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Abstract – In this paper, we analyze the connectivity 

dynamics of vehicular ad-hoc networks in a generic signalized 

urban route. Given the velocity profile of an urban route as a 

function of space and time, we utilize a fluid model to 

characterize the general vehicular traffic flow, and a stochastic 

model to capture the randomness of individual vehicle. From 

the fluid and stochastic models, we can acquire respectively 

the densities of the mean number of vehicles along the road 

and the corresponding distribution. With the knowledge of the 

vehicular density dynamics, we determine the probability that 

the communication network is fully connected, i.e., each node 

can communicate with every other node through a multi-hop 

path, and the problem is also investigated for a general case of 

a k-connected network. To closely approximate the practical 

road conditions, we use a density-dependent velocity profile to 

approximate vehicle interactions and capture the shockwave 

propagation at traffic signals. We confirm the accuracy of the 

connectivity analysis through simulations and show that the 

analytical results are good approximations even when vehicles 

interact with each other as their movement is controlled by 

traffic lights. We also illustrate that system engineering and 

planning for optimizing connectivity in the communication 

networks can be carried out with the results in this paper. 

Index Terms – Vehicular Ad-Hoc Network, Connectivity 

Dynamics, Stochastic Traffic Model, Signalized Road System, 

Vehicle Interaction, Transmission Range Adjustment. 

I. INTRODUCTION 

In a Vehicular Ad-hoc Network (VANET), vehicles 

communicate with each other and possibly with road-side 

infrastructure nodes. Node connectivity and the amount of data 

that can be exchanged are limited by the duration and quality 

of the communication links established among nodes, which 

are determined by the space and time dynamics of moving 

vehicles.  

To capture such dynamics in our connectivity analysis, we 

modify the stochastic traffic model proposed in [1,2] for 

modeling vehicular traffic in signalized urban road systems. 

The stochastic traffic model uses a deterministic fluid model to 

characterize the space and time dynamics of vehicle 

movements, which is driven by a velocity profile as a function 

of space and time. In real practice, empirical velocity 

measurements from GPS devices can serve as an input to the 

model. The mean density profile, again as a function of space 

and time, is readily computable from the conservation 

equations in the fluid model. The randomness of individual 

vehicle is captured by the Poisson Arrival Location Model 

(PALM). The actual number of vehicles in a given road 

section at a certain time instance has Poisson distribution 

according to previous PALM results in [1,3] given that the 

arrival of vehicles follow a non-homogeneous Poisson process 

and the velocity profile is independent of other parameters 

such as vehicular density.  

To closely represent the practical road condition, we 

attempt to introduce a density-dependent velocity profile to 

characterize vehicle interactions and shockwave propagation 

at traffic signals, which has not been considered in previous 

PALM work [1,2]. But of course, the PALM no longer applies 

in principle with vehicle interactions due to the existence of 

dependency. So, we treat the results in the presence of vehicle 

interactions as approximations, and validate them through 

simulations in this paper. 

 Through the vehicular density dynamics computed from 

the stochastic traffic model, we determine the distribution of a 

node’s location on the urban route, and derive the probability 

that the entire communication network in the road segment is 

connected in a multi-hop manner, and the problem is further 

investigated for a general case of a k-connected network. In 

essence, we show that the analysis is a valid approximation 

even when extra randomness is inherited from vehicular 

interactions and traffic signals. To illustrate the applicability of 

our results, we demonstrate how the connectivity knowledge 

can facilitate the adjustment of transmission ranges of vehicles 

to prevent network disconnection and boost the overall 

communication connectivity.  

Related Work 

There are a number of studies on node connectivity in 

Mobile Ad-hoc Networks (MANETs). For instance, [4] shows 

that if the radio transmission range of n nodes that are placed 

uniformly and independently in a disc of unit area is set to r0 = 

[(log n + c(n)) / nπ]
1/2

, the resulting wireless multi-hop 

network is asymptotically connected with probability one if 

and only if c(n)  ∞. Reference [5] investigates the radio 

range assignment problem, and obtains bounds for the 

probability that a node is isolated and the network is connected 

on a one-dimensional line. On the other hand, [6] examines the 

node density threshold for achieving full connectivity in both 

1-D and 2-D ad-hoc network. [7,8] study the relation between 

the minimum node degree and k-connectivity in a random 

graph, and explore the minimum radio transmission range r0 

for achieving a fully connected ad-hoc network for a given 

node density. 

Most of the existing studies assume that nodes are 

uniformly random distributed in an area and they are either 

stationary or move according to the random waypoint model 
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[8], which are obviously inadequate to capture the spatial 

distribution of vehicles and their movements. In fact, vehicle 

movements, particularly in urban environments, are restricted 

by the road topologies, buildings, etc., and affected by traffic 

density, which is determined by road capacity, traffic control 

and driver behaviors. There are also recent works that aim to 

model connectivity of vehicles on a one-dimensional highway. 

