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Abstract—The development of pervasive computing systems
and services, where information will be distributed on-demand
across heterogeneous networks, highlights the necessity for an
effective framework to determine the relevancy of provided
information with respect to one’s needs. This paper considers
the problem of selecting the most “spatiotemporally” relevant
providers in order to meet a user’s information needs over a time
period of interest. Initially, the spatiotemporal relevancy metric is
proposed to measure the degree of relevancy of sensory informa-
tion with respect to both its spatial and temporal characteristics.
Based on this metric, the selection of the most relevant set of
providers under budget constraints is expressed as an integer
programming optimization problem and a two-level dynamic
programming (DP) algorithm is proposed to solve it optimally.
Moreover, a number of alternative methods are proposed in order
to accelerate the provider selection process by making approxi-
mations either to the overall optimization problem formulation or
the relevancy calculation method itself. Finally, the performance
of the proposed methods are examined both analytically and by
simulation for a number of provider scenarios.

I. INTRODUCTION

In [1]1, we considered a use scenario involving a city agency

that wants to collect sensory information to build a city-wide

air-quality map to support various services to the city dwellers

and visitors. Because of lack of sufficient sensory resources

and the geographical extend of the project, the agency (an in-

formation consumer) decides to engage a number of third party

sensory information sources (the information providers). The

specific challenge addressed in [1] was that of the consumer

selecting the set of providers that are deemed most relevant to

his information needs based on their geographical coverage,

quality of information (QoI) [8] and cost constraints.

Clearly, this scenario can be mapped to a number of use

cases involving various forms of participatory sensing where

consumers may bind to providers on demand. This could

be the case, for example, in coalition environments where
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1A version of [1] had been presented in ACITA 2011.

a sensory application (e.g., for chemical presence detection)

from one coalition member needs to engage sensory resources

belonging to other coalition members to supplement its own

resources (if any at all) in the various geographical areas of

interest. The sensory resources and applications of the various

coalition members may dynamically connect via a distributed

publish/subscribe system, such as the Information Fabric [2].

Within this setting, [1] considered the use of the spatial and

quality properties of information as a means to select the most

spatially relevant of the available providers. It introduced

the use of QoI functions to capture the quality properties of

the desired and provided information, for example, in region

A, the city agency desires air-quality measurements that

are within ±5% of their actual value. We then formulated

optimization problems and developed algorithmic procedures

for selecting one or more providers that provide the most

spatially relevant information to the one desired with or

without cost constraints. Spatial relevance relates to how

close or far is, in some sense, the spatial coverage and quality

of a provided piece of information to that desired, assuming,

of course, the semantic equivalency between these pieces of

information, e.g., concentration of chemical X .

The work in [1] considered only the spatial dimension of

the problem, which allowed us to build the intuition and

the foundations for this novel class of problems. That work

reflected a static interpretation of the problem where consumer

interests and provider capabilities did not change with time.

In the current paper, we relax this static assumption and

explicitly consider temporal variations as well and investigate

the selection of providers that are spatiotemporally relevant.

Specifically, the contributions made in this paper are:

• the introduction of (and metric for) spatiotemporal rela-
tivity between consumers and providers of information;

• the formulation of an optimization problem for selecting

the most spatiotemporally relevant information providers;

• the solution to the problem using a dynamic program-

ming (DP) based algorithm, along its performance and

complexity assessment;

• the development of solution acceleration techniques, their

performance and time-complexity trade-offs.

To the best of our knowledge, this research area of spa-



tiotemporal relevancy of sensory information within the con-

text of consumers and providers of information is a novel one.

Even though the area appears, at first glance, to resemble that

of sensor network coverage [3], [4] it is distinctively different

with no prior art directly related to it. Coverage problems

are concerned primarily with static deployment strategies of

sensors of a single sensor network. They are not concerned

with the operational aspects of dynamically selecting informa-

tion providers (possibly representing multiple sensor networks)

under spatially varying and temporally evolving interests and

capabilities of consumers and providers, respectively, while

considering both coverage and QoI aspects. Our research

pursue in this area aims to build an understanding and the

foundations of the process of selecting resources based on

spatiotemporally evolving needs, expectations, and capabilities

of multiple entities that provide and consume information.

