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Abstract—The continuously increasing demand for resources
in modern, both wired and wireless, communication networks
urges for more efficient resource allocation. Such an allocation
of resources to network users can be formulated as an optimiza-
tion problem. Traditional resource allocation protocols, such as
TCP, operate inefficiently in cases that there is competition for
resources by multimedia applications and some, or possibly all,
links in the network are wireless. In this paper, the performance
degradation of TCP in modern networks is quantified to highlight
the necessity for a novel optimization-based resource allocation
protocol. To this direction, a new optimization framework is
presented that can provide the theoretical foundations of such a
protocol by proving a sufficient, and in some cases also necessary,
condition for distributed solution of non-convex problems. The
wide applicability of this general framework is illustrated by
considering a resource allocation formulation in TDMA/CDMA
ad-hoc networks. The convergence properties to the optimal so-
lution are first identified and a distributed algorithm is proposed.
Moreover, a novel heuristic is developed to approximate the
optimal solution when the condition does not hold and resolve
network oscillations. Finally, the performance of the proposed
methodology is evaluated and compared against other approaches
in literature by simulation.

Index Terms—Network utility maximization, non-convex opti-
mization, resource allocation, wireless networks.

I. INTRODUCTION

MODERN communication networks must encompass and
simultaneously support multiple users, services and

applications with diverse demands and requirements that push
networks’ performance closer to their limit. Therefore, opti-
mum resource allocation between users and/or applications is
of paramount importance in order to assure efficient utilization
of the network. The resource allocation problem is one of the
numerous research areas in which Optimization Theory has
found extensive use, since it can lead to the development of
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distributed algorithms to assure optimal allocation of resources
in a network.

Kelly et al. in their seminal paper [1], and Low et al. [2]
later using a different mathematical approach, introduced the
Network Utility Maximization (NUM) framework, where the
resource allocation problem is expressed as an optimization
problem. Specifically, they formulate the following optimiza-
tion problem:

Problem ΠNUM : maximize
∑
r∈R

Ur (xr)

subject to Ax ≤ C , x ≥ 0,

where r, xr, Ur (xr), A and C denote the source node,
the data rate of source node r, the utility of node r when
transmitting at rate xr, the routing matrix and the capacity
vector respectively. The authors propose an algorithm that
determines the optimal way to share the link bandwidths
among different traffic flows under the assumption that the
utility functions are concave functions of the rate xr. This
algorithm relies on the fact that Problem ΠNUM is convex
and there is no duality gap between the optimal solutions of
the primal and dual problems, and manages to solve them both
at the same time iteratively.

This convex optimization framework has found numerous
applications in network resource allocation in wired networks
[3][4]. Lately, there have been some attempts to extend the
NUM framework to wireless networks. In [5], TCP is extended
so that it can optimize the resource allocation in High-
SINR wireless environment. [6] proposes a joint resource
allocation and power control problem formulation along with
a distributed algorithm to solve it and [7] proves that the NUM
formulation with concave utilities for wireless networks has
zero duality gap.

The main focus of the above pieces of work are on modeling
applications that generate elastic traffic [8]. Elastic traffic is
the traffic that can adjust to changes in network conditions,
such as delay, throughput etc, and still meet the Quality of
Service (QoS) needs of its applications. These applications
include FTP and HTTP, which were the majority of internet
traffic until recently. TCP is an example of a protocol de-
signed to perform optimally for this traffic in wired networks.
However, modern internet traffic is dominated by real-time
applications, such as video and audio streaming, that are
considered inelastic [8].

The main challenge when attempting to optimize networks
shared by inelastic applications is that these applications can-
not be modeled using concave utility functions and therefore
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the resulting problem turns into a non-convex one, which is
difficult to solve. This is because, contrary to what happens
in convex optimization, the gap between the primal and dual
optimal solutions in non-convex problems can be positive
and then more sophisticated techniques must be employed to
solve them [9]. The lack of convexity due to the existence
of inelastic traffic in current communication networks, makes
TCP operate suboptimally.

Recent work tries to relax the assumption of concave
utilities in the context of NUM. More specifically, authors in
[10] and [11] propose the use of sigmoidal or step functions
to model such traffic. In [12] [13], a non-convex NUM
formulation in wired networks is examined and the necessary
and sufficient conditions are proved so that a gradient-based
distributed algorithm can solve this problem formulation op-
timally. In addition, capacity provisioning is examined as a
method of avoiding the appearance of network oscillations.
Authors in [14] suggest an approximation of Shannon’s ca-
pacity formula that takes into account the outage probability
of wireless channels and proposes a convexification method
that could be applied to some non-concave utilities.

Most of the aforementioned work is restricted only to
specific non-concave formulations and do not provide a gen-
eral optimization framework. The absence of alternative
transport protocols to allow network optimization for
inelastic applications is the main motivation behind this
work. This paper makes the following contributions:

• Demonstrates the inability of current resource allocation
protocols, such as TCP, to behave optimally in both wired
and wireless networks.

• Proposes a non-convex optimization framework that re-
moves the critical assumptions for convexity of the prob-
lem formulation and proves a sufficient, and in some
cases also necessary, condition so that the framework
can solve a non-convex optimization formulation. The
significance of this framework is its generality and,
therefore, its suitability to a wide range of applications.

• Proposes an efficient resource allocation heuristic to
resolve user oscillations that occur when the provided
condition does not hold.

• Presents an application of the aforementioned framework
in wireless TDMA/CDMA ad-hoc networks. The pro-
posed resource allocation formulation, firstly, incorpo-
rates the interference among links, and secondly, intro-
duces a power penalty term in the objective function to
ensure convergence and energy efficiency of the power
control subproblem.