[9] assumes the space headway between vehicles is 

exponentially distributed, and introduces a robustness factor to 

capture the effect of disturbance on VANET connectivity. [10] 

assumes a continuous-time mobility model where movement 

of each node is a function of time consisting of a sequence of 

random intervals that is exponential distributed, and during 

each interval, a node moves at a constant speed which is 

independently chosen from a normal distribution. Based on 

this synthetic mobility model, the author derived the mean 

cluster size and the probability that the nodes will form a 

single cluster under the assumption that vehicles arrive 

according to a Poisson process. These previous studies, 

however, lack of a realistic traffic model to adequately capture 

node density and its influence on vehicle speed, which are 

significant in determining connectivity, especially in urban 

road systems where strong interactions among neighboring 

vehicles exist. 

The rest of the paper is organized as follows. Section II 

provides the background information of the stochastic traffic 

model (fluid and stochastic models) for computing vehicular 

density. Section III presents the connectivity analysis with and 

without the consideration of vehicle interactions. Section IV 

extends the investigation to the general case of k-connectivity 

in the network. Section V provides numerical results to verify 

our analysis. Section VI presents potential applications of the 

connectivity modeling on transmission range adjustment for 

boosting overall network connectivity. Finally, Section VII 

concludes the paper. 

II. STOCHASTIC TRAFFIC MODEL 

In this section, we define the system model and provide 

background information of the fluid and stochastic models, 

from which we can acquire the vehicular density dynamics in 

signalized urban routes for VANET connectivity analysis.   

We consider traffic in a one-way, single-lane, semi-

infinite signalized urban road (or route) as shown in Figure 1. 

Although the road is fed with traffic from adjacent streets, the 

one-way road under consideration is the one running from the 

left to the right in the figure. More complicated road topology 

can be represented by superposing multiple versions of urban 

routes. Let our location space to be the interval [0, ∞), the 

boundary point 0 is the spatial origin, and it marks the starting 

point of the road. The arrival process {A(t) | -∞ < t < ∞} 

counts the number of arrivals to the first segment of the route 

up to time t, which we assume is finite with probability 1, and 

is characterized by a non-negative and integrable external 

arrival rate function α(t). 

Furthermore, the route consists of a number of road 

segments indexed by i = 1, 2, 3,…, and traffic lights are 

located at the junctions of road segments, where vehicles can 

leave and join the route. We let the location of the i-th junction 

(or traffic light) between road segments i and i+1 be xi.  

traffic lights
Direction of 
traffic flow

......

1st road 
segment

Location 0

2nd road 
segment

traffic lights

i th road 
segment

 

Figure 1. The road configuration considered in this paper. 

A. Deterministic Fluid Model 

The fluid model is a kind of continuum traffic flow 

models, which reduces laws of traffic to a partial differential 

equation (PDE) that may be studied as elegantly and simply as 

other physical phenomena that are also governed by PDE’s.  

The major difference between our fluid model and other 

continuum models is that we model vehicle motions with a 

velocity profile, vehicles at location x and time t move forward 

the route according to a velocity field v(x, t), it can be 

deterministic or density dependent. Vehicles stop at road 

junctions for a red signal, which can be reflected and modeled 

by the velocity profile. However, continuum model alone is 

unable to capture traffic instability and the randomness of 

individual vehicle, therefore, we couple the fluid model with 

the stochastic model in the next section as a remedy. 

To begin with, we will describe the fluid dynamic 

conservation equations and corresponding notations that hold 

for the general systems. Let N(x, t) be the number of vehicles 

in location (0, x] at time t, and n(x, t) be the density of vehicles 

in location (0, x] at time t. Thus, 

( , )
( , ) .

N x t
n x t

x





                               (1)                  

Let Q(x, t) be the number of vehicles moving past position 

x before time t. Then the flow rate q(x, t) is defined by 

( , )
( , ) .

Q x t
q x t

t





                               (2) 

Let C
+
(x, t) and C

–
(x, t) be the number of vehicles arriving 

to and departing from the route in location (0, x] during time 

interval (-∞, t], respectively. Then the associated rate densities 

are respectively 
2

( , )
( , )

C x t
x t

x t
c


 


 

and 

2
( , )

( , ) .
C x t

x t
x t

c


 


 
      (3) 

Assuming all traffic moves only from left to right down 

the positive real line, then the four variables N, Q, C
+
, C

-
 

satisfy the following conservation relation: 

( , ) ( , ) ( , ) ( , )C x t N x t Q x t C x t
 

                (4) 

By applying the operator 
2

/( )x t   to (4), we have the partial 

differential equation 

( , ) ( , )
( , ) ( , ).

n x t q x t
c x t c x t

t x

  
  

 
             (5) 

According to traffic flow theory [11], we have 

( , ) ( , ) ( , ).q x t n x t v x t                                (6) 

By substituting (6) into (5), we have 

 ( , ) ( , )( , )
( , ) ( , ).