While we could find no prior art on the subject to compare

against, there are ancillary pieces of work, of course, that

contribute to this research area such as [5] that reviews data

models applicable to spatio-temporal databases and [6] that

considers the summarization of 2D spatial shapes through a

bounded number of parameters. Ref. [7] further considers ap-

proximations of multidimensional shapes via the use of spline

surfaces. This background art, and references therein, could

form the basis for several operational aspects of our proposals

such as the QoI function management (e.g., advertisement and

storage), however they do not pursue the objectives of our

novel research direction.

The rest of the paper is organized as follows. Section II

presents the notion of spatiotemporal relativity. Section III for-

mulates the selection of the best set of providers as an integer

programming problem and presents a DP algorithm to solve

it. Section IV presents three alternative problems that provide

approximation of the initial problem and Section V describes

two relevancy assessment approximation methods. Section VI

provides simulation results to evaluate the accuracy and time

requirements of the proposed methods and, finally, Section

VII concludes our work and outlines our future research.

II. SPATIOTEMPORAL RELATIVITY

In its broadest sense, the problem space at hand is that

of information consumers selecting (and binding) to informa-

tion providers that are most spatiotemporally relevant to the

information needs of the consumers while satisfying stated

operational constraints. In approaching this problem, first, we

need to describe what spatiotemporal relevancy means.2 We

will do so by building upon the narrower focus of spatial

relevancy considered in [1].

Let the spatiotemporal point w represent the pair (ω, t),
where, say, ω = (x, y) ∈ R

2 and t is a time instant. Let Re,

e = {d, p}, be a spatiotemporal volume where the desired
(d) or provided (p) quantities of interest are defined, e.g., Rd

denotes a region of interest, such as the southern part of the

2As noted in the introduction, we assume semantic equivalency of the
sought after and provided pieces of information.

city during a weekday evening rush hour. For each w ∈ Rd,

let qd(w) represent the quality of desired information, e.g.,

its accuracy, latency, etc., i.e., the QoI a consumer, e.g.,

the city agency, seeks [8] . Likewise, for each w ∈ Rp, let

qp(w) represent the QoI provided by an information provider,

e.g., by a sensory information provider owning air-quality

measuring sensors mounted on buildings or on vehicles of

a vehicle fleet, etc. We refer to qe(·), e = {d, p}, as the

(spatiotemporal) QoI function and, by convention, we assume

that qe(w) > 0 for w ∈ Re, and qe(w) = 0 for w /∈ Re.

For given qd(·) and qp(·), and w ∈ Rd∩Rp, let the value of
information function (or VoI function) v

(
qp(w); qd

)
represent

the benefit (or value) that the consumer attains when using

information of quality qp(w) when qd was desired. Note that

from an operational standpoint, we expect that information

seekers will advertise their QoI desires instead of their VoI

ones. For example, the city agency may advertise its desire

to collect air-quality measurements that have (at least) 90%

accuracy, but not why it needs such accuracy.

We use the VoI (anticipated to be) received from a provider

to define a measure of the instantaneous relevancy r(qd, qp; t)
of the provider at time t the ratio of the total value to be gained

from the information provided (by the provider) at time t and

the total value it would have attained if information at the

desired quality at time t were to be received:

r(qd, qp; t) =

∫
Rt

d∩Rt
p
v
(
qp(ω, t); qd

)
dω∫

Rt
d
v
(
qd(ω, t); qd

)
dω

(1)

Note that if no extra value is gained when information

of higher quality is provided than what is desired,

then v
(
qp(ω, t); qd

)
≤ v

(
qd(ω, t); qd

)
and, hence,

0 ≤ r(qd, qp; t) ≤ 1. For the numerical results later

in the paper, we will use the simple VoI function

v
(
qp(w); qd

)
= min

{
qp(w), qd(w)

}
, which easily satisfies

the previous condition.

Finally, we define a measure of the spatiotemporal relevancy
rst(qd, qp) of a provider the average of the spatiotemporal

relevancy of the provider over the entire time horizon of

interest T = {t : ∃ω s.t. (ω, t) ∈ Rd}. We write |T | for

the “duration” of T and

rst(qd, qp) =
1

|T |

∫
T
r
(
qd, qp; t

)
dt; (2)

with a corresponding expression using sums in case of discrete

time. It should be noted that although not evident at first

glance, the relevancy defined in (2) could assume the form of

an elaborate weighted time average with the weights implicitly

incorporated within the VoI functions v
(
qp(ω, t); qd

)
.

III. PROBLEM FORMULATION AND DP ALGORITHM

In this section, we develop a problem model and provide

a solution methodology for the problem. In the following

sections, we present special cases of the problem model that

lead to accelerated but approximate solutions to the problem.



