results from well known sparse reconstruction
techniques. This contribution comes in the form of three the-
orems. The end result is a new view of the Bayesian sparse
reconstruction problem.

Index Terms— Hierarchical, Bayesian, Subspace, Pur-
suit

1. INTRODUCTION

Sparse Bayesian Learning (SBL) was introduced in [1] as a
hierarchical Bayesian network which results in highly sparse
models for the given input. This is also known as the basic el-
ement of the Relevance Vector Machine (RVM). Even-though
the model introduces a relatively large number of parameters,
the resulting models do not suffer from over-learning but are
surprisingly sparse. This is possible because of the nature
of the prior distributions employed in this type of Bayesian
networks. In the core of the inference procedure lies the op-
timisation of a non-convex cost function, with respect to the
model parameters. The optimisation of this cost function is
realised via an iterative algorithm and upon convergence most
of the model parameters become irrelevant for describing the
given dataset.

The starting point for this work is the employment of this
technique for compressed sensing and basis selection as pre-
sented in [2] and [3] respectively. We provide a theoretical
analysis of the cost function and generalise results from [3].
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This analysis serves as the connecting link between already
established sparse reconstruction algorithms and the Bayesian
approach which provides a more versatile output, i.e full dis-
tributions rather than point estimates. Taking the progress one
step further, we demonstrate how it is possible to improve the
inference algorithms in [4] with attributes from well-known
sparse reconstruction algorithms. Two algorithms are pro-
vided that exhibit this improved behaviour. The results are
also verified empirically in Section 6.

2. SPARSE BAYESIAN LEARNING

Lets consider the problem of reconstructing sparse signal x
from its noisy measurements:

y = Φx+ n (1)

where y ∈ Rm, Φ ∈ Rm×n, x ∈ Rn and measurement
noise is assumed to be white Gaussian with variance σ2. In
SBL a hierarchy of distributions is employed to model this
setting. More specifically each component xi is assumed to be
dependent on a separate hyper-parameter αi. Each αi follows
a suitably chosen distribution with it being uninformative, i.e
uniform. This results in the prior distribution:

p (x|α) = N
(
0,A−1

)
=

n∏
i=1

N
(
0, α−1i

)
.

where A = diag (α) = diag ([α1, · · · , αn]t), and the hyper-
parameters αi are unknown and have to be learned from y. By
driving αi = +∞ it means that p (xi|αi) = N (0, 0); hence it
is certain that xi = 0. What remains is to find the maximum
likelihood solution of α for the given observation vector y.
The explicit form of the likelihood function p

(
y|α, σ2

)
was

derived in [1]:

L(α) = log |C|+ yTC−1y (2)

where C = σ2I + ΦA−1ΦT . A set of fast algorithms to
estimate α were proposed in [4].

The closed form formula for the optimal value of a single
hyper-parameter is:

αi =
s2i

q2i − si
(3)
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where si = φTi C
−1
−i φi and qi = φTi C

−1
−i y. Subscript −i

denotes subtracting the contribution from vector φi.

3. REVISED COST FUNCTION

It is easy to verify that by driving σ2 = 0 matrix C becomes
badly conditioned and thus the optimisation algorithm for cost
function (2) performs poorly. To remedy this problem we pro-
vide Theorem 1.

Theorem 1. For any given α, define the set I , {1 ≤ i ≤
n : 0 < αi <∞}. Then it holds that:

lim
σ2→0

σ2L (α) =
∥∥∥y −ΦIΦ

†
Iy
∥∥∥2
2
,

where ΦI is a sub-matrix of Φ formed by the columns indexed
by I, and Φ†I denotes the pseudo-inverse of ΦI .

Furthermore, if |I| < m and y ∈ span (ΦI), then
L (α)→ −∞ and σ2L (α)→ 0 as σ2 → 0.