n x t v x tn x t
c x t c x t

t x

 
  

 
      (7) 
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The resulting partial differential equation (7) is a one-

dimensional version of the generalized conservation law for 

fluid motion [12]. This equation governs the mean behavior of 

any stochastic traffic model. For the ease of solving (7), we 

introduce an additional assumption to convert the partial 

differential equation (PDE) to an ordinary differential equation 

(ODE). Let the location x as a time function, x(t), be given by 

( )
( ( ), ).

dx t
v x t t

dt
                                (8) 

By chain rule, 
( ( ), ) ( , ) ( ) ( , )dn x t t n x t dx t n x t

dt x dt t

 
  

 
, and by 

substituting (7) and (8) into this equation, we have 

( ( ), ) ( , )
( ( ), ) ( ( ), ) ( ( ), ).

dn x t t v x t
c x t t c x t t n x t t

dt x

  
  


 (9) 

Due to the partial derivative of v(x, t) w.r.t. x in (9), it is 

ODE if and only if v(x, t) is not a function of n(x, t).  Note that 

though we introduce the use of a density-dependent velocity 

profile later on, we still solve the ODE’s for the mean number 

of vehicles as an approximation in Section V. 

We assume that vehicles arrive at the first route segment 

according to an external arrival rate function α(t). If we 

consider the fleet of vehicles keep moving along the route 

without vehicles joining or leaving at junctions (e.g., buses 

move along a bus route). c
+
(x, t) = α(t)δ(x) and c

–
(x, t) = 0, 

where 
0

lim ( )
x

x
y dy












 = 1 if x = 0 and 0 otherwise. 

For the case that there are vehicles join and leave the 

route at road junctions, let us use ξi(t) to denote the external 

arrival rate of vehicles at the i-th junction at time t. Then we 

have 

( , ) ( ) ( ) ( ) ( ).
i i

i

c x t t x t x x  
              (10) 

As for vehicles leaving the route, we use ρi(t) to denote 

the fraction of vehicles departing when they pass by the i-th 

junction at time t. If these departing vehicles leave at the same 

velocity as they move forward along the route, then 

( , ) ( , ) ( , )c x t x t n x t


 , where 

( , ) ( , ) ( ) ( ).
i i

i

x t v x t t x x                  (11) 

B. Stochastic Model 

In contrast to the deterministic fluid model, the stochastic 

model captures the stochastic fluctuations of the quantities of 

interest. When the two models are coupled with each other to 

form the stochastic traffic model, the solutions from the PDE’s 

or ODE’s describe the expected number of vehicles, and the 

actual number of vehicles is captured by the additional 

distribution information from the stochastic model. 

From now on, the densities n(x, t) and q(x, t) are defined 

as the partial derivatives of expected values, that is, 

[ ( , )]
( , )

E N x t
n x t

x





and 

[ ( , )]
( , )

E Q x t
q x t

t





. 

Similarly, the rate densities c
+
(x, t) and c

-
(x, t) are the second 

partial derivatives of expected values, that is, 

2
[ ( , )]

( , )
E C x t

x t
x t

c


 


 
and 

2
[ ( , )]

( , )
E C x t

x t
x t

c


 


 
. 

The general stochastic model can be of any distributions 

depending on the arrival process of vehicles, and the equations 

in the deterministic fluid dynamic model continue to hold 

regardless the distribution of the stochastic model. In this 

paper, we specifically consider a Poisson arrival location 

model (PALM). Again, the fluid dynamic model is not 

dependent on the Poisson assumption; they hold as long as the 

arrival process A is an arbitrary point process with time-

dependent arrival-rate function α. 

With PALM, the arrival process {A(t) | -∞ < t < ∞} for 

vehicles to arrive at the first road segment of the route is a 

non-homogeneous Poisson process with non-negative and 

integrable external arrival rate function α(t). That is, the 

number of arrivals in the interval (t1, t2] is Poisson with mean 

2

1

 

 
( )

t

t
s ds . 

According to [1,3], we can construct N(x, t), the random 

number of vehicles within the range (0, x] at time t, via 

stochastic integration starting with the Poisson process A, 

where A(t) counts the number of vehicles arriving to the road 

segment up to time t. 

   ˆ

( )

( ( , ))( , )

( ) (0, ] ( ) (0, ]
( , ) 1 ( ) 1

s
An

t A t

n A x tx t

L t x L t x
N x t dA s

 

 
    (12) 

Hence, for all real t, {N(x, t) | x ≥ 0} is a Poisson process with 

  
 

 ( , )
( )[ ( , )] .

t

x t
s dsE N x t


                     (13) 

where ˆ
nA is the nth jump time of A, counting backward from 

time t. 1B is an indicator function such that it returns 1 if B is 

true and 0 otherwise. Ls(t) is the location process, which 

specifies the position of the vehicle on the road segment at 

time t that arrived at time s. Let σ(x, t) denote the route 

entrance time for a vehicle to be in position x at time t. For 

vehicles that arrive to the route before σ(x, t), it will be past 

position x by time t. On the other hand, for vehicles arrive 

after σ(x, t), it will be still in position x at time t. 