A. System model and assumptions

Let tn, n ∈ N = {1, . . . , N}, be a sequence of time instants

over the time interval T = [0, T ]; we refer to tn as time n
and the time interval Δtn = [tn, tn+1) as slot n. Each n
represents a provider selection point where the consumer may

decide to switch providers to maximize the spatiotemporal rel-

evancy of the information it receives under various operational

constraints; we use the discrete version of (2).

The operational constraints are expressed through a resource

(or budget) constraint B, which could represent a monetary

constraint, an energy constraint, amount of risk, and so on.

There is a set K = {1, . . . ,K} of providers that can be

engaged at one time or another during the interval T , and

the cost of engaging with provider k over slot n is ck,n. It is

assumed that providers communicate their capabilities to the

consumer through their respective QoI functions qkp(·); how

exactly this is done is beyond the scope of this paper. The

consumer combines this with its own desires, expressed by

its QoI function qd(·) to compute a provider’s spatiotemporal

relativity as described in the previous section.

Finally, we assume that, whenever it engages with two

or more providers serving the same spatiotemporal point, a

consumer “experiences” an aggregate QoI function that results

from the QoI functions of the providers engaged. Specifically,

if w is a spatiotemporal point within the volumes Ri
p of two

(or more) providers i ∈ K, and xw is the provider selection
mask indicating which providers the consumer is using at

point w,3 then the aggregate provider QoI function qxp (w) is

described by the transformation h
(
qkp(w); k ∈ K, x(k) = 1

)
.

For example, for two providers i and j, if the accuracy

of measurements from provider i at point w is 97% and

from provider j is 95%, the aggregated quality from the two

providers could be taken to be the better accuracy of the two,

i.e., 97%, i.e., h ≡ max{·}. We use the latter exemplary h in

our numerical results later on.

B. Problem formulation

Let I = [I(k, n)]K×N be the provider selection matrix,

where I(k, n) equals 1 when provider k is engaged during

interval Δtn, and 0 otherwise. Also, let qIp(·) be the spatiotem-

poral relevancy of a “super-provider” with a QoI function

aggregated from the providers indicated by selection matrix

I as described earlier. The problem at hand is, then, described

by the following optimization formulation:

Problem ΠT : Find the provider selection matrix I that

maximizes rst
(
qd, q

I
p

)
, such that:

N∑
n=1

K∑
k=1

I(k, n)ck,n ≤ B. (3)

Problem ΠT is a generalization of the Knapsack problem

in two ways. First, the fact that the benefit of selecting a

particular provider depends on the providers that are already

3xw(k) = 1 if provider k ∈ K is used, and 0 otherwise. For convenience,
if context permits it, we will drop the index w from xw .

Algorithm 1 – First Level DP Algorithm for time n

1: for k = 1 to K do
2: for b = 0 to B do
3: if ck,n ≤ b then
4: x = x

b−ck,n

k−1,n ; where: x
b−ck,n

0,n
def
= 0, x0

k−1,n
def
= 0;

5: x(k) = 1;

6: if rs
(
qd, q

x
p , tn

)
not calculated then

7: Calculate rs
(
qd, q

x
p , n

)
using (1);

8: else
9: Get rs

(
qd, q

x
p , n

)
from memory;

10: end if
11: if rs

(
qd, q

x
p , tn

)
> V n [k − 1, b] then

12: V n [k, b] = rs
(
qd, q

x
p , n

)
; xb

k,n = x;

13: else
14: V n [k, b] = V n [k − 1, b]; xb

k,n = xb
k−1,n;

15: end if
16: else
17: V n [k, b] = V n [k − 1, b]; xb

k,n = xb
k−1,n;

18: end if
19: end for
20: end for

selected, and, then, the fact that there is the temporal dimen-

sion of the problem. The 0-1 Knapsack problem is an NP-Hard

problem [9] and, hence, problem ΠT is also NP-Hard, which

means that there is no known algorithm that calculates the opti-

mal solution in polynomial time. The most efficient algorithm

to solve the 0-1 Knapsack Problem is a dynamic program-

ming algorithm that manages to find the optimal solution in

pseudo-polynomial time by splitting the problem into smaller

subproblems and storing intermediate results in memory.