• Develops a distributed joint rate allocation and power
control algorithm, which enables network nodes to op-
timize their performance, even for the case of inelastic
traffic.

The rest of the paper is organized as follows. Section II
highlights the shortcomings of the widely used TCP protocol
in allocating bandwidth to networks shared by various types
of applications. Section III presents the general optimization
framework and proves a sufficient condition to assure opti-
mality of the solution. This condition is also shown to also
be a necessary condition for some non-convex optimization
problems. In Section IV, the framework is applied to the

resource allocation problem in wireless ad-hoc networks and a
distributed gradient-based algorithm is proposed. The case of
source rate oscillation is discussed and an efficient heuristic is
proposed to resolve it efficiently. Then, the performance of the
method is evaluated by simulations in Section V, and, finally,
Section VI concludes our current work and outlines our future
research.

II. TCP IN CURRENT COMMUNICATION NETWORKS

The Transmission Control Protocol - TCP [15] is currently
the most popular resource allocation mechanism. TCP is an
end-to-end connection-oriented protocol which relies only on
implicit information that is used to estimate the state of the
network and adjust the transmission rate of a connection. The
congestion control in TCP is implemented using a “window”,
whose size varies based on an implicit measurement of the
congestion in the network; the more unacknowledged packets,
the more congestion in the network. The size of the window
essentially determines the transmission rate of the source with
larger window leading to higher bitrate. Over the years, a
number of TCP variations have been proposed in order to
overcome some of the shortcomings of the initial protocol
with TCP Reno [16], TCP Vegas [17] and TCP CUBIC [18]
being some of the most popular ones.

TCP was designed based on a set of practical algorithms
to adjust the size of the transmission window without any
optimization theory considerations. However, recently, Low
et al. [19][20] proved that TCP implicitly solves a resource
allocation optimization problem and that the various TCP vari-
ations differ in the utilities comprising the objective function
of the problem. More specifically, TCP Reno solves Problem
ΠNUM with utility function Ur (xr) = 1

Dr
log xrDr

2xrDr+3 ,
where Dr is the round trip delay, and TCP Vegas solves the
same problem but with utility function Ur (xr) = αrdr log xr,
where αr is a positive calibration parameter and dr is the
round trip propagation delay of source r.

It is evident from the above that the resource allocation
mechanism of TCP assigns the same concave utility function
to all flows in the network independently of the nature of the
application generating the traffic. When TCP was designed,
the majority of the traffic over the Internet was elastic but
the capacity of current communication networks is mainly
used for real-time applications. For example, Cisco [21] [22]
foresee that by 2015 62% of the Internet traffic and nearly
66% of the mobile traffic will be video. With such significant
amount of traffic generated by inelastic applications, the use of
TCP can lead to significantly suboptimal resource allocations
in both wired and wireless networks.

An optimization-based algorithm, such as Algorithm 1 pre-
sented later in this paper, can allocate the resources of current
networks more efficiently. The use of such an algorithm to
allocate network resources would have two advantages over
TCP. First, each application in the network will be modeled
using a different utility function based on the user quality
perception for this application. This implies that elastic appli-
cations will be modeled using concave utilities and inelastic
using non-concave ones.

To illustrate the performance improvement that can be
achieved using an optimization-based resource allocation algo-
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Fig. 1. Example of a single-bottleneck network.
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Fig. 2. Example of utility functions.

rithm, consider the single bottleneck wired network topology
of Fig. 1, which consists of five traffic flows that share the
capacity of link 6. The capacity of links 1− 5 and 7− 11 is
assumed to be sufficiently large to serve any transmission rate
of source nodes 1− 5 while the capacity of link 6 is assumed
to be insufficient to accommodate all flows at their maximum
transmission rate, thus creating a bottleneck in the network.
For the comparison shown in this section the bottleneck link
was set to 28Mb/s. The applications sharing the network
included HTTP, FTP and video streaming. The utilities that
were used are shown in Fig. 2. Fig. 3 shows the improvement
that can be achieved if the resource allocation is carried out by
an optimization-based algorithm as opposed to the congestion
control mechanism in TCP. These quantitative results refer
to TCP Vegas but similar performance is expected for other
TCP variations [19] when applied to networks serving a
combination of elastic and inelastic applications. Note that
the optimization-based approach described in this paper is
not compared against TCP as a complete protocol but only
compared against the resource allocation mechanism of TCP,
which has be described as an optimization problem in several
pieces of work in literature [19][20].

The two methods were compared while the number of real-
time applications varied. The x-axis shows the number of
real-time applications out of five applications that compete
for resources in the network. The rest were either HTTP or
FTP applications. For example, the performance comparison
for two real-time applications corresponds to a scenario with
two sigmoidal utilities, one FTP concave utility and two HTTP
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Fig. 3. Improvement of the optimization algorithm over TCP vegas.

concave utilities. The red and black lines, corresponding to the
left y-axis, show the total network utility that each method
achieved, while the bars, corresponding to the right y-axis,
show the percentage of improvement that the optimization-
based algorithm achieved.

It is evident that the more real-time applications share the
network, the worse TCP performs by modelling all applica-
tions with the same concave utility. On the other hand, an
optimization-based algorithm can allocate network bandwidth
efficiently since it uses a different utility for each application.
Moreover, the improvement in performance can be even larger
in networks with a number of wireless links since Algorithm
1 takes into account the interference in order to calculate the
link capacities while TCP does not.