Therefore, as long as we model the traffic flow or even 

traffic signals through a deterministic velocity field as a 

function of space and time, and all the vehicles do not interact 

with each other, the Poisson distributional conclusion in [1,3] 

remains valid.  

In Section V, we approximate vehicular interactions 

through a density-dependent velocity profile. In that case, the 

stochastic model in principle is invalid, and the Poisson 

property no longer holds as we cannot determine if a car 

arrives at time s will have passed location x at time t with the 

density-dependent velocity profile. However, we found from 

simulations that the Poisson property and stochastic 

independence of the model can still be primarily retained when 

the traffic load is not too high even in the presence of vehicle 

interactions. Thus, we treat the results with consideration of 

vehicle interactions as approximations, and confirm their 

accuracy through simulations. The reader is referred to Section 

V for details. 
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III. VANET CONNECTIVITY ANALYSIS 

With the knowledge of the vehicular density dynamics 

from the stochastic traffic model, we determine in this section 

the probability that the network within an urban road segment 

is connected, and extend the investigation to k-connectivity of 

the network.  

To model wireless transmission between vehicles, a radio 

link model is assumed in which each vehicle has a  

transmission range r, two vehicles are able to communicate (or 

are connected) directly with each other via a wireless link if 

the Euclidean distance between them is less than or equal to r. 

In a one-dimensional ad-hoc network, a node is said to be 

disconnected from the forward network if it is not connected to 

any forward neighbors in the network (e.g., node 2 in Figure 

2), where ‘forward neighbors’ here represents nodes that are 

on the right of the considered node assuming that the stream of 

traffic moves from left to right. 

A network is said to be connected if for every pair of 

nodes there exists a path (that is composite of one or more 

number of communication links) between them, and otherwise 

it is disconnected. For the connectivity of a one-dimensional 

network, the following definition holds. 

Definition 1: For a one-dimensional ad-hoc network, it is 

connected if and only if there does not exist any nodes in the 

network that are not connected to any of the forward nodes. 

In another words, the network is disconnected if the 

separation between any two adjacent nodes is great than r as 

illustrated in Figure 2. Therefore, the probability that the 

network in a road segment is connected is equivalent to the 

probability that no nodes got isolated from the forward 

network. The reader is referred to the proof of Proposition 1, 

which considers the general case of a k-connected network.  

0 1 2 3 4 5

d0 d1
d2 > r d3 d4

 
Figure 2. Disconnection in a one-dimensional network. 

A. Connectivity without Vehicle Interactions 

For analytical simplicity, we cease to focus on time 

dynamics in this subsection, and assume the system has 

reached a steady state with respect to time. Thus, all system 

variables and parameters (including the velocity profile) 

become independent of time. For this reason, we simply drop 

the variable t from our previously defined notation. 

We define N(xa, xb) = N(xb) – N(xa), where xb > xa, as the 

number of vehicles in the region (xa, xb]. According to the 

stochastic model, the actual number of vehicles distributed 

within a road region is Poisson distributed. Thus, we can 

acquire from it the probability that a specific number of 

vehicles are located within a road region, which is given by  

  [ ( )][ ( )]
( )

!

n

E N xE N x
P N x n e

n


                   (14) 

  [ ( , )][ ( , )]
( , )

!

a b a b

a b

n

E N x xE N x x
P N x x n e

n


         (15) 

where 
 

 0
[ ( )] ( )

x

E N x n u du  . 

Consider a road segment of length L, cars arrive at 

location 0 as a homogeneous Poisson process with mean rate α, 

and assume there are no cars joining and leaving the urban 

route at junctions. Since we assume the system has reached a 

steady state with respect to time, the velocity profile is only a 

function of space but independent of time. Thus, every car that 

travels through the road segment will have the same velocity-

time graph with regard to its arrival time, let us denote it with 

v(s). At time t, the physical separation between the i-th and the 

i+1-st cars is   
 

 
( ) ( )

i i

t

I t I
d t v s ds


                                (16) 

where Ii is the inter-arrival time between the i-th and i+1-st 

arrivals. We are interested in finding the critical inter-arrival 

time of the road, Tc, such that if Ii ≤ Tc, the i-th and i+1-st cars 

will remain connected throughout the whole journey. Or on 

the other hand, if Ii > Tc, the maximum separation between the 

two cars in the road segment will be greater than r. We have 

   
 

 
max ( ) max ( )

ct t c

t

T t T
d t v s ds r

  
             (17) 

where Ω is the set of time instances such that the i-th and i+1-

st cars co-exist in the road segment. Given the velocity profile, 

we are able to find Tc as a function of r. For Poisson arrival 

process with parameter α, P(Ii ≤ Tc) = 1 – e
–αTc

, let it be pc. 