C. The solution

To solve ΠT we have developed a two-layer dynamic

programming algorithm. Initially, Algorithm 1 looks only at

the optimization process one time instant at a time. It is based

on the algorithm for the static case introduced in [1] updated to

the index structure in this paper. Specifically, qxp in line 6 is the

aggregated QoI function representing the collective behavior

of the providers selected as indicated by the selection mask

x and defined in the provider spatiotemporal region Rx
p =

∪k∈K|x(k)=1R
k
p . The vector xb

k,n represents the optimal selec-

tion mask when the total time horizon is n, the total available

budget is b and there are in total k providers; hence, xB
K,N cor-

responds to the desired selection mask for the problem at hand.

At first, Algorithm 1 is run independently for each time

instant n, with n = 1, . . . , N , optimizing the allocation of

the total budget B at each time instant. For each n, the

algorithm produces the K×B matrix V n, whose (k, b) entry

contains the optimal spatiotemporal relevancy that corresponds

to xb
k,n selection mask. Hence, the last row considers all the

K providers, and the last entry also considers the entire budget

B being available at time n.

Subsequently, Algorithm 2 uses the V n matrices to con-

struct the N ×B matrix F whose n-th row is the last row of



one Vn matix per slot
Vn(k,b)  optimal relevancy at time n,
with k providers & budget b

F(n,b)  optimal relevancy at time n,
with all N providers & budget b

k

b

n

b

Fig. 1. Matrix merging at the second level DP Algorithm

matrix V n, see Figure 1. The resulting matrix F is used to

construct the final matrix S, necessary for the calculation of

the optimal selection masks of the overall problem. The main

steps of the creation of matrix S are lines 7–10 in Algorithm

2. At each iteration n, we choose the allocation of budget

βmax (and subsequently the allocation of b − βmax to all

previous n−1 slots) that gives higher aggregate relevancy and

store a reference towards the optimal solution of the previous

time instants (the element S(n − 1, b − βmax)), denoted by

Prev(n, b). Finally, element S(N,B) will have the optimal

aggregate relevancy for the overall time period T and by

following the values of matrix Prev it is possible to trace

the optimal selection masks to achieve the maximum aggregate

relevancy. For instance, Prev(N,B) will contain the budget

that should be allocated for the previous n − 1 time instants

and S
(
N − 1, P rev(N,B)

)
will be the maximum aggregate

relevancy for instants 1 to N − 1. Then, the optimal selection

mask at time slot N − 1 will be I
Prev(N,B)
N−1 , and so on.

Note that the optimal selection matrix I will consist of the

N optimal selection masks for times n ∈ N .

The time complexity and memory requirements of Al-

gorithm 2 can be calculated based on the complexity of

Algorithm 1 and the additional matrix operations of the second

level of the optimization algorithm. Algorithm 1 has a worst

case complexity of O(K2B) [1] and is repeated once for

each time instant n. Then, lines 4–12 of Algorithm 2 are

independent of the number of providers and only depend on

the total budget B and the number of time instants N . Hence

the worst case complexity of Algorithm 2 is O(K2BN). Then,

the memory requirements of the algorithm can be calculated

as follows. The N runs of Algorithm 1 need to store all V n

matrices, with n = 1, 2, . . . , N , of total size N × K × B,

and the optimal selection masks [xb
K,n]N×B×K . Then, the

additional matrix manipulations of Algorithm 2 need to store

matrices [F ]N×B and [S]N×B , the optimal selection mask

of size K for each of their cells, and matrix [Prev]N×B .

However, the execution time of Algorithm 1, and therefore

Algorithm 2, can be accelerated by calculating the greatest
common divisor (gcd) of all the provider costs cn,k and the

available budget B, and then running the algorithm in the

Algorithm 2 – Second level DP Algorithm

1: for n = 1 to N do
2: Run Algorithm 1 for qd(·, n) and qkp(·, n) ∀ providers

k = 1, . . . ,K;

3: end for
4: Create matrix F , where F [n, b] = V n[K, b] (see Figure

1), and keep vectors xb
K,n for n = 1, . . . , N and b =

1, . . . , B;

5: for n = 2 to N do
6: for b = 1 to B do
7: B = {1, . . . , b};

8: S(n, b) = max
β∈B

(
S(n− 1, b− β) + F (n, β)

)
;

where S(1, b) = F (1, b), ∀b = 1, . . . , B, and

S(n, 0) = 0, ∀n = 1, . . . , N ;

9: βmax = argmax
β∈B

(
S(n− 1, b− β) + F (n, β)

)
;

10: Ibn = xβmax

K,n ; Prev(n, b) = b− βmax;

11: end for
12: end for

range [0, B/gcd] with provider costs cn,k/gcd.