Motivated by these results, the next section will focus on the
development of an optimization framework that can offer the
foundations of future optimization-based resource allocation
protocols.

III. AN OPTIMIZATION FRAMEWORK FOR NON-CONVEX

PROBLEMS

The NUM framework as presented in [1] and [2] is re-
stricted by the need for concave utilities and the fact that the
capacity of all links is fixed. However, as explained above,
such assumptions are not valid for the majority of current
communication networks. Any prior work that attempts to
remove any of them refers to very specific applications, thus
lacking generality. This highlights the need for a general non-
convex optimization framework that will be able to solve
optimization problems resulting from any non-convex network
application.

Not all non-convex optimization problems are difficult to
solve. In fact, there are cases that can be solved as easy as a
convex optimization problem. Therefore, our main consider-
ation is to develop an optimization framework that can first
identify such non-convex problems and then solve them in a
distributed way, while being generic enough in order to cover
as many applications as possible. Towards the development
of such a framework, first, consider the maximization problem
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Πp over the vector of variables x = [x1, x2, . . . , xn]:

Problem Πp : max
x

f(x)

s. t. hi(x) ≤ 0, x ≥ 0. ∀ i

To form the dual problem, we first define the Langrangian
function L (x,λ) = f (x) +

∑M
i=0 λihi (x), where M is

the number of constraints of the optimization problem, λi

is the dual variable associated with the ith constraint and
λ is the vector containing all dual variables. According to
Duality Theory, the dual objective function is defined as

d (λ) = supx L (x,λ) = supx

{
f (x) +

∑M
i=0 λihi (x)

}
and

the dual optimization problem is:

Problem Πd : min
λ

d(λ) = L(x∗(λ),λ)

s. t. λ ≥ 0,

where x∗ (λ) is a function that maximizes the Lagrangian for
a given vector λ, i.e.

x∗(λ) = argmaxL(x,λ). (1)

Each of the dual variables λi corresponds to a specific
inequality constraint that are often referred as shadow prices.
In addition, x∗ (λ) is the optimal solution of problem Πp

for the particular price vector λ. The dual function d (λ) is
always convex as a point-wise supremum of a family of affine
functions of λ and problem Πd is always convex even if
the primal problem Πp is not concave [23]. Therefore, it is
possible to solve the dual problem using the iterative equation:

λi(t+ 1) = λi(t)− δλ
∂L(x,λ)

∂λi
(2)

where δλ is the step size and ∂L(x,λ)
∂λi

is the partial derivative of
lagrangian function with respect to λi. The uniqueness of the
optimal vector λ is not guaranteed in all cases but prior work
in literature can provide necessary and sufficient condition for
its uniqueness [24].

Equations (1) and (2) constitute an iterative primal-dual
optimization algorithm which would converge to the optimal
solution if problem Πp had been concave. However, conver-
gence to the optimal is not guaranteed otherwise. Nonetheless,
there are non-concave problems where the duality gap is zero
and (1) and (2) can converge to the optimal solution. To
identify these cases, one can use the sufficient condition of
Theorem 1.

Theorem 1 (Sufficient Condition). If the price based function
x∗ (λ) is continuous around at least one of the optimal
lagrange multiplier vectors λ∗ then the iterative algorithm
consisting of equations (1) and (2) converges to the globally
optimal solution.

Proof: See Appendix A.
The aforementioned condition is also a necessary condition

for convergence of the distributed gradient-based algorithm
for some non-convex optimization problems as the following
theorem suggests.

Theorem 2. If at least one constraint of problem Πp is active
at the optimal solution, the condition in Theorem 1 is also a
necessary condition.

Proof: See Appendix B.
The condition of theorems 1 and 2 constitutes a significant

contribution to optimization theory in general. Compared to
other pieces of work, such as [10]-[13], that refer to specific
non-convex NUM formulations in wired networks, this work
provides a far more general optimization formulation and
therefore can be widely applicable. The applicability of the
framework to a specific problem relies on the continuity
properties of the price-based function x∗ (λ). Until now, the
convexity of an optimization problem was considered the indi-
cation whether a problem can be solved in a distributed way.
Problems that did not satisfy the convexity condition were
considered difficult to be solved. Therefore, this is a significant
result that shows that a family of non-convex problems can
be solved distributedly using a gradient based method. Even
though the development of a general procedure to determine
continuity of x∗ (λ) for any optimization problem is an open
research issue, there are cases that either the calculation of a
closed form solution is possible or the continuity properties
of x∗ (λ) are known.

IV. RESOURCE ALLOCATION IN WIRELESS AD-HOC

NETWORKS

The non-convex optimization framework presented in the
previous section can be applied to the resource allocation prob-
lem in wireless networks in order to identify and solve non-
convex problem formulations that stem from the incorporation
of inelastic traffic and the existence of wireless links in the
network. The analysis of such a non-convex formulation is the
focus of this section.

A. Problem Formulation

Consider a multi-hop wireless network where each node can
operate either as traffic source, destination or relay that just
forwards traffic to its neighbors. We define the transmission
rate vector r = [r1, r2, . . . , rM ]T which includes the trans-
mission rates of all M source nodes in the wireless network.
Moreover, we define the link l as the tuple (Tl, Rl), where Tl

is the transmitting and Rl the receiving node, respectively. We
also define p = [p1, p2, . . . , pL]

T as the vector which includes
the transmission powers of the L links. The wireless channel
is modelled as follows. Let G be a matrix of size L × L,
where Gkm, with k,m ∈ 1, 2, . . . , L, represents the path loss
coefficient for the path between the transmitter of link k and
the receiver of link m. The elements of the path loss matrix
G depend on the physical characteristics of the wireless links.