Therefore, the probability that the entire network remains 

connected (conditioning on that the population size of the road 

is non-zero, i.e., N(L) > 0) is 

1

1

1
(net con) ( ( ) ).

1 ( ( ) 0)

j

j cP p P N L j
P N L

 


 

 
  (18) 

Since the number of cars in the road segment has a Poisson 

distribution with parameter E[N(L)], which can be computed 

from the fluid model, by substituting (14) into (18), we have 

 
 

[ ( )]

[ ( )]

1
(net con)

1
.

E N Lc

E N L

p

c

e
P

p e





                      (19) 

B. Connectivity with Vehicle Interactions 

Subsection A above gives us an exact treatment of 

modeling the spatial separations between vehicles and 

connectivity of the network. Strictly speaking, when vehicle 

interactions are considered, the stochastic model is no longer 

valid due to the existence of dependency. So, we can only do 

approximation here and use simulation to evaluate its validity.  

For velocity profile that is a function of both the space and 

time, and with vehicle interactions, we approximate the 

probability of connectivity based on the results of the fluid 

model, which captures the time and space dynamics as well as 

vehicular interactions. We now consider a specific time 

instance t0, and thus the variable t is again simply dropped 

from our notation. The probability over a period of time can be 

obtained by taking the time-average of multiple time instances. 

Again, we consider a road segment with length L in region 

(0, L]. With the knowledge of the mean density profile n(x) 

from the fluid model, we can derive the pdf 

( ) ( ) / [ ( )]
L

f x n x E N L                           (20) 

such that fL(x)∆x represents the probability that a random node 

in the road segment is located in the small region (x, x + ∆x]. 
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Given that there are j nodes located in the road segment at a 

time instance and assume that their locations are independent, 

we now regard a randomly chosen node located in the road 

segment. The probability that this node is disconnected from 

the forward network is given by the weighted sum of the 

probability that the other j – 1 nodes are not located within the 

transmission range in front over all possible locations of the 

node in the road segment.  

0

(node discon|  nodes)

(the other 1 nodes are not in ( , ]) ( )
L

L r

P j

P j x x r f x dx


  
 

 
0

1

1 ( ) ( ) .
L L

L r x r

x

j

f x dx f x dx
  

                                   (21) 

Note that we define a node is not disconnected if it is located 

in region (L – r, L] in the road segment. 

According to [8], the events that an individual node is 

isolated or disconnected from the forward network are almost 

independent from node to node with the assumptions that the 

number of nodes in the road segment N >> 1 and r << L. Thus, 

the probability that there are no disconnected nodes in the road 

segment or the network is connected is 

 
0

(net con) (no discon node)

1 (node discon|  nodes) ( ( ) ).
j

j

P P

P j P N L j






  
   (22) 

By substituting (14) and (21) into (22), we are able to find 

this probability based on the input n(x) computed from the 

fluid model. 

When the expected number of cars in the network is large, 

for the simplicity of calculation, we can approximate the 

probability above with  

 
0

(no discon node)

1 (node discon) ( ( ) )
j

j

P

P P N L j



 



        (23) 

where 

0
(node discon) (node discon | ) ( )

L

L r
P P x f x dx


   

 
0

( , ) 0 ( ) .
L

L r
P N x x x r f x dx


     

Substitute (15) into it, we have 

[ ( , )]

0
(node discon) ( ) .

L

E N x x x r
L r

P e f x dx  


            (24) 

By substituting (14) and (24) into (23), we have 

 [ ( , )] [ ( )]

0 0

(net con) (no discon node)

[ ( )]
1 ( )

!
L

jjL r E N x x x r E N L

j

P P

E N L
e f x dx e

j

    





  

 

 

 [ ( , )]

0
exp [ ( )] ( )

L

L r E N x x x r
E N L e f x dx

   
                   (25) 

To verify the tightness of approximating (22) with (25), 

we plot the relative error, | P (net con) – P(net con)| / P(net 

con) as a function of the expected number of cars in the 

network in Figure 3 for a homogeneous Poisson arrival with 

constant speed. From which we can see that the error of the 

approximation converge to zero as the expected number of 

cars in the network is large, for instance, when there are 

expected 100 cars in the network, the error is less than 1%. 

The expected number of cars in the network is a function of 

the arrival rate, velocity and the length of the network. In 

general, given that the length of the road segment L considered 

is long enough, we can have sufficient expected number of 

cars and thus P(net con) can be well approximated by (25). 

Further evaluation of the analytical results with consideration 

of vehicle interactions is shown later in Section V. 

 

Figure 3. Relative error = | P (net con) – P(net con)| / P(net con) as a function 

of the expected number of cars in the network for homogenous Poisson arrival 
with constant velocity profile. 