IV. ACCELERATING THE PROVIDER SELECTION

Algorithm 2 in the previous section requires the run of

Algorithm 1 for N times, one for each time slot and then some

further calculations to reach the overall optimal solution over

the time horizon T . In some cases, it might be necessary to

get fast decisions about the providers that must be selected at

expense of optimality. Three faster but suboptimal alternative

methods will be described and discussed in this section.

Numerical results on their performance and time requirements

will be presented later in Section VI.

A. Independent per Slot Optimization

Suppose that the city agency has an overall weekly operating

budget B along with a daily expense constraint bn, such that∑
bn = B for the week. Clearly, in this case, the budget

allocations at the decision points are outside the purview of the

general optimization problem ΠT . Therefore, we can avoid the

extra calculations of Algorithm 2, and instead solve a sequence

of independent optimization problems for each time n. In other

words, one could formulate problem ΠT
bn

as:

Problem ΠT
bn

: Given a collection of budget allocations bn,

n ∈ N , with
∑

n∈N bn = B, find the provider selection matrix

I that maximizes rst
(
qd, q

I
p

)
, such that:

K∑
k=1

I(k, n)ck,n ≤ bn, n = 1, . . . , N. (4)

Problem ΠT
bn

can be split into N independent optimization

problems that optimize the spatial relevancy independently at

each slot based on a fixed amount of budget bn. In other

words, Problem ΠT
bn

consists of N repetitions of Problem

Πbg in [1], one for each time instant n. So, compared with

Problem ΠT
B this approximation runs only Algorithm 1 to



get the optimal selection mask xbn
K,n at each time n (which

will become the nth column of matrix I) and saves the time

and memory requirements of Algorithm 2 at the expense of

some calculation error in the overall spatiotemporal relevancy.

Therefore, the time and memory requirements of Problem ΠT
bn

are the same as for Algorithm 1. The acceleration techniques

mentioned in the discussion of Algorithm 2 and in [1] can be

also used here to reduce the time requirements of the method.

There could be numerous splitting policies for the budget

which may be based on actual needs, accounting conveniences,

and so on. These policies could depend on n, or not, they could

depend on other bn’s (i.e., have “memory”), or not, etc. In the

simplest case, the budget B could be split uniformly across

the time horizon, and hence bn = B/N for all n. With such

a memoryless budget assignment, any unused portion of the

budget at each slot will go wasted. This may not be desirable

though and instead one may want to rollover the unused

budget to subsequent slots, e.g., at the next slot or along all

remaining slots, to reduce the unused portion of the budget. As

an example, at time n let the provider selection mask decided

be In = {I(1, n), . . . , I(K,n)}. Then the budget slack due

to this selection will be b′n = bn −∑K
k=1 I(k, n)ck,n. If this

slack is to be distributed equally across the remaining slots and

taken advantage when provider selection decisions are made

at time (n+ 1), then:

bn+1
def
= bnewn+1 = boldn+1 +

b′n
N − n

, (5)

where the designations “old” and “new” apply to the old

budget available for decision instant (n+1) (from budget slack

assignments made prior to time n) and the updated budget at

this time instant.

B. Boolean Relaxation

Problem ΠT is an integer programming problem that is NP-
Hard as a generalization of the Knapsack problem. However,

the problem can be easily solved once the requirement for

deriving binary (0-1) values for the selection matrix is relaxed.

Boolean relaxation [10] is a common technique in optimiza-

tion problems that contain optimization variables that have

boolean values. For an optimization variable x by relaxing

the constraint from x ∈ {0, 1} to x ∈ [0, 1], we convert

the problem into a continuous optimization problem that is

in general easier to solve, particularly, if the resulting relaxed

problem is convex. In this case, we also relax the concept of

provider selection, and instead refer to provider participation
(to be further explained shortly), and the new optimization

problem ΠT
Rel becomes:

Problem ΠT
Rel: Find the provider participation matrix I that

maximizes rst
(
qd, q

I
p

)
, such that:

(1)
N∑

n=1

K∑
k=1

I(k, n)ck,n ≤ B; and (6)

(2) 0 ≤ I(k, n) ≤ 1, k ∈ K and n ∈ N

Algorithm 3 – Myopic Algorithm

1: Initialize I(k, n) = 0 for k = 1, . . . ,K and n = 1, . . . , N
2: Calculate rst

(
qd, q

k
p

)
, k = 1, . . . ,K, and sort in descend-

ing order;

3: Let idx(m) be the index of ordered provider m.