The network performance optimization can be formulated
as a maximization problem of the form:

Problem ΠMWN : max
r,p

M∑
i=1

Ui(ri)− γ

L∑
l=1

Vl(pl)

s. t.
M∑
i=1

αilri ≤ Cl (p) , ∀ l

where parameter αil is one if the traffic of user i is passing
through link l, and zero otherwise. The parameters αil, with
i ∈ {1, 2, . . . ,M} and l ∈ {1, 2, . . . , L}, form the routing
matrix A of the network, which is considered to be fixed and
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known a priori for the duration of the optimization process.
The rates ri and powers pl are positive quantities and γ is a
positive weighting parameter.

In order to account for the half duplex limitations of
wireless transceivers and avoid excessive interference, a hybrid
TDMA/CDMA scheme is assumed to operate in the network.
More specifically, we consider Orthogonal-CDMA (OCDMA)
for transmissions towards the same receiver, and pseudo-noise-
CDMA (PN-CDMA) between different receivers. This means
that the transmitted signal is first spread through multiplication
by a Welsh-Hadamard (WH) sequence with N chips per
symbol. Then a PN sequence is overlayed either without
further spreading (i.e., with the same chip rate) or with further
spreading by a factor K (i.e., number of chips per WH chip).
All users transmitting towards the same receiver employ the
same PN sequence, and N orthogonal sequences are reused
at each receiver. Moreover, TDMA is employed throughout
the multihop routes. This implies that time is divided into
frames, each of them comprises of two equally sized slots,
where transceivers alter from transmitting to receiving mode.

Based on this channel model, the capacity of a link follows
Shannon’s capacity formula, Cl (p) = B · log2 (1 + SINRl)
and is a function of the Signal to Noise plus Interference
Ratio (SINR) at the receiver of the link and the channel
bandwidth B. This formula is a non-concave function of
powers and this might prevent any gradient based algorithm
from converging to the optimal power vector. However, under
the assumption that SINRl � 1, the concave formula
Cl (p) = B log2 (SINRl) can provide a sufficiently accu-
rate approximation of link capacity [25]. Such a high SINR
environment can be easily achievable for the aforementioned
TDMA/CDMA channel model. For the remainder of this
paper, the link capacity Cl (p) will be calculated using this
approximation.

The choices for utility Ui(ri) in problem ΠMWN are not
restricted to concave functions, as in the traditional NUM
framework, so that the problem formulation can be applied
to networks with various types of traffic. This makes problem
ΠMWN non-convex and therefore can be solved in an op-
timal way using a gradient-based distributed algorithm only
if Theorem 1 holds. However, as with most of the relevant
work in literature1, a utility function is not unrestricted, but
is assumed to have some generic properties that stem from
the physical properties of user satisfaction. These properties
include:

• The utility function is an increasing function of rates.
• The utility function is normalized to take values within

the range [0, 1].
• The utility function is a continuous function of rate in

the range (0, rmax), where rmax is the rate for which
the utility function has value 1.

Based on the aforementioned properties of the utility func-
tion, at the optimal solution either all the sources will be
transmitting at their maximum rate or there will be at least
one bottleneck link in the network , which will be restricting
transmission rates from being further increased. The former
case is beyond the focus of this paper and beyond the focus

1such as [11], [13] and [10]

of the network resource allocation research area in general.
In the latter case, at least one constraint will be active, those
corresponding to the bottleneck links, and hence Theorem 2
will hold.

Comparing Problem ΠMWN with other pieces of work in
literature, this formulation extends NUM for wireless networks
by allowing non-concave utility functions while considering
mutual interference among links and by using a power penalty
term to ensure energy efficiency and convergence of the
distributed power control algorithm.

B. Distributed Algorithm

Problem ΠMWN optimizes the allocation of resources in an
ad-hoc network and therefore the applicability of any solution
relies on the ability to develop a distributed algorithm with
minimum message overhead among nodes. Duality Theory
provides the means to develop such a distributed algorithm,
and to this purpose, we first define the Lagrangian function
as:

L(r,p,λ) =
M∑
i=1

{
Ui(ri)− ri ·

(
L∑

l=1

αilλl

)}
− γ

L∑
l=1

Vl(pl)

+
L∑

l=1

λlB log

⎛
⎜⎜⎝ NKplGll∑

k �=l

pkGkl + nl

⎞
⎟⎟⎠ . (3)

Regarding the physical meaning of the major terms on
the lagrangian function, Ui (ri) is the “profit” that source
i will make for sending its traffic at rate ri and quantity
ri ·

(∑L
l=1 αilλl

)
represents the total cost for source i in

order to send ri b/s of traffic through the network. Then, term∑L
l=1 λlB log

(
NKplGll∑

k �=l pkGkl+nl

)
represents the total “profit”

that the links will make by charging each unit of their capacity
with λl and term γ

∑L
l=1 Vl(pl) represents the weighted cost

for the links to achieve a capacity of B · log
(

NKplGll∑
k �=l pkGkl+nl

)
for l = 1, . . . , L. After a careful observation of the Lagrangian
function, one can see that the optimization process consists of
two subproblems of the primal variables r and p coupled by
the dual optimization variable vector λ. The first subproblem
is the rate allocation, maximizing the net revenue of each
source, and the second is a power control problem, determin-
ing the optimal transmission power of the links.