Proof: Consider the cost function as given by Equation 2.
In order to derive the properly scaled version of the cost func-
tion the determinant and the inverse of matrixC are rewritten
likewise:

log |C| = −m log
∣∣σ−2I∣∣+ log

∣∣I + σ−2ΦIA
−1
I ΦT

I
∣∣

C−1 = σ−2I − σ−2ΦI
(
σ2AI + ΦT

IΦI
)−1

ΦT
I

where in the first equation a common property for the deter-
minant was used and in the second equation the Woodbury
matrix inversion formula was employed. Now the cost func-
tion becomes:

L(α) = −m log σ−2 + log
∣∣I + σ−2ΦIA

−1
I ΦT

I
∣∣

+σ−2yT
(
y −ΦI

(
σ2AI + ΦT

IΦI
)−1

ΦT
I y
)

= o(σ−2) + σ−2yT
(
y −ΦI

(
σ2AI + ΦT

IΦI
)−1

ΦT
I y
)

hence in the case noise variance σ2 approaches zero:

lim
σ2→0

σ2L(α) = yT
(
y −ΦI

(
ΦT
IΦI

)−1
ΦT
I y
)

= yT (y −ΦIΦ
†
Iy)

where in the last step it is assumed that |I| < m and the
expression for the pseudo-inverse is used. Now let yp =

ΦIΦ
†
Iy and yr = y − yp denote the projection of y on the

span of ΦI and the residual signal respectively. The follow-
ing holds:

〈y,yr〉 = 〈yp + yr,yr〉 =‖ yr ‖22

since:

〈yp,yr〉 = (ΦIΦ
†
Iy)T (y −ΦIΦ

†
Iy)

= (Φ†Iy)
(
ΦT
I y −ΦT

IΦI(ΦT
IΦI)−1ΦT

I y
)

= 0

Finally the scaled cost function can be written as:

lim
σ2→0

L(α) =‖ yr ‖22

which proves the first part of the theorem.
For the second part, assume that y ∈ span(ΦI) and that

|I| < m. Then in the case of zero noise variance σ2:

|C| = |ΦIA−1I ΦT
I | = 0

since rank(ΦIA−1I ΦT
I ) < m and C ∈ Rm×m. Hence:

lim
σ2→0

L(α) = −∞

On the contrary, for the scaled cost function and in the limit
of zero noise, the following holds:

lim
σ2→0

σ2L(α) = 0

which completes the proof of Theorem 1.
SBL has previously been analysed in [3] for basis selec-

tion. More specifically it had been proven that a maximally
sparse solution of y = Φx is attained at the global minimum
of the cost function. However, the analysis did not specify the
conditions to avoid local minima. In Theorem 1 we provide a
more refined analysis and derive the conditions under which
the original inference algorithm in [4] converges to the global
minimum. Actually the scenarios analysed in [3] are special
cases of Theorem 1 where L (α)→ −∞.

In addition we observe that a proper scaling of the cost
function gives the squared `2-norm of the reconstruction er-
ror. Reconstruction is then equivalent to recovering a sup-
port set that minimises the reconstruction error. This prin-
ciple is effectively the same as the one behind many greedy
algorithms such as the OMP [5] and subspace pursuit [6].

4. MODIFIED LIKELIHOOD MAXIMISATION

Theorem 1 suggests certain connections between well-known
sparse reconstruction algorithms and SBL. This becomes es-
pecially evident when studying the noiseless setting where
SBL and sparse signal reconstruction seem to share the same
principle. We face the following uncertainty; in [4] selection
is based on the value of αi which maximises the difference
∆L in the likelihood function, while in algorithms such as
the OMP and SP basis functions are selected based on corre-
lation maximisation and the maximum value of the estimated
xi. The following theorem provides the theoretical backing
to improve the SBL inference algorithm.

Theorem 2. Assume the noiseless setting y = Φx where
Φ ∈ Rm×n and φTi φi = 1 for all 1 ≤ i ≤ n. Furthermore
assume that t = max

∣∣φTi φj∣∣ for 1 ≤ i 6= j ≤ n. Then
an algorithm similar to the one in [4] based on one of the
following criteria recovers all s-sparse signals exactly given
the sufficient condition t < 0.375/s; (a) the maximum σ2∆L,
(b) the maximum xi or (c) the minimum αi.
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Proof: Consider the index set I as defined earlier in The-
orem 1. Then:

C−1−i =
(
I + ΦDA

−1
D ΦT

D
)−1

= σ−2
(
I −ΦD(σ2AD + ΦT

DΦD)−1ΦT
D
)

where D = I − {i}. By properly scaling as σ2 → 0 then:

lim
σ2→0

σ2C−1−i = I −ΦDΦ†D

Hence in the limit of zero noise variance σ2 the optimal value
for each hyper-parameter is given by:

αi =
σ4s2i

σ4q2i − σ4si
=

s̄2i
q̄2i − σ2s̄i

=
(φTi (φi −ΦDΦ†Dφi))

2

(φTi (y −ΦDΦ†Dy))2 + σ2(φi −ΦDΦ†Dφi))

lim
σ2→0

αi =
(φTi φi,r)

2

(φTi yi,r)
2

=
s̄2i
q̄2i
, (4)

where φi,r denotes the residual vector from the projection of
φi on the span of ΦD. The same holds for yi,r.

By the means of Equation (4) it becomes evident that re-
covering all s-sparse signals x in the noiseless case, is the
same as recovering the support set for which αi is minimised.
This is the same as maximising the denominator in (4) since
the numerator is bounded:

1− st ≤ |φTi φi,r| ≤ 1

where it is assumed that t ≥ |φTi φj |, ∀ 1 ≤ i 6= j ≤ n. Let

j∗ = arg min
j

αj so that j∗ ∈ I.

For any j /∈ I:

|φTj y| ≤ t ‖ x ‖1≤ t
√
s ‖ x ‖2

The above is a direct result of Hölder’s inequality. Similarly
for any j ∈ I:

|φTj y| ≥ |xj | −

∣∣∣∣∣∣
∑
i6=j

xiφ
T
i φj

∣∣∣∣∣∣ ≥ |xj | − t
∑
i 6=j

|xi|

≥ |xj | − t
√
s ‖ x ‖2≥

(
1√
s
− t
√
s

)
‖x‖2

since: ‖ xj∈I ‖∞≥ 1√
K
‖ x ‖2. By combining the results

above, for j /∈ I :

αi ≥
1− st

t
√
s ‖x‖2

and for j ∈ I :

αi ≤
1(

1√
s
− t
√
s
)
‖x‖2

The following must hold in order for j∗ ∈ I:

1(
1√
s
− t
√
s
)
‖x‖2

<
1− st

t
√
s ‖x‖2

s2t2 − 3st+ 1 < 0

By solving the inequality above we get, t < 3−
√
5

2s ≈ 0.375
s

which proves the first part of the theorem.
It is imperative that we derive the correct expressions for

the corresponding values of xi and the change in the cost
function ∆L for when σ2 = 0:

xi =
q̄i
s̄2i
, σ2∆Li =

q̄i
s̄i

(5)

where subscript i again denotes the association with one par-
ticular component. By comparing the expressions in (5) and
(4) the proof for second part of the theorem follows.

According to Theorem 2 it is possible to re-design the
inference algorithm to achieve better performance when the
noise variance approaches zero but at the same time retain
the flexibility of the Bayesian approach when noise variance
is unknown but somehow estimated. Variants of the infer-
ence algorithm can be constructed by employing a different
selection criterion according to Theorem 2. In Algorithm 1
a variant is presented in which the maximum value of |xi| is
used as a selection criterion. The rest of the variants are not
presented here for brevity.

Algorithm 1 FMLM-xi
Input: Φ,y, σ2

Initialise:
- T̂ = {index i ∈ [1, n] for maximum |φTi y|}.

Iteration:
- Calculate values of αi and [µx]i for i ∈ [1, n] \ T̂ .
- T ′ = T̂ ∪ {index i corresponding to the maximum value
of [µx]i for i /∈ T̂}.
- Calculate values αi for i ∈ T ′.
- T̃ = {i ∈ T ′ : 0 < αi < +∞}.
- If |L̄T̃ − L̄T̂ | = 0 then compute σ−2Σx, µx for T̃ and
quit. Set T̂ = T̃ and continue otherwise.

Output:
- Estimated support set T̃ and sparse signal x̃ with |T̃ |
non-zero components, x̃T̃ = µx.
- Estimated covariance matrix σ−2Σx.
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5. BAYESIAN SUBSPACE PURSUIT

Given the results from Theorem 2 and the subsequent algo-
rithm re-design in Algorithm 1 we move forward in com-
pletely altering the inference procedure with ideas from SP
[6]. As an intermediate result we point out that by using
θi = q̄i as the selection criterion the inference algorithm
achieves the same performance guarantees as the OMP since
both techniques become equivalent. The algorithm, termed
henceforth Bayesian Subspace Pursuit is described in Algo-
rithm 2.