4: b = B; m = 1;

5: while (b > 0 & m ≤ K) do
6: if b ≥ cidx(m) then
7: I(idx(m), n) = 1 for n = 1, . . . , N ;

8: end if
9: b = b− cidx(m); m = m+ 1;

10: end while

Problem ΠT
Rel is a convex continuous optimization problem

since the constraints are linear functions of the optimization

variables I(k, n), for k ∈ K and n ∈ N , and the objective

function is concave as a summation of linear functions of the

optimization variables. Therefore, Problem ΠT
Rel and can be

easily solved with gradient based optimization algorithms that

require linear time [11].

In the case of Boolean relaxation, there is an appealing

interpretation of the derived solution, particularly, when the

slots n are of equal duration. An optimal variable I(k, n) = α
with α ∈ [0, 1] implies that the consumer decides to bind with

(and pay) provider k at time n only for the fraction α of time

slot n. This is why we refer to the selection matrix as the

participation matrix instead in this case.

C. Myopic Algorithm

In circumstances that a fast decision about selecting an

appropriate set of providers is of highest importance, we may

resort to myopic algorithms that select providers based on a

rather limited view of the problem. We have considered a

simple myopic algorithm where the spatiotemporal relevancy

rst
(
qd, q

k
p

)
of each provider k over the time horizon T is cal-

culated first. Then, the providers are ordered according to their

respective relevancy rst
(
qd, q

k
p

)
. Based on this relevancy and

the total cost ck =
∑N

n=1 ck,n for engaging (whenever possi-

ble) with provider k during the period T , the top M providers

are chosen so that the total cost is as close to B as possible. In

case that
∑M

m=1 c
m < B and

∑M+1
m=1 cm > B, it is possible

to choose a provider that is further down in the relevancy

ranking table but with cost low enough to be accommodated

by the remaining budget. Algorithm 3 summarizes the Myopic

algorithm. Regarding its complexity, the calculation of the spa-

tiotemporal relevancy of providers requires O(K) time, the or-

dering of the providers can be calculated in O(K logK) time

and the selection of the providers is O(KB) in the worst case.

This myopic algorithm will operate well when the providers

experience inconsequential overlapping in which case the

effects of provider aggregation do not manifest themselves

strongly. This is because in this case, the increase of the aggre-
gate spatiotemporal relevancy by including a provider will be

equal to its individual spatiotemporal relevancy. However, in

general, the more the providers overlap, the more discrepancy



would be in the computed relevancy with regard to the optimal

one which could effect the provider selections.

V. ACCELERATING THE RELEVANCY ASSESSMENT

The implementation of DP Algorithm 2 and the three ap-

proximation methods presented in Section IV involve multiple

evaluations of equations (1) and (2) and therefore multiple

numerical integrations of the VoI function. On the other hand,

even though significantly faster, the computation of relevancy

by merely computing the regions of overlap (e.g., using [12],

[13]) as was implied in [14] cannot capture the variability

of QoI functions. To bridge that gap between these two

extreme cases in spatiotemporal relativity calculation, this

section presents two alternative approximation methods that

leverage existing polygon intersection tools in such a way that

they take into account all the information contained in the QoI

functions and lead to significant improvements by avoiding the

numerical integration of equations (1) and (2).

A. Polygon Intersection (PolIn)

The most time consuming operation in Algorithm 1 is the

calculation of spatial relevancy for the candidate selection

masks in line 7. In order to accelerate the calculation of the

selection mask at time n, we approximate the computation of

the aggregate relevancy r
(
qd, q

x
p ;n

)
by splitting the support

regions Rk
p and Rd of each provider k ∈ K and the consumer,

respectively, in a number of polygons and associate a single

QoI value with each one. Then, we calculate the aggregate

spatial relevancy using polygon operations.

More specifically, let the coverage region Rk,n
p of provider

k at slot n be partitioned into Ln,k polygons4 ml
n,k, with

l = 1, 2, . . . , Ln,k, and a single QoI value qln,k be associated

with each polygon to represent the QoI function values within

it. In the same way, let the desired support region Rn
d be par-

titioned into Ld
n polygons and a QoI value qln,d be associated

with polygon ml
n,d, with l = 1, 2, . . . , Ld

n. The QoI values qln,k
for each provider polygon and qln,d for each desired support

polygon could represent the mean of the actual QoI values

within those polygons. Then, the aggregation of the polygons

based on the candidate selection mask x at each iteration of

Algorithm 1 is conducted by calculating the intersections and

subtractions for all the combinations of the selected polygons.