Based on the lagrangian function, every source i can cal-
culate its optimal rate r∗i (λ) using:

r∗i (λ) = argmax
[
Ui(ri)− ri · λi

]
, (4)

where λi =
∑L

l=1 αilλl is the aggregate price for user i and
it represents the cost of sending a unit of traffic through the
network. There are several methods to solve the optimization
problem of (4). First, it is known that the optimal solution
will be at the point where the first derivative of the objective
function diminishes and therefore

r∗i (λ) = U ′−1
i

(
λi
)
, (5)

where U ′−1
i (·) is the inverse function of the first derivative

of the utility function. It is evident that (5) can only be
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used if U ′
i (·) is an one-to-one function and its inverse can

be calculated. In cases that this is not possible, one should
use alternative methods, such as the gradient based iterative
equation:

ri(t+ 1) = ri(t) + δr(t)
∂L(r,p,λ)

∂ri
(6)

where δr(t) is a positive step size and the gradient of the
lagrangian function is given by:

∂L(r,p,λ)

∂ri
= U

′
i (ri)−

L∑
l=1

αilλl. (7)

The aforementioned equations assume that the Lagrangian
function is differentiable with respect to the rate, power and
price vectors. Based on the definition of the utility function
above, the differentiability of the Lagrangian depends on
the differentiability of the constraints and the cost function
Vj (pj). In case they are not differentiable, one could use a
similar algorithm based on the sub-gradient method [9][3].
However, since the focus of this paper is the more often case
of differentiable Lagrangian function, for the remainder of this
work, the constraints are assumed to be differentiable with
respect to the optimization variables and the cost function is
assumed to be a continuous and convex function of the trans-
mission powers. In general, iterative gradient-based equations
such as (6) should be used with care as they can converge to lo-
cal optima instead of global. However, knowledge of the shape
of the optimal rate allocation function can be used in some
cases, such as in the case of Problem ΠMWN to assure that
(6) will converge to the globally optimal solution. Nonetheless,
the distributed Algorithm 1 uses the general equation (4) to
allow the implementation of the most appropriate method for
r∗i (λ).

A similar approach can be used to calculate the power and
price variables, pl and λl respectively:

λl(t) = λl(t− 1)− δλ(t)
∂L(r,p,λ)

∂λl
(8)

pl(t) = pl(t− 1) + δp(t)
∂L(r,p,λ)

∂pl
, (9)

where δλ(t) and δp(t) are small positive step sizes and the
gradients are given by:

∂L(r,p,λ)

∂λl
= B · log2

⎛
⎜⎜⎝ NKplGll∑

k �=l

pkGkl + nl

⎞
⎟⎟⎠−

M∑
i=1

αilri (10)

∂L(r,p,λ)

∂pl
=

1

pl ln(2)

⎡
⎣λl −

∑
m �=l

λm
GlmPl∑

k �=m GkmPk + nm

⎤
⎦

− γV
′
l (pl). (11)

As explained analytically in [9][23], the step size has a
dominant effect in the complexity of the method as opposed
to the network size, which has a smaller (in fact linear) effect
on the complexity of the method [26]. There are several
step size selection methods for either constant or variable
step sizes. Methods with variable step size, such as Newton

Method, can calculate in practice the theoretical optimal
solution as opposed to constant step size methods, where
there is always a (small) distance between the theoretical
and practical optimal solution. However, variable step size
methods are computationally much more demanding (matrix
inverse calculations are included) which can make their use
impractical in some applications. On the other hand, constant
step sizes are less computationally demanding but there is a
trade-off between the convergence rate and the approximation
error. A comparison of the various step size methods is beyond
the scope of this paper and therefore a constant step size
method was used during our simulation results for simplicity.
Other methods can be also used depending on the requirements
of each individual application of the framework. Regarding
the complexity of the algorithm, it is evident by examining
(4), (8) and (9) that the rates, link prices and transmission
powers respectively are calculated using simple mathematical
operations. This fact along with the selection of the appropriate
step size to achieve fast convergence can make the proposed
iterative algorithm a method of relatively low complexity.

Equations (4), (8) and (9) constitute an iterative distributed
algorithm, which is summarized in Algorithm 1. The calcula-
tion of optimal rate at each iteration can be implemented with
either (5), if the inverse utility derivative can be calculated,
or using (6) and taking into account that the optimal solution
is always in the concave region of the utility function and
thus restricting the rate values within this interval. At every
iteration, each link and each source node are updating their
power, price and rate according to the feedback they get from
the network. Regarding the stopping criterion of the algorithm,
one could stop the optimization process when all derivatives
have diminished or when the value of the objective function
has not changed significantly for a number of consecutive
iterations [9]. In any case, the values of the step sizes δλ
and δp constitute an important trade-off between convergence
speed and accuracy. The initial vectors of r, λ and p for t = 0
can be set to any feasible value.