IV. k-connectivity 

In the last section, we consider specifically the 1-

connectivity of the network, we now proceed to investigate the 

general case of k-connectivity. For connected one-dimensional 

ad-hoc network, we can characterize the degree of 

connectivity by examining the forward node degree of nodes, 

which represents the number of direct single-hop forward 

neighbors of a node. Given that a node is located at x, we 

define that the forward node degree of the node as the number 

of nodes in the region (x + ∆x, x + r]. Let KF(x) denote the 

forward node degree of a given node located at x, with the 

PALM assumptions, we have  

   ( ) ( , )FP K x k P N x x x r k      

[ ( , )][ ( , )]

!

k

E N x x x rE N x x x r
e

k

    
                (26) 

To associate forward node degree to connectivity in a 

one-dimensional communication network, we use a geometric 

graph G = G(V, E) to represent the ad-hoc network, which 

consists of a set of nodes (vertices) and a set of 

communication links (edges). There is an edge between two 

vertices i and j if and only if the Euclidean distance between 

them |i – j| ≤ r. 

With reference to [7], a graph is said to be k-connected if 

for each node pair there exist at least k mutually independent 

paths connecting them. Or, a graph is k-connected if and only 

if no set of (k – 1) nodes exists whose removal would 

disconnect the graph. Then, we have the following proposition. 

Proposition 1: In a one-dimensional geometric graph G, let 

KFmin(G) denotes the minimum forward node degree of graph 

G, then 

P(G is k-connected) = P(KFmin(G) ≥ k)             (27) 

Proof: We divide the proof into two parts, first, we prove that 

P(G is k-connected) ≤ P(KFmin(G) ≥ k) followed by proving 
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P(G is k-connected) ≥ P(KFmin(G) ≥ k), the combination of 

them proves proposition 1.  

Proposition 1.1: P(G is k-connected) ≤ P(KFmin(G) ≥ k) 

Proof: This is equivalent to proving (G is k-connected) implies 

(KFmin(G) ≥ k), which can be proved by contradiction. Assume 

on the contrary that (KFmin(G) = k – 1 < k), that is, every node 

only connects to at least k – 1 forward neighbors. In this case, 

if we remove k – 1 nodes whose are forward neighbors of a 

specific node i which has only k – 1 forward neighbors, node i 

will be disconnected from the forward network, and the 

network is disconnected. Hence, the network (graph) is not k-

connected.  

Proposition 1.2: P(G is k-connected) ≥ P(KFmin(G) ≥ k) 

Proof: This is equivalent to proving (KFmin(G) ≥ k) implies (G 

is k-connected). In a one-dimensional network, assume that 

every node connects to at least k forward neighbors, i.e., 

(KFmin(G) ≥ k), then it is trivial that no set of k – 1 nodes whose 

removal will disconnect the network. For example, in the 

worst case, if we remove k – 1 nodes whose are forward 

neighbors of a specific node i which has only k forward 

neighbors, node i is still connected to the forward network 

with one forward neighbor. Hence, the network (graph) is k-

connected.  

Consider the case when k = 1 in Proposition 1, we have 

P(G is connected) = P(KFmin(G) ≥ 1), that is, the network is 

connected if and only if every node has at least one forward 

neighbor, which is equivalent to Definition 1, and the 

probability can be found with (25). The generalized version of 

(25) for k-connected network is as follows.  

For a randomly chosen node in the road segment, the 

probability that it has less than k forward neighbors is 

0
( ) ( ( )  | ) ( )

L r

F F LP K k P K y k x f x dx


    

1 [ ( , )]

00

[ ( , )]

!

( ) .
L

i
L r k E N x x x r

i

E N x x x r
e

i

f x dx
    



  
    (28) 

By Proposition 1 and following similar steps in the 

derivation of (25), we have 

 
min

( -connected) ( ) exp [ ( )] ( )
F F

P k P K k E N L P K k      

1 [ ( , )]

00

[ ( , )]
[ ( )]exp ( )

!
.

L

L r k E N x x x r

i

i
E N x x x r

E N L e f x dx
i

    



  

 
 
 



 (29) 

Therefore, given the density profile n(x) from the fluid model, 

the communication range r, the probability that the network in 

a one-dimensional road segment is k-connected can be found. 

We are going to evaluate the analytical results by comparing 

them with simulated results in the next section, especially for 

the case with vehicle interactions.  

V. NUMERICAL RESULTS  

Scenario without Vehicle Interactions 

Let us first consider an illustrative example for the case 

without vehicle interactions. Consider a road segment of 

length 10 km, and assume that cars only enter the route at 

location 0 with a rate of 30 cars/min and no cars join or depart 

at junctions. 

Given the velocity profile v(x) of the road as shown in 

Figure 4a, we can find that the critical inter-arrival time, Tc = 

r according to the definition in (17), and we can compute from 

the fluid model (by solving the ODE’s) that E[N(L)] = 481 for 

α = 30 cars/min. Thus, according to (19), we plot the 

probability that the network in the road segment is connected 

as a function of the transmission range r in Figure 4b. The 

reader is referred to Section VI for additional examples and 

applications regarding the tradeoff between transmission range 

and connectivity. In real practice, velocity profile can be 

obtained through empirical measurements, and more 

complicated velocity profiles can be handled by our models.  