The result of the aggregation operation will be the set of

polygons ml
n,x, where l = 1, 2, . . . , Ln,x. Each one of these

polygons will be associated with a QoI value qln,x which will

be the result of the QoI provider aggregation operator h of

all the providers involved in the creation of polygon ml
n,x;

as mentioned earlier, for the numerical results h will be the

“max” operator. These aggregate polygons of the selected

providers are then intersected with the desired polygons (i.e.,

derived from Rd) and the result is a set of polygons ms
n,d∩x,

with s = 1, 2, . . . , Sn,d∩x along with their corresponding QoI

values qsτ,d∩x. The QoI values are calculated by applying

4We have implicitly assumed that any region Rk,n
p or Rn

d can be approx-
imated sufficiently well by a set of polygons of arbitrary number of edges, a
widely used technique in computer graphics called Polygonal Modeling [15].
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Fig. 2. Example of the PolIn method

the VoI function v at the desired qln,d and aggregate qln,x
QoI values of the provider and desired polygons involved in

the creation of polygon ms
n,d∩x; d ∩ x identifies the regions

of overlap between the desired polygons and the polygons

of providers in x. As mentioned earlier, for the numerical

results, v will be represented by the “min” operator. Figure

2 illustrates the described procedure for K = 2, Ln,k = 2,

k ∈ {1, 2}, and Ld
n = 2. Observe that the aggregation

operation of the 4 provider polygons results in the creation

of Ln,x = 8 polygons, whereas the aggregate provider

and desired polygons’ intersection leads to the creation of

Sn,d∩x = 7 polygons.

Finally, the spatial relevancy r
(
qd, q

x
p ;n

)
will be calculated

according to equation:

rs
(
qd, q

x
p , n

)
=

Sn,d∩x∑
s=1

qsn,d∩x ·As
n,d∩x

Ld
n∑

l=1

qln,d ·Al
n,d

(7)

where As
n,d∩x is the area of the provider polygon ms

n,d∩x

for s = 1, 2, . . . , Sn,x, and Al
n,d is the area of the desired

polygons ml
n,d, for l = 1, 2, . . . , Ld

n.

Apart from this approximation of the spatial relevancy

metric the rest of the procedure for solving Problem ΠT using

algorithms 1 and 2 remains identical.

B. Mean Value Polygon Intersection (mvPolIn)

The PolIn method can lead to the creation of a very large

number of polygons. The calculation of the aggregation

and intersection operations for all these polygons could

still consume a significant amount of time. Therefore, to

accelerate the process even further, we also consider the

following variation, which we refer to as the Mean Value

Polygon Intersection (mvPolIn).

The main idea behind mvPolIn is that the spatial relevancy

calculation process can be accelerated significantly if the

aggregation of providers leads to a relatively small number of

polygons with a single QoI value. Therefore, let mj
n,x, with

j = 1, 2, . . . , Jn be the polygons resulting from the union of
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Fig. 3. Example of the mvPolIn method

all providers in the selection mask x5 and there is a single QoI

value qn,x associated with these polygons mj
n,x, calculated as

the weighted average of the QoI values of all the polygons

participating in their creation, according to:

qn,x =

Jn∑
j=1

Aj
n,x ·mj

n,x

Jn∑
j=1

Aj
n,x

(8)

where Aj
n,x is the area of polygon mj

n,x. Then, to calculate

the spatial relevancy of the candidate selection mask x, the

Jn provider polygons are intersected with the Ld
n desired

polygons whose QoI value qn,d is also a weighted average

calculated in a way similar to (8). The resulting polygons

ms
n,d∩x for s = 1, 2, . . . , Sn,d∩x along with their respective

QoI values qsn,d∩x = v
(
qn,x, qn,d

)
are used to calculate the

spatial relevancy of the candidate selection mask x using:

r
(
qd, q

x
p ;n

)
=

Sn,d∩x∑
s=1

qsn,d∩x ·As
n,d∩x

Ld
n∑

l=1

qln,d ·Al
n,d

(9)

where As
n,d∩x is the area of polygon ms

n,d∩x. Figure 3 shows

an example of the above described procedure for K = 3,

Ln,k = 1, k ∈ {1, 3} and Ln,2 = 2. The spatial relevancy

value calculated by (9) is then used at the next steps of Algo-

rithm 1 to determine the optimal selection mask at time n.