Regarding the information exchange of the algorithm, users
need to know the aggregate link price λi along the path that
they are using but not each individual link price. This can be
either stored in the ACK packets sent by the destination to the
source node, or, if the link price is viewed as the link delay in a
manner similar to TCP [19][20], it can be implicitly measured
by the packet queuing delay in the network. Regarding the
calculation of the transmission power at the next iteration,
it is indeed necessary to know the channel condition and
prices at the receivers in the network. Although equation (11)
indicates that the interference (i.e., transmitting power and
path loss) from all network terminals should be considered,
in practical implementations the interference from terminals
more than one hop away is negligible and can be omitted
from the calculation. In other words, one can define an
interference threshold below which the interference caused by
a transmitter is considered negligible and is not taken into
account in the calculation of the gradient of the Lagrangian
function. Therefore the power calculation process requires
that a terminal knows only the channel conditions of its
neighbouring nodes which can be easily obtained from the
lower layers of the protocol stack.
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C. Convergence and Oscillation Resolving Heuristic

The cost function Vl (pl) assures that the optimization
problem will have a finite optimal power vector. In the absence
of this cost function, i.e. when γ = 0, it is possible to fall in
a situation where equation (11) is always positive, leading
to infinite powers. On the other hand, when γ > 0, there
will be a finite power vector p′ at which any further increase
would lead to a decrease in the network utility and thus the
algorithm will converge to a finite power value. In literature,
this case of infinitely increasing power is often prevented by
assuming a maximum transmission power value pmax

l . Such an
assumption, even though is reasonable in a practical system,
causes distortion in the theoretical analysis since it creates
artificial convergence points. Specifically, according to the
Brouwer Fixed Point Theorem [27], a continuous mapping
of the power vector within a closed range

[
pmin
l , pmax

l

]
creates fixed points of an algorithm that might otherwise never
converge. Therefore, the use of the penalty function Vl (pl) is
a more natural way of assuring both energy efficiency and
convergence of the distributed power control algorithm.

Algorithm 1 is an extension of the standard gradient algo-
rithm to solve any convex optimization problem and whose
convergence properties have been extensively studied in prior
work [9]. According to Theorem 1, the convergence of the
algorithm to the optimal solution relies on the continuity
of (4) around at least one of the optimal price vectors λ∗.
The continuity properties of (4) rely on the shape of the
utility function Ui (ri). More specifically, if Ui (ri) has a
concave shape, i.e. it is modelling an elastic application,
(4) is a continuous function of the aggregate price λi. If,
however, Ui (ri) models an inelastic application, (4) can be
discontinuous at one or more points and user oscillations
can occur when the optimal price vector λi leads to an
aggregate price (for that specific user) equal to a discontinuity
point. While a generic procedure to determine the continuity
properties of ri

(
λi
)

for any utility function is an open research
problem, these properties have been extensively studied for
single-sigmoidal utilities [10]. For such utility function, r∗i (λ)
is discontinuous at only one point, which represents the user’s
maximum willingness to pay, λi

max, and there is an analytical
methodology to be calculated. For example, the optimal rate
for a given price vector can be calculated using (6) due to the
fact that the optimal solution can only exist in the concave
region of the utility function.

Fig. 4 shows an example of the rate allocation function
ri
(
λi
)

for a single-sigmoidal utility which is discontinuous for
λi = λi

max = 0.7385. In the remainder of this paper, we will
assume that inelastic applications will be modelled by single-
sigmoidal utility shapes, such as the one in Fig. 2, which is
the most widely used shape to model real-time multimedia ap-
plications. The use of single-sigmoidal utilities allows us also
to compare our approach with other approaches in literature
and highlight the wide applicability of our framework. The
examination of formulations with different non-concave utility
shapes (such as multi-sigmoidal utilities) is one of our future
research targets. Moreover, we assume that the cost function
Vl (pl) is a convex function of the transmission powers. This
assumption ensures that the power control sub-problem is
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Fig. 4. Example of the rate allocation function ri
(
λi

)
for sigmoidal utilities.

convex and the iterative algorithm will converge to the optimal
power vector. The investigation of other shapes for the utility
and cost functions, and the consideration of their effect on the
development of more energy efficient distributed algorithms
will be the focus of our future research.

The phenomenon of oscillation occurs when the optimal
rate function r∗i (λ) of a specific user i is a discontinuous
function of the aggregate price and the optimal price vector
λi leads to an aggregate price (for that specific user) equal to
the discontinuity point. As explained earlier, the existence of
discontinuity points in r∗i (λ) depends only on the shape of
the utility function. Specifically, for sigmoidal utilities, r∗i (λ)
is discontinuous only for aggregate price λi = λi

max and
when the optimal price vector leads to that aggregate price,
the rate of user i oscillates and the distributed algorithm can
not converge.

Practically, a user oscillation occurs when the user transmits
at an excessive data rate (compared to the available capacity)
in an iteration of the algorithm, and in the next iteration,
the user transmits at an exceedingly low rate. An oscillation
is formed as the repetition of these two events continues
indefinitely, which prevents the user from converging to the
optimal transmission rate. In this case, user i needs to resolve
this oscillation and approximate the optimal solution. To this
purpose, Algorithm 2 describes an efficient heuristic that
ensures convergence to the optimal solution, when users do not
oscillate, and stability when one or more users oscillate. Note
that Algorithm 2 is carried out distributedly by each source
node to determine the most appropriate rate at time t after an
updated aggregate price is received and, in essence, replaces
the initial rate update mechanism in line 6 of Algorithm 1.

Algorithm 2 is based on the idea that an oscillating user will
be allocated some rate, and will be removed from the rest of
the optimization process to allow stability of the network. User
oscillations indicate that the optimal rate allocation is non-
zero, but due to the discontinuity at λmax

s , the optimal rate can
not be calculated. More specifically, user i is associated with a
parameter θi, the maximum number of consecutive oscillations
before the oscillation resolving mechanism is evoked (line 2).
As long as an oscillation is not detected, user i calculates its
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Algorithm 1 – Iterative Distributed Algorithm
1: t = 1;
2: repeat
3: Links calculate ptj using (9) based on λt−1 and channel

state information;
4: Links calculate λt

j using (8), based on λt−1
j , ptj , channel

state information and aggregate rate traversing link j;
5: New prices λ are sent to sources;
6: Sources calculate rti using (4) based on received λi and

rt−1
i ;

7: t = t+ 1;
8: until algorithm_converges

rate based on the aggregate price (line 6). Once oscillations are
detected, user i starts transmitting at rate equal to the inflection
point of its sigmoidal utility and leaves the optimization
process (lines 2-5 and 9). The reason behind this selection is
the following. The cause of oscillation is that the optimal rate
is between the inflection point of the utility function and the
rate that corresponds to aggregate price λmax

s . However, due
to the fact that the rate allocation function is discontinuous
between these two values, the distributed algorithm cannot
converge. Therefore, a sensible choice of rate for the heuristic
is the minimum of the two values, which is the infection point
of the utility function.