  
(a) (b) 

Figure 4. a) The velocity profile; and b) the corresponding probability that the 

network is connected as a function of transmission range r. 

Scenario with Traffic Signals and Vehicle Interactions 

We now evaluate the robustness of our analytical results 

with more complicated traffic signal systems, specifically, in a 

generic urban route with the ramifications of consecutive 

traffic signals, and even with vehicle interactions.  

In the simulation, we capture vehicle interactions or the 

propagation of shockwave through the fundamental 

relationship between vehicular density and velocity. In the 

followings, we propose the front-density-dependent velocity 

field, which is modified based on the Greenshield’s model [13] 

for such propose: 

 
( , )

( , ) 1

j

f

n x x t
v x t v

k

 
 

 
 
 

                   (30) 

where vf represents the mean free speed and kj denotes the 

jamming density. If we define lc as the average space occupied 

by a car at stationary, then kj = 1/ lc.  

Eq. (30) illustrates our front-density-dependent velocity 

profile, we have the velocity as a function of density ∆x in 

front, the velocity decreases as the density in front increases. It 

is analogous to the car-following mechanism [14] in transport 

studies, when the vehicular density in front becomes high (i.e., 

cars in front decelerate), we should decelerate as well. Such 

general traffic flow model is applicable to most of the urban 

route scenarios, no matter there are slowing down, stopping, 

start moving of vehicles or not.  

With the front-density-dependent velocity profile, we can 

approximate the interactions between vehicles in the fluid 

model iteratively. The general idea is, initially, we assume 

there are no vehicles on the road, i.e., n(x, 0) = 0 for all x 

belongs to X, where X is the location space. Therefore, the 

initial velocity will be the mean free speed vf according to (30). 

Based on these initial conditions, we solve the differential 

equations in the fluid model for the vehicular density along the 

route. We can then compute the new velocity profile for the 
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next time slot from the vehicular density profile according to 

(30), and so on. 

In the simulation, we assume there are no cars joining and 

leaving the urban route at junctions, cars only arrive at 

location 0 at a constant rate (denoted by α) of 30 cars/min, 

with the mean free speed, vf = 1 km/min, using the front-

density-dependent velocity profile with ∆x = 0.02 km as 

described in (30) unless otherwise specified. Assume the space 

occupied by a car at stationary as 4 m, so the jamming density 

kj = 250 cars/km.  

Figure 5 depicts the new street configuration for 

simulations. We consider that there are two traffic signals that 

are 500 m apart, located at the 2 km and 2.5 km locations 

respectively. Both of them have a 1 min cycle time, with 30 

sec green, 3 sec amber, and 27 sec red signal periods. 
traffic lights

500m
 

Figure 5. Street configuration test network. 

To explain the relation between the traffic signals and 

velocity, consider the traffic signal at location 2 km on the 

route, we allow a further 0.012 km distance behind the traffic 

signal as the length of the junction. Thus, during the red signal 

period, v = 0 if 2 ≤ x < 2.012 as shown in (31). In addition, we 

also include extra 0.02 km in front and behind the zero-

velocity region so as to ensure that the partial derivative of v 

w.r.t. x in (9) is finite. For other regions during the red signal 

period, the front-density-dependent velocity field v applies.  

if  < 1.98

( / 0.02) * (2 ) if 1.98 2

( , ) 0 if 2 2.012

( / 0.02) * ( 2.02) if 2.012 2.032

if x  2.032

v x

v x x

v x t x

v x x

v

  

  

  











    (31) 

When the signal turns green, we instantaneously set the 

velocity in the junction (2, 2.012] to be the mean free speed vf 

(for a very short period of time) to represent that the first car in 

the queue move down the road with the highest speed when 

the signal turns green. The following cars then move 

according to the front-density-dependent velocity field. 

We introduce an amber signal period to model the 

stopping motion of vehicles more rigorously, such that the 

velocity within the junction region (2, 2.012] gradually 

decreases to zero when the signal turns red. 

To evaluate the stochastic independence of the model with 

vehicle interactions, we examine the dependency of the 

number of cars in two non-overlapping regions in the presence 

of vehicle interactions, we raise the arrival rate α of vehicles to 

the urban route in steps from 10 to 30 cars/min, and examine 

the correlation between the number of vehicles in two 

consecutive regions (2, 2.2] and (2.2, 2.4] in time interval (4, 

6]. We can see from Figure 6 that as the arrival rate decreases, 

the correlation decreases. For α = 30 cars/min, the average 

correlation is 0.2486 (the closer the coefficient to either −1 or 

1, the stronger the correlation between the variables), while for 

20 and 10 cars/min, it drops to 0.057 and 0.003 respectively. 