Algorithm 2 Bayesian Subspace Pursuit
Input: Φ,y, σ2

Initialise:
- T̂ = {index i ∈ [1, n] for minimum αi = 1

|φT
i y|
}.

Iteration:
- Store αmax = arg maxi∈T̂ |αi|.
- Calculate values αi and θi = q̄2i − s̄i for i ∈ [1, n].
- Calculate values tθi>0 = |{i ∈ [1, n] : θi > 0}| and
tαi≤amax = |{i ∈ [1, n] : |αi| ≤ amax}|.
- If tθi>0 = 0 then s = tαi≤amax

+ 1 else
s = tθi>0 + tαi≤amax

.
- T ′ = T̂ ∪ {indices corresponding to s smallest values of
αi for i ∈ [1, n]}.
- Compute σ−2Σx and µx for T ′.
- T̃ = {indices corresponding to s largest non-zero values
of |µx| for which 0 < αi < +∞}.
- If |L̄T̃ − L̄T̂ | = 0 then quit. Otherwise set T̂ = T̃ and
continue.

Output:
- Estimated support set T̃ and sparse signal x̃ with |T̃ |
non-zero components, x̃T̃ = µx.
- Estimated covariance matrix σ−2Σx for T̃ .

Theorem 3. Assume that the same conditions hold as in The-
orem 2. An algorithm similar to the one in [4] based on
the less greedy criterion of maximum θi = q̄i, recovers all
s-sparse signals exactly given the sufficient condition t <
0.5/s. The algorithm presented in Algorithm 2 recovers all
s-sparse signals exactly if matrix Φ satisfies the RIP with pa-
rameter δ3s < 0.205.

Proof: The first part of the theorem can be easily proven
by adopting the same procedure as in Theorem 2 by replacing
αi with q̄i as the selection criterion. We arrive at t < 0.5
which is equivalent to the mutual coherence restriction for the
OMP [5]. For the rest of the theorem proof is heavily based
on results from [6]. More specifically by applying Theorems
3 and 4 from [6] one arrives at:

ρ =
‖ yr,T̃ ‖2
‖ yr,T̂ ‖2

≤ 1 + δ3s
1− 2δ3s

√
10δ3s

1− δ3s
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Fig. 1. Exact reconstruction rates for m = 128, n = 256

By requiring that ρ < 1 and after some basic calculations one
arrives at δ3s < 0.205.

6. EMPIRICAL RESULTS

The algorithms under comparison are the FMLM algorithm
as originally presented in [4], the variants based on the scaled
quantities; FMLM-xi, FMLM-αi, FMLM-∆Li, FMLM-θi
and the BSP. The experiment is as follows:

1. Generate Φ ∈ R128×256 with i.i.d entries fromN
(
0, 1

m

)
.

2. Generate T uniformly at random so that |T | = K.
3. Choose values for xT from N (0, 1).
4. Compute y = Φx and apply a reconstruction algo-

rithms. Compare estimate x̂ to x.
5. Repeat experiment for increasing values of K and for

100 realisations.

The results from this procedure are depicted in Figure 1. At
first we can see that the original FMLM performs poorly when
σ2 = 0 due to the improperly scaled cost function. The three
variants of FMLM based on Theorem 2 perform according to
the theorem. We observe an increase in the performance for
FMLM-θi, a consequence of altering the selection criterion
to θi = q̄i. Even though changing the criterion gives theoret-
ically better performance as Theorem 3 suggests, empirically
this gain is not great. By redesigning the inference algorithm
based on ideas from the SP we are able to achieve far better
performance, as the curve for the BSP algorithm shows.

7. CONCLUSION

We have presented a theoretical analysis of the algorithms in
[4]. It became clear that the algorithms can be redesigned as
to achieve greater performance guarantees. The theoretical
ground has been provided to justify the proposed approach.
We also provide simulation results that experimentally verify
the improved inference algorithms.
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