VI. SIMULATION RESULTS

The DP Algorithm 2 and the other alternative methods

presented in the previous sections were simulated in a

MATLAB environment to study their performance vs.

time-complexity trade-offs.

The various methods were evaluated in multiple randomly

generated experiments for N = 8 time instants. At every

5In general, the union of a set of polygons will never increase its cardinality,
hence,

∑
k|x(k)=1 Ln,k ≥ Jn will hold true.

instant of these experiments a number of Gaussian mixtures,

representing the desired (qd) and provided (qkp ) QoI functions,

where randomly scaled and placed on the plane. The QoI

shapes for all N instants where then fed to the various

optimization methods where each of them determined the

most appropriate set of providers according to the budget con-

straints, while measuring the necessary optimization time of

each method. The above experiments were repeated multiple

times and for values of K within the range [4, 11]; budgets

B = 75, 85, 98, 110, 115, 130, 138, 150; and provider costs:

2, 3, 4, 6, 3, 4, 2, 5, 4, 2, 1, 4 (fixed per provider). Figure 4

shows an example time instant where the “city agency” has to

determine the spatiotemporal relevancy of K = 8 providers.

Figure 5 shows the spatiotemporal relevancy value of each

method with respect to the number of providers K. As

expected, Algorithm 2 and the Boolean Relaxation method

lead to almost identical values of spatiotemporal relevancy,

which is also higher than all other mothods. Then, the PolIn

method results to values that are relatively close to the

optimal (as calculated by Algorithm 2). More specifically, the

spatiotemporal relavancy metric value calculated by PolIn was

on average 5% below the optimal solution. On the other hand,

the performance of mvPolIn and the Myopic methods were

significantly suboptimal, with the former being on average

20% suboptimal and the latter achieving around 26% worse

performance. This high percentage of error is observed due

to the several approximations each of the methods makes to

accelerate their execution (see discussion of Figure 6).

However, the accuracy of spatiotemporal relevancy calcu-

lations are only one side of the coin. The execution time

of each of the methods is also important to determine their

efficiency. Figure 6 shows the execution times of the 6
methods. According to this, Algorithm 2 consumes the largest

amount of time. This is a result of the numerical integrations

necessary to calculate the spatial relevancy of every candidate

selection mask at each time instant. The Boolean Relaxation

method converges to the optimal solution in relatively short

time as it solves a continuous optimization problem for which

there are efficient linear gradient based solution algorithms

[11]. The Independent per Slot optimization algorithm is faster

Fig. 4. An example of the QoI functions a consumer (blue) and 8 providers
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Fig. 5. Aggregate spatiotemporal relevancy of various methods
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Fig. 6. Execution Time of Algorithm 2 and Approximation Methods using
a 2.4 GHz dual core PC with 4 GB of RAM.

than Algorithm 2 since it only executes Algorithm 1 N times.

Moreover, it makes more efficient use of parallel processing

capabilities of current computer systems and the acceleration

method using the greater common divisor of the provider

cost and the available budget (see Section III). Then, the

Myopic algorithm needs almost linear execution time with

respect to the number of providers, and, finally, mvPolIn is

the fastest method due to the significant simplifications done

in the calculation of the spatial relevancy.

It is therefore evident that each algorithm offers a different

trade-off between accuracy and time efficiency that might

make some algorithms more suitable than others depending

on the requirements (time and accuracy) of an application.

VII. CONCLUDING REMARKS

Motivated by evolutionary trends in smart planet

applications, this paper studied the spatiotemporal relevancy

between information providers and an information consumer

by considering the temporal evolution of their spatial

relationships. This evolution can be the result of either a

spatial movement of providers and/or the changing interests

of the consumer, or temporal changes in the QoI functions.

We have defined the spatiotemporal relevancy metric and then

formulated an integer programming optimization formulation

to describe the problem of selecting the most appropriate

set of providers over a period of time and by assuming

knowledge of the QoI functions throughout that period. Then,

we presented a two-level Dynamic Programming algorithm

to solve the problem optimally in pseudo-polynomial

time. Consequently, we discussed alternative optimization

formulations and relevancy approximating techniques that

improve execution time at the expense of accuracy. Finally,

the optimal algorithm along with the various approximations

were evaluated and compared in MATLAB.

Future work will consider operational aspects of the system,

such as QoI advertisements, as well as more generalized mo-

tion models, consideration of additional provider aggregation

operators h(·) and VoI functions v(·).
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