The reason behind is that there are less interactions between 

vehicles with lower traffic load, and thus the stochastic 

independency of the PALM is better maintained. Therefore, 

given that the arrival rate is not too high, the PALM 

distributional results can be treated as an approximation to the 

actual number of cars in a road section even in the presence of 

vehicle interactions. 

 
Figure 6. Correlation coefficient in time interval (4, 6] in the two-traffic-light 

scenario with different arrival rate (phase shift = 15 sec). 

We verify the analytical results in (25) and (29) by 

comparing them with simulated results. For the cascaded 

traffic light scenario with the phase shift between the two 

traffic lights set to be 22.5 sec, we plot the simulated and 

analytical results in Figure 7 for the probability that the 

network is k-connected (for k = 1 and 2) as a function of the 

transmission range r. We consider the network in the road 

region (1.5, 2.5] at time instance 4.5 min. From the figure, we 

can see that the analytical and simulated results are close to 

each other even when vehicle interactions are considered by 

(30), and the k-connected probability grows to one when the 

transmission range is large enough. 

 
Figure 7. The analytical and simulated probability that the network in road 

region (1.5, 2.5] at time instance 4.5 min in the two-traffic-light scenario is k-

connected as a function of transmission range r. 

VI. TRANSMISSION RANGE ADJUSTMENT 

Many system engineering and network management 

issues can be investigated with the knowledge of connectivity 

dynamics. As an illustrative example, we demonstrate with 

numerical results in this section of how the connectivity 

information facilitates transmission range adjustment of 

mobile nodes for boosting the overall network connectivity. 

For road segments that are likely to be disconnected, we 

can adjust the transmission ranges of vehicles to achieve an 
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almost surely connected network. As illustrated in Figure 7, 

given the transmission range r, we can calculate from (29) the 

probability that the network in the road segment is k-connected 

at a time instance. We can then take the time average of the 

probabilities to determine the critical transmission range for 

achieving certain degree of connectivity with high probability 

over a period of time. For instance, for the two-traffic-light 

scenario described in Section V with a traffic load of 3 

cars/min (off-peak hour case), we plot in Figure 8a the time-

averaged probability that the network in road region (2, 2.5] is 

connected over time interval (3, 5] as a function of 

transmission range, from which we can see that as the 

transmission range of vehicles increases beyond 370 m, the 

probability the network is connected is greater than 95%.  

Instead of having all vehicles to use large transmit power 

and thus transmission range, we can adjust the transmission 

range of individual vehicle dynamically according to its 

location and the corresponding vehicular density n(x, t) so as 

to prevent disconnection of the network. 

At a time instance, given fL(x), which is derived from n(x), 

we can adjust r to r*(x) such that P(N(x+∆x, x+r*(x)) ≥ 1) ≥ ξ 

for all x, where ξ is certain probability threshold that is close to 

one, to ensure connectivity. Hence, we have 
[ ( , *( ))]

1
E N x x x r x

e   
                            (32) 

Substitute (32) into (25), the probability that the network in 

the road segment (0, L] is connected after such manipulation is 

 
0

(net con) exp [ ( )](1 ) ( )
L

L r

P E N L f x dx


          (33) 

Figure 8b depicts the probability that the network is 

connected for the off-peak hour case averaged over time 

interval (3, 5] as a function of ξ. For instance, we can see from 

the figure that with ξ = 0.95, the time-averaged probability of 

connectivity is great than 0.9.  

VII. CONCLUSION 

Nowadays, most of the vehicles are installed with GPS 

devices that can collect velocity information. Such information 

can serve as an initial input to the stochastic traffic model for 

computing the vehicular density. The future evolution of the 

traffic can then be approximated by the front-density-

dependent velocity profile, and the propagation of shock wave, 

compression and rarefaction of the traffic stream due to traffic 

signals can also be automatically captured given the 

corresponding signaling information.  

In this paper, we have modeled connectivity dynamics in 

vehicular ad-hoc networks in a generic signalized urban route 

based on density information provided by the stochastic traffic 

model. Specifically, we have determined the probability that 

the network in a road segment is k-connected, and 

demonstrated the applicability of our models and analysis on 

network planning such as the adjustment of transmission range 

of vehicles for maintaining connectivity. In essence, we have 

shown that the connectivity analysis is a good approximation 

even when vehicles interact with each other as their movement 

is controlled by traffic lights. 

Our work on connectivity modeling is the first in the 

literature to take account of traffic signals and vehicle 

interactions in VANETs. In general, the connectivity analysis 

in this paper is applicable to more elaborated urban traffic 

models. For example, routes with more number of segments 

and traffic signals, and with arrival and departure of vehicles 

at road junctions. As other extensions, connectivity of roads 

with multiple lanes, bi-directional traffic and more 

complicated urban road network (e.g., two-dimensional road 

topology) can be represented by superposing multiple versions 

of urban routes.  
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Figure 8. Probability that the network in road region (2, 2.5] is connected time-
averaged over interval (3, 5] as a function of a) transmission range r; and b) 

the probability threshold ξ. 