Removing oscillating users from the optimization process
is an obvious decision to ensure stability of the network but
the question lies in the allocated rate to oscillating users. An
alternative choice for resolving oscillations is to not allocate
any rate to this user. Authors in [10] attempt to solve the
oscillation problem by removing them without allocating any
rate. However, such approaches lack fairness because they
unnecessarily prevent some users from accessing the network
resources. Algorithm 2 has the following advantages against
this approach. The self-regulating heuristic has been proven
to be optimal for wired networks with infinite number of
users/data sources. If the number of users is finite though, by
completely removing an oscillating user from the optimization
problem, there is a non-zero probability that the remaining
users will not be able to exploit the remaining available
resources and therefore the resulting resource allocation is
significantly suboptimal. The oscillation resolving heuristic
presented in this paper can accommodate more users since
it allocates some rate even to oscillating ones. In addition,
allowing more users to transmit in a high SINR environment
makes a better use of the capacity of the wireless medium and
ultimately leads to higher aggregate utility in the network for
practical applications. This will be shown by an example in
Section V.

V. NUMERICAL RESULTS

Algorithms 1 and 2 were simulated in MATLAB for various
network scenarios. For illustration purposes, in this section
let us consider the network topology shown in Fig. 5. The
wireless network consists of four source nodes, four interme-
diate nodes and one destination node. Source nodes 1 and
4 serve real-time applications with sigmoidal utilities while

Algorithm 2 – Source Rate Calculation
1: if user_takes_part_in_optimization then
2: if user_is_oscillating (r, θi) then
3: rti = inflection_point_rate;
4: user_takes_part_in_optimization = false;
5: else
6: Calculate rti using (4);
7: end if
8: else
9: rti = rt−1

i ;
10: end if
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Fig. 5. Example network topology.

source nodes 2 and 3 serve HTTP applications with concave
utilities.

In the topology example of Fig. 5, the two time slots are
designated with blue and red color. In other words, nodes
1− 4, 7 and 8 transmit only at the first time slot while nodes
5 and 6 only during time slot 2. The hybrid TDMA/CDMA
scheme described in Section IV was deployed with N = 2
chips per symbol, a spreading gain K = 4 and channel
bandwidth of B = 2MHz. Finally, the utility functions of the
four sources where defined as Ui (ri) =

1
1+exp(α(ri−β)) [10],

with α = −1.38 and β = 5 for i ∈ {1, 4}, U2 (r2) =
log(r2+1)
log(α+1)

[28], with α = 6, and U3 (r3) = α · log(β · r2 + γ) [10],
with α = 0.417, β = 0.417 and γ = 1. Then, the exact
value of the step sizes in our simulations varied between 0.001
and 0.01 in order to achieve an acceptable balance between
approximation error and convergence speed. Regarding the
feasible power vectors, it is assumed that there is a feasible
power vector to achieve capacity adequate to accommodate
the non-concave utilities when transmitting at rate equal to
their inflection point.

The performance of Algorithms 1 and 2 is compared
against that of the standard gradient algorithm when the self-
regulating heuristic [10] is applied to resolve oscillations.
Figs. 6, 7 and 8 illustrate their performance. Soon after the
optimization process starts, the aggregate price for users 1 and
4 exceeds their maximum “willingness to pay” and they start
oscillating. As shown clearly in Fig. 6, the rate oscillation of
users 1 and 4 cause oscillations of smaller degree to other users
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as well. This happens since oscillations cause abrupt changes
in the competition for resources in the network. When such
an oscillation is observed, a heuristic is evoked to resolve it.
Algorithm 2 sets the rate to the non-zero value of the inflection
point (in this case to 5 Mb/s) and continues the optimization
process. In the self-regulating heuristic case the rate is set to
zero.

Comparing the values of the objective function throughout
the application of the algorithms in Fig. 7, one should note
that the relatively high values at the early iterations can not
be compared with the value of the objective function that the
algorithm converged to for the following reason. The values
of the objective function at the first few iterations, roughly
until iteration 80, do not correspond to feasible solutions. This
is typical for a gradient-based algorithm since the algorithm
tries to converge to a solution where all the derivatives are
zero and during this process some of the intermediate results
can be infeasible solutions of the optimization problem [9].

As illustrated in Fig. 7, the decision for non zero rate
for the oscillating users yields higher value of the objective
function compared to the self-regulating heuristic, for the
reasons explained earlier. Note that, as Theorem 1 states,
when the optimal vector λ does not lead to oscillations,
the optimization process comprised of Algorithms 1 and 2
converges to the globally optimal solution. Fig. 8 shows the
convergence of the transmission powers allocation of the first
4 links in the network, the ones initiated from the 4 source
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nodes. The difference in dealing with oscillations between the
two heuristics is illustrated in the power vectors as well. The
self-regulating heuristic leads to zero powers for the oscillating
users while Algorithm 2 gives non zero powers to achieve the
necessary channel capacity. Finally, since we have assumed
the operation at a high SINR environment, we should mention
that the SINR ranges from 7dB to 18dB, and therefore
the error introduced by our capacity approximation in the
worst case is less than 10% (note that for SINR > 10dB
the error is less than 4%). It is important to mention here
that the approximation provides an underestimation of the
link capacity, and therefore the upper bound of the Shannon
capacity formula is not violated. This justifies the valid use of
the approximated capacity formula.

VI. CONCLUDING REMARKS

Motivated by the non-convex resource allocation problems
in Network Utility Maximization and the necessity for a novel
optimization-based resource allocation protocol, this paper
presents a general optimization framework for non-convex
problems and provides a sufficient condition to assure that a
distributed gradient-based algorithm converges to the optimal
solution and can be also a necessary condition in some non-
convex problem formulations. The optimization framework is
applied on an optimization problem formulation in wireless
ad-hoc networks. This formulation includes a power penalty
function to assure convergence and energy efficiency of the
power allocation. Consequently, a distributed algorithm to
solve this problem is developed and an oscillation resolving
heuristic is presented to assure network stability in non-
convex problems whose optimal solution can not be calculated
distributedly.

The focus of our future research will be twofold. First,
we plan to investigate the applicability of the optimization
framework to a wider selection of utility functions, and, then,
work towards a generic procedure to identify whether the
necessary and sufficient condition of Theorem 1 is satisfied
for any non-convex optimization problem.
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APPENDIX

A. Proof of Theorem 1

To prove its sufficiency, we start by showing that continu-
ity of x∗ (λ) around the optimal dual variables λ∗

i implies
that complementary slackness is satisfied for problem Πp.
Recall that the complementary slackness condition states that
λ∗
i hi (x

∗ (λ∗)) = 0, ∀i at the optimal solution x∗ (λ∗).
First, the case where λ∗

i > 0 for an arbitrary chosen i is
examined. A very small positive constant ε > 0 and a new
vector λ− are defined where

λ−
j =

{
λ∗
j − ε , if j = i
λ∗
j , if j �= i

(12)

In other words, vectors λ and λ− differ only at one element,
which has been reduced by the constant ε. Then, by definition
of the sub-gradient, we have that

d(λ∗) ≥ d(λ−) + (λ∗ − λ−)TΛ(λ−) ⇔

d(λ∗) ≥ d(λ−) + ε
∂L(x,λ−)

∂λi
⇔

d(λ∗)− d(λ−) ≥ εhi(x
∗(λ−)). (13)

where Λ is a vector containing the partial derivatives of
the lagrangian with respect to the dual variables, i.e. Λ =
[∂L(x,λ)

∂λi
, i ∈ [1,M ]]. But since the dual problem is a min-

imization problem and λ∗ is its optimal solution, it follows
that d(λ∗) ≤ d(λ−) and hence by (13)

hi(x
∗(λ−)) ≤ 0. (14)

Working at the same way, a second vector λ+ is defined as

λ+
j =

{
λ∗
j + ε , if j = i
λ∗
j , if j �= i

(15)

Again, by definition of the sub-gradient, it follows that

d(λ∗) ≥ d(λ+) + (λ∗ − λ+)TΛ(λ+) ⇔

d(λ∗) ≥ d(λ+)− ε
∂L(x,λ+)

∂λi
⇔

d(λ∗)− d(λ+) ≥ −εhi(x
∗(λ+)). (16)

But for the same reason as before, d(λ∗) ≤ d(λ+) and hence
by (16), we conclude that

hi(x
∗(λ+)) ≥ 0. (17)

From (14) and (17) we get to the conclusion that as long as
x∗(λ) is continuous around λ∗, then

hi(x
∗(λ−)) = hi(x

∗(λ+)) = hi(x
∗(λ∗)) = 0 (18)

and hence complementary slackness is satisfied and the solu-
tion x∗(λ∗) is primal feasible.

Then, the case where λ∗
i = 0 is examined. In this case, it is

obvious that complementary slackness is satisfied. Primal fea-
sibility of the solution can be shown using the positive constant
ε and the price vector λ+ are defined as before. Equation (17)
is reached again and under the continuity condition it follows
that hi(x

∗(λ+)) ≥ 0. Hence, the complementary slackness
condition is satisfied under the condition that the price-based
function x∗(λ) is continuous at the optimal price vector λ∗.

By definition of the dual problem, its optimal solution
is given by d∗ = f(x∗(λ∗)) +

∑m
i=0 λ

∗
i hi(x

∗(λ∗)), and
since complementary slackness holds, it reduces to d∗ =
f (x∗ (λ∗)), which by definition of the primal problem is
f (x∗ (λ∗)) ≤ f∗ (x) and hence d∗ ≤ p∗. But by weak duality
it is known that d∗ ≥ p∗ and therefore it follows that d∗ = p∗,
where p∗ and d∗ are the optimal values of the primal and the
dual problem respectively.

Therefore, it has been proven that continuity of the price
based function (1) around at least one of the optimal price
vectors implies that the duality gap is zero and that by solving
the dual optimization problem the optimal solution x∗ is also
obtained.

B. Proof of Theorem 2

According to Complementary Slackness, which is a nec-
essary condition for optimality, the fact that at least one
constraint is active at the optimal solution implies that at
least one of the optimal lagrange multipliers is non-zero and
therefore the algorithm cannot converge unless (18) holds.
Hence, continuity of x∗ (λ) around at least one of the optimal
Lagrange multiplier vectors is a necessary condition.